一种改良型牵张式种植体的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种植义齿修复因具有传统义齿修复无法比拟的良好功能和美学效果,已得到越来越多医生和患者的青睐。然而,各种原因导致的牙槽嵴高度不足却严重限制了其应用。目前可用于解决牙槽嵴高度不足的方法主要有骨移植、引导骨组织再生(GBR)、牙槽嵴牵张成骨(ADO)等。其中ADO是激发机体自身的再生能力而自然成骨,具有无需植骨、没有供骨区的二次创伤、骨吸收率低、获得骨量大、软组织可获得同步延伸等优点,近年来得到广泛的关注。
     现有的牙槽嵴牵张设备依据其植入的位置和功能可分为骨内型牵张器,骨外型牵张器和牵张种植体(DI)。与前两者相比,DI兼具了牵张器与种植体双重功能,仅需一次手术就可以完成颌骨牵张和种植体的植入,既简化了手术过程,减少了对牙周组织的创伤,同时也大大缩短了整体治疗时间。
     虽然DI具有其独特的优势,然而,在临床及研究应用中发现,现有牵张设备也存在着很多不足。一是设备体积较大,适用范围窄;二是设备结构复杂,发生并发症的可能性大;三是现有牵张设备在牵张完成后变成两端大中间小的哑铃型结构,一旦发生失败,设备难以完整取出,进而增加了手术的风险。因此,如何通过有效的手段对现有牵张设备进行改进,解决上述的一项或几项问题,是推广DI应用的关键。
     本课题针对牙槽嵴高度不足时的种植修复问题,设计应用一种改良型DI。通过有限元优化设计,离体生物力学测试,以及离体、在体动物牵张实验评价该DI的性能。以期通过对DI相关参数的优化改良,使之从功能上实现“早期可靠牵张,远期最佳载力”。
     第一部分:有限元优化设计
     实验一:有限元模型的建立
     方法:以一种旋入型DI的结构为参照。在Pro/E软件中分别建立DI-基台复合体(DAC)及自适应变化的下颌骨的三维实体模型,并将二者组装在一起,成为最终模型。分别施加轴向100N及颊舌向45度30N的力。采用皮质骨、松质骨及DI的最大米塞斯应力(Max EQV stress)和DAC的位移对模型进行可靠性检验。
     结果:成功建立了包含下颌骨骨块及DAC的三维有限元模型,可靠性检验结果证实模型可靠。
     实验二:中心牵张螺丝(DS)直径(D)的优化分析
     方法:设定DS的D为输入变量(1.0~3.0mm),应用Ansys DesignXplorer三维有限元优化分析模块,对这一个参数进行优化分析。
     结果:随着D的增加,在轴向力的作用下,皮质骨、松质骨和DS的EQV峰值分别下降了21.83%、69.60%、62.67%,DS位移峰值下降22.22%;在颊舌向力的作用下,皮质骨、松质骨和DS的EQV峰值分别下降13.30%、31.69%、44.92%,DS位移峰值下降12.75%。当D≥2mm时,应力及位移可以达到最小。
     实验三:DI骨内上下两段长度比例(R)的优化分析
     方法:设定R为输入变量(5:5~9:1),应用Ansys DesignXplorer三维有限元优化分析模块,对其进行优化分析。
     结果:随着R的增加,在轴向力的作用下,皮质骨、松质骨及DAC的EQV峰值分别下降了9.19%、19.25%、32.97%,DAC位移峰值下降6.18%;在颊舌向力的作用下,皮质骨、松质骨和DAC的EQV峰值分别下降10.94%、67.32%、12.63%,DS位移峰值下降9.36%。当R=8:2时,应力及位移可以达到最小。
     第一部分结论:
     1.成功建立了包含下颌骨骨块及DAC的三维有限元模型。
     2. D≥2mm,R=8:2为最优设计参数。
     第二部分:离体实验
     实验四:DI设计加工制作及离体生物力学测试
     方法:根据上述优化结果,设计并加工制作出一种改良型DI。将牵张高度为6mm的DI与普通种植体进行相关生物力学性能的比较分析,分别进行了轴向拔出实验及周期荷载疲劳实验的检测。
     结果:轴向拔出实验的结果显示,DI的最大拔出力为1106±75.22N,普通种植体的最大拔出力为1094±114.3N,二者差别无统计学意义;周期荷载疲劳实验结果显示,经历240万次(模拟10年咀嚼状态)的加载,所有牵张种植体试件与普通种植体的试件均未发生断裂疲劳。
     实验五:离体牵张测试
     方法:在新鲜的犬离体下颌骨上模拟DI植入及牵张的全过程:水平截骨-打种植孔-平行植入两枚DI-垂直截骨-更换牵张螺丝-试牵张。
     结果:手术操作过程顺利,成功将游离骨块牵起。
     第二部分结论:
     1.牵张6mm的改良型DI具有良好的生物力学性能。
     2.该改良型DI具备可靠的牵张性能。
     第三部分:动物实验
     实验六:双侧下颌牙槽嵴萎缩动物模型的建立及DI植入术
     方法:选择3只杂种犬作为实验动物。通过拔除其双侧下颌全部前磨牙并进行牙槽嵴修整,建立双侧下颌牙槽嵴萎缩的犬模型。在确定模型建好后,采用一种自创的全新的手术方式,在双侧分别植入两枚DI。
     结果:拔牙三个月后大体及X线片结果显示成功建立了双侧下颌牙槽嵴萎缩的犬模型;新式DI植入手术操作方便、出血量少,成功将DI植入。
     实验七:牵张早期成骨效果的评价
     方法:DI植入后5天将连接螺丝更换为牵张螺丝并开始第一次牵张,每两天牵张1次,每次牵张1mm,牵张6次达到6mm的牵张高度。观察30天后将动物处死,分别通过大体、X线、CT、Micro-CT、组织病理学分析评价其牵张早期成骨的情况。
     结果:牵张30天后,大体观察可见8枚DI均稳定,未出现松动、脱落。牵张区域新生组织色泽偏暗红,质地较硬,颊侧新生组织表面粗糙不平,舌侧较为光滑平整,肉眼已分辨不出截骨线位置;X线、CT、Micro-CT、硬组织病理结果显示牵张区域成骨活跃,已有部分新生骨生成;牙龈组织病理示牙龈组织已基本恢复正常状态,仅个别标本的部分区域可见牙龈上皮层增厚,细胞层数增多。
     第三部分结论:
     1.新式DI植入术能有效减小术区软硬组织的创伤,有利于游离骨块的稳定性及成活。
     2.动物实验早期结果证实参数优化后的DI具有较为可靠的牵张成骨性能。
Dental implants have been extensively used as replacements of lost ordamaged natural teeth, which have better functional and aesthetic resultscompared with other kinds of restorations. However, insufficient alveolar heightresulting from atrophy, trauma, congenital malformation, and resection oftumors limits implant placement. As a result, various augmentation techniques,such as bone grafting, guided bone regeneration (GBR) and alveolar distractionosteogenesis (ADO) have been used to correct this deformity. Among thevarious augmentation techniques, ADO is a technique of gradual bonelengthening allowing the body's natural healing mechanisms to generate newbone. It offers significant advantages including predictability, elimination of adonor site for autogenous grafts, and simultaneous bone and soft-tissueregeneration. Currently, ADO has been demonstrated to be a promisingtechnique and has gained increasing acceptance.
     Currently available alveolar distraction designs include extraosseous distractors placed on the lateral side of the bone, endosseous distracters insertedinto the bone segments, and distraction implant (DI). Among them, DI canfunction as both a distractor and an implant eventually. Its predominantadvantage is the single-step surgical technique, which not only simplifies theoperation and minimizes the trauma, but also dramatically reduces the treatmenttime, thus satisfying both patients and dentists.
     However, DI has its own drawbacks like narrow indication, high risk ofcomplications and unfavorable biomechanical properties due to the complexstructure. In addition, the device will prove difficult to remove if it fails with anincrease in morbidity of the procedure for removal. Therefore, furtherimprovement of the DI devices is in a great need.
     In this study, a modified DI device was developed. Finite element analyseswere performed to optimize some parameters of DI, which could providevaluable reference for DI’s improvement. Then in vitro and in vivo studies wereperformed to evaluate the modified DI’s properties. The aim of this study was todevelop a useful DI device which can have better distraction and implantationperformance.
     Part one: Finite element analyses
     Experiment one:3D model design
     Method:a DI system was developed by the Zhongbang Company (Xi’an,China). This system had dual functions for the distractor and prosthetic implant.A posterior mandible segment with a DI and a superstructure were modeled on apersonal computer using a3D program (Pro/E Wildfire). Forces of100N and30N were applied axially and45°buccolingually on the buccal cusp, respectively.The maximum equivalent Von Mises stress in the jaw bones and DI-abutmentcomplex, and the Max displacement of the DAC were used to evaluate the reliability of the model.
     Results: a posterior mandible segment with a DI and a superstructure weremodeled successfully and the model’s reliability was conformed.
     Experiment two: biomechanical optimization of the diameter (D) of thedistraction screw (DS) by three-dimensional finite element analysis
     Method:in Ansys DesignXplorer, the D of DS (ranging from1mm~3mm)was set as input variable. The maximum (Max) equivalent Von Mises (EQV)stress in cortical bone, cancellous bone, and distraction screw, and the Maxdisplacement of distraction screw were set as output variables to evaluate theeffect of different distraction screw diameters on the jaw bones and DI.
     Results: the results showed that under axial load, the maximum equivalentstresses in the cortical bone, cancellous bone, and distraction screw decreased by21.83%,69.60%, and62.67%respectively with increasing diameter, while underbuccolingual load, these values decreased by13.30%,31.69%, and44.92%respectively. The maximum displacements in the distraction screw decreased by22.22%and12.75%under axial and buccolingual loads respectively. When thediameter exceeded2.0mm, the stress in the jaw bones and the displacement inthe distraction screw reached the minimum.
     Experiment three: biomechanical optimization of the length ratio of thetwo endosseous portions in distraction implants by three-dimensional finiteelement analysis
     Method:in Ansys DesignXplorer, the length ratio (R) of the two endosseousportions of distraction implant (ranging from5:5~9:1) was set as an inputvariable. The Max EQV stress in the jaw bones and DAC, and the Maxdisplacement of the DAC were set as output variables to evaluate the effect ofdifferent ratios between the lengths of TP and SP in the jaw bones and the DI.
     Results: the results showed that under axial load, the maximum equivalentstress in the cortical bone, cancellous bone, and distraction implant-abutmentcomplex decreased by9.19%,19.25%, and32.97%respectively with increasinglength ratio, while under buccolingual load, these values decreased by10.94%,67.32%, and12.63%respectively. The maximum displacements in thedistraction implant-abutment complex decreased by6.18%and9.36%underaxial and buccolingual loads respectively. When the length ratio was at8:2, thestress in the jaw bones and the displacement in the distraction implant-abutmentcomplex reached the minimum.
     Conclusions of part one
     1. A posterior mandible segment with a DI and a superstructure weremodeled successfully.
     2. D≥2mm and R=8:2were the optimal choices.
     Part two:In vitro study of DI
     Experiment four: DI’s design, manufacture, and biomechanical analysis
     Method: according to the optimization results above, we designed andmanufactured a modified DI. Axial pull-out test and fatigue test were conductedto compare the biomechanical properties between the DI with6mm distractionheight and a normal implant.
     Results: axial pull-out test results showed that the max axial pull-outstrengths were1106±75.22N and1094±114.3N for the DI and the implantrespectively (P>0.05). The fatigue test results showed that none of the samples(DIs and implants) failed after2.4million’s loading cycles (about10years’chewing simulation).
     Experiment five: In vitro distraction test
     Method:DI’s insertion and distraction procesures were simulated in a fresh mandible of a dog: horizontal osteotomy-preparation of planting hole-DI’sinsertion-vertical osteotomy-distraction screw’s replacement-distraction
     Results: the surgical procedures were smoothly, the transport bone wassuccessfully lifted.
     Conclusions of part two
     1. The modified DI with6mm distraction height’s biomechnical property isas good as the normal implant.
     2. The modified DI has reliable distraction osteogenesis performance.
     Part three: animal experiment
     Experiment six: animal models’ setting up and DI’s insertion operation
     Method: three adult mongrel dogs were used in this experiment. Allmandibular premolors were extracted and an alveoloplasty was performed.Three months later, the animal models were set up. Then, a new surgicalapproach was applied to insert DIs.
     Results:three months later, the animal models with atrophic alveolar ridgewere successfully set up by both the general observarion and X ray evaluation.The new surgical approach is easy to handle with less bleeding. The DIs weresuccessfully inserted with this approach.
     Experiment seven: in vivo evaluation of bone regeneration around DI inthe early stage of healing
     Method:five days after DIs’ insertion, the initial connection apparatus wasreplaced by the distraction screw. Distraction was then carried out at a rate of1mm per two days for12consecutive days to achieve6mm distraction height.Thirty days later, the dogs were sacrificed and the mandible segments includeddistracted bone and DIs were harvested. X ray, CT, Micro-CT and histologicalanalysis were used to evaluate the bone regeneration.
     Results: all of the DIs were in position and none of them was lost or looseduring the healing. The new generated tissue over the distraction site showeddark red color. The buccal surface of the new generated tissue was rough, whilethe lingual surface was smooth. The osteotomy line could not be seen with thenaked eye. The results of X ray, CT, Micro-CT and histological analysis showedactive osteogenesis in the distraction area where new generated bone had beenformed. Histological analysis for gingival tissue showed that most of thegingival tissue had healed well while only limited gingival tissue showedincreased epithelial thickness and more layers of epithelial cells.
     Conclusions of part three
     1. The new surgical approach can minimize the trauma, which is beneficialto the stability and survival of the transport bone.
     2. The in vivo experiment results showed that the modified DI had reliabledistraction osteogenesis performance.
引文
1.陈冬青.饮食限制抗衰老与实现健康老龄化.中国医药科学.2011,4(1):50-51.
    2.赵丽萍.老年口腔保健.中华现代护理学杂志.2006,3(1):82-84.
    3. Joos U, Kleinheinz J. Reconstruction of the severely resorted jaws: routineor exception. J Craniomaxilofac Surg.2000,28(1):1-4.
    4.屈汉廷.颌骨骨量不足的牙种植术.上海铁道大学学报.2000,21(11):80-82.
    5. Lekholm U, Zarb GA. Patient selection and preparation. In: Braemark P-I,Zarb GA, Albrektsson T (eds). Tissue-Integrated Prostheses:Osseointegration in Clinical Dentistry. Chicago: Quintessence.1985.
    6. Desjardins RP. Maxillofacial prosthetics: demand and responsibility. JProsthet Dent.1986,56(4):473-477.
    7. Rowe DJ. Bone loss in the elderly. J Prosthet Dent.1983,50(5):607-610.
    8. Kubota K, Yoshimura N, Yokota M, et al. Overview of effects of electricalstimulation on osteogenesis and alveolar bone. J Periodontol.1995,66(1):2-6.
    9.邱蔚六.口腔颌面外科理论与实践.北京:人民卫生出版社.1998,298-301.
    10.韩科.种植义齿.北京:人民军医出版社.2007.
    11. Branemark PI, George A, Albrektsson T. Tissue-integrated prosthesis:osseointegration in Clinical Dentistry. J Prosthet Dent.1985,54(4):611-612.
    12. Holmes DC, Loftus JT. Influence of bone quality on stress distribution forendosseous implants. J Oral Implantol.1997,23(3):104-111.
    13. Jaffin RA, Kumar A, Berman CL. Immediate loading of dental implants inthe completely edentulous maxilla: a clinical report. Int J Oral MaxillofacImplants.2004,19(5):721-730.
    14. Bahat O, Handelsman M. Use of wide implants and double implants in theposterior jaw: a clinical report. Int J Oral Maxillofac Implants.1996,11(3):379-386.
    15. Tawil G, Younan R. Clinical evaluation of short, Machined-surface implantsfollowed for12to92months. Int J Oral Maxillofac Implants.2003,18(6):894-901.
    16. González-García R, Monje F, Moreno C. Alveolar split osteotomy for thetreatment of the severe narrow ridge maxillary atrophy: a modifiedtechnique. Int J Oral Maxillofac Surg.2011,40(1):57-64.
    17.郑苍尚,周立伟,沈倍勇.颌骨骨量不足的牙种植术研究新进展.口腔医学研究.2007,23(1):109-111.
    18. Veis AA, Tsirlis AT, Parisis NA. Effect of autogenous harvest site locationon the outcome of ridge augmentation for implant dehiscences. Int JPeriodontics Restorative Dent.2004,24(2):155-163.
    19. Lundgren S, Rasmusson L. Simultaneous or delayed placement of titaniumimplants in free autogenous iliac bone gragts: histological analysis of thebone graft-titanium interface in10consecutive patients. Int J OralMaxillofac implants.1999,28(1):31.
    20.贾祎佳,刘强,卢向东.骨缺损修复治疗研究进展.中国药物与临床.2011,11(4):433-435.
    21.孙铭,王景云,孙宏晨.牙槽嵴增高方法的研究进展.中华口腔医学杂志.2003,38(4),313-315.
    22. Lenzen C, Meiss A, Bull HG. Augmentation of the extremely atrophiedmaxilla and mandible by autologous calvarial bone transplantation. MundKiefor Gesichtschir.1999,3Suppl1:S40-42.
    23. Mulliken JB, Glowacki J. Induced osteogenesis for repair and constructionin the craniofacial region. Plast Reconstr Surg.1980,65(5):553-560.
    24.尹宏宇.大鼠颅骨缺损模型在骨组织工程中的应用.中国美容医学.2009,18(5):727-729.
    25. Urist MR. Bone: formation by auto induction.1965. Clin Orthop.2002,395:4-10.
    26. Stevenson S. Biology of bone grafts. Orthop Clin North Am.1999,30(4):543-552.
    27. Kawcak CE, Trotter GW, Powers BE, et al. Comparison of bone healing bydemineralized bone matrix and autogenous cancellous bone in horses. VetSurg.2000,9(3):218-226.
    28. Maiorana C, Santoro F, Rabagliati M, et a1. Evaluation of the use of iliaccancellous bone and anorganic bovine bone in the reconstruction of theatrophic maxilia with titanium mesh: a clinical and histologic investigation.Int J Oral Maxillofac Implants.2001,16(3):427-432.
    29. Platt JL. New directions for organ transplantation. Nature.1998,392(6679suppl):11-17.
    30.蓝旭,杨志明.生物衍生骨材料.中国修复重建外科杂志.2005,19(3):241-244.
    31. Lu S, Zhang Z, Wang J, et al. Guided bone regeneration in long bone, Anexperimental study. China Med J (Engl).1996,109(7):551-554.
    32. Elshahat A, Inoue N, Marti G, et a1. Role of guided bone regenerationprinciple in preventing fibrous healing in distraction osteogenesis at highspeed: experimental study in rabbit mandibles. J Craniofac Surg.2004,15(6):916-921.
    33. Stavropoulos F, Dahlin C, Ruskin JD, et a1. A comparative study of barriermembranes as graft protectors in the treatment of localized bone defects, anexperimental study in a canine mode1. Clln Oral lmplants Res.2004,15(4):435-442.
    34.陈红亮,孙勇.引导骨再生技术在口腔颌骨缺损中的应用回顾及展望.2009,19(7):752-753.
    35.唐倩,李源,梁焕友,等.聚羟基丁酸/羟基戊酸共聚酯构建引导骨组织再生膜的实验研究.中国现代医学杂志.2007,17(9):1046-1050.
    36.邱立新,王兴,林野,等.引导骨再生的生物膜技术在种植义齿中的应用研究.中华口腔医学杂志.1998,33(1):58-59.
    37.张其青,刘玲蓉.医用组织引导再生材料的发展现状及发展方向研究.中国修复重建外科杂志.1997,11(6):365-368.
    38.黄建生,徐世同.钛膜引导骨再生在骨内种植体植入中的应用.中国口腔种植学杂志.2002,(4):321-323.
    39.包崇云.引导骨再生膜极其应用研究进展.中国口腔种植学杂志.2000,5(2):95-97.
    40.王颖.引导组织和骨组织再生术及其生长因子在牙周骨缺损治疗中的应用.国际口腔医学杂志.2008,35(6):636-638.
    41. Cope JB, Samchukov ML, Cherkashin AM. Mandibular distractionosteogenesis: a historic perspective and future directions. Am J OrthodDentofac Orthop.1999,115(4):448-60.
    42. Ilizarov G. The tension-stress effect on the genesis and growth of tissues.Part I. The influence of stability of fixation and soft tissue preservation. ClinOrthop Rel Res1989,238:249-81.
    43. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues.Part II. The infuence of the rate and frequency of distraction. Clin OrthopRel Res.1989,239:263-85.
    44. Von Langenbeck B. About the pathologic length growth of long bones andits employment in surgical praxis. Berl Klin Wochenschr.1869,26:265.
    45. Codivilla A. On the means of lengthening, in the lower limbs, the musclesand tissues which are shortened through deformity. Am J Orthop Surg.1905:2:353–369.
    46. Snyder CC, Levine GA, Swanson HM, et al. Mandibular lenghthening bygradual distraction; preliminary report. Plast Reconst Surg.1973,51(5):506-8.
    47. McCarthy JG, Schreiber J, Karp N, et al. Lengthening the human mandibleby gradual distaction. Plast Reconst Surg.1992,89(1):1-8.
    48. Block MB, Daire J, Stover J, et al. Changes in the inferior alveolar nervefollowing mandibular lengthening in the dog using distraction osteogenesis.J Oral Maxillofac Surg.1993,51(6):652-660.
    49. Chin M, Toth BA. Distraction osteogenesis in maxillofacial surgery usinginternal devices-Review of fve cases. J oral Maxilofac Surg.1996,54(1):45-53.
    50.周光英.骨膜与牵张成骨关系的研究进展.国际口腔医学杂志.2008,35(3):335-337.
    51. Constantno PD, Shybut G, Friedman CD, et al. Segmental mandibularregeneration by distraction osteogenesis. Arch O to laryngol Head NeckSurg.1990,116(5):535-545.
    52. Aronson J, Hogue WR, Flahiff CM, et al. Development of tensile strengthduring distraction osteogenesis in a rat model. J Orthop Res.2001,19(1):64-69.
    53. Gaggl A, Schultes G, Rainer H, et al. The transgingival approach forplacement of distraction implants. J Oral Maxillofac Surg.2002,60(7):793-796.
    54. Gaggl A, Schultes G, Regauer S, et al.Healing process after alveolar ridgedistraction in sheep. Oral Surgery Oral Med Oral Pathol Oral Radiol Endod.2000,90(4):420-429.
    55. Gaggl A, Schultes G, Karcher H. Distraction implants: a new operativetechnique for alveolar ridge augmentation. J Craniomaxillofac Surg.1999,27(4):214-221.
    56. Zhao Y, Liu Y, Liu B, et al. Bone healing process around distraction implantsfollowing alveolar distraction osteogenesis: a preliminary experimentalstudy in dogs. Int J Periodontics Restorative Dent.2009,29(5):523-33.
    57. Kong L, Hu K, Li D, et al. Evaluation of the cylinder implant thread heightand width: a3-dimensional finite element analysis. Int J Oral MaxillofacImplants.2008,23(1):65-74.
    58. Li T, Kong L, Wang Y, et al. Selection of optimal dental implant diameterand length in type IV bone: a three-dimensional finite element analysis. Int JOral Maxillofac Surg.2009,38(10):1077-1083.
    59. Atmaram GH, Mohammed H, Schoen FJ. Stress analysis of single toothimplants. I. Effect of elastic parameters and geometry of implant. BiomaterMed Devices Artif Organs.1979,7(1):99-104.
    60. Breme J, Biehl V, Schulte W, et al. Development and functionality ofisoelastic dental implants of titanium alloys. Biomaterials.1993,14(12):887-892.
    61. Cullinane DM, Einhorn TA. Biomechanics of bone. Principles of bonebiology. San Diego: academic Press.2002,7:17-32.
    62. Hoshaw SJ, Brunski JB, Cochran GVB. Mechanical loading of Branemarkimplants affects interfacial bone modeling and remodeling. Int J OralMaxillofac Implants.1994,9(3):345-360.
    63. Iplikcioglu H, Akca K. Comparative evaluation of the effect of diameter,length and number of implants supporting three-unit fixed partial prostheseson stress distribution in the bone. J Dent.2002,30(1):41-46.
    64. Siegele DS, Soltsz U. Numerical investigations of the in-fluence of implantshape on stress distribution in the jawbone. Int J Oral Maxillofac Implants.1989,4:40-45.
    65. Patra AK, Depaolo JM, Souza KS, et al. Guidelines for analysis and redesignof dental implants. Implant Dent.1998,7(4):68-75.
    66. Mailth G, Stoiber B, Watzek G, et al. Bone resorption at the entry ofosseointegrated implants--a biomechanical phenomenon. Finite elementstudy. Z Stomatol.1989,86(4):207-216.
    67. Ivanoff CJ, Gr ndahl K, Sennerby L, et al. Influence of variations in implantdiameters: a3to5year retrospective clinical report. Int J Oral MaxillofacImplants.1999,14(2):173-180.
    68. Brunski JB. Biomechanical considerations in dental implant design. Int JOral Implant.1988,5(1):31-34.
    69.蔡新,郭兴文,张旭明.工程结构优化设计.北京:中国水利水电出版社.2003.
    70. Carter DR, Spengler DM. Mechanical properties and composition of corticalbone. Clin Orthop.1978,(135):192–217.
    71. Borchers L, Reichart P. Three-dimensional stress distribution around a dentalimplant at different stages of interface development. J Dent Res.1983,62(2):155-159.
    72. Chen J, Lu X, Paydar N, et al. Roberts WE. Mechanical simulation of thehuman mandible with and without an endosseous implant. Med EngPhys.1994,16(1):53–61.
    73. Lewinstein I, Banks-Sills L, Eliasi R. Finite element analysis of a newsystem (IL) for supporting an implant-retained cantilever prosthesis. Int JOral Maxillofac Implants.1995,10(3):355-366.
    74. Mellal A, Wiskott HW, Botsis J, et al. Stimulating effect of implant loadingon surrounding bone. Comparison of three numerical models and validationby in vivo data. Clin Oral Implants Res.2004,15(2):239-248.
    75.魏斌.牙颌系统三维有限元建模方法的进展.口腔材料器械杂志.2002,11(2):86-87.
    76.小飒工作室.最新经典Ansys及Workbench教程.北京:电子工业出版社.2004,749-762.
    77. Rieger MR, Mayberry M, Bross MO. Finite element analysis of sixendosseous implants. J Prosthet Dent.1990,63(6):671-676.
    78. Reiger MR, Adams WK, Kinzel GL. A finite element survey of elevenendosseous implants. J Prosthet Dent.1990,63(4):457-465.
    79. Block CM, Tillmanns HW, Meffert RM. Histologic evaluation of theLaminOss osteocompressive dental screw: a pilot study. Compend ContinEduc Dent.1997,18(7):676–685.
    80. Hojjatie B, Anusavice KS. Three dimensional finite element analyses ofglass ceramic dental crowns. J Biomechanics.1990,23(11):1157–1166.
    81. Brunski JB. In vivo response to biomechanical loading at thebone/dental-implant interface. Adv Dent Res.1999,13:99–119.
    82. Hans Van Oosterwyck, Joke Duyck, Jos Vander Sloten, et al. The influenceof bone mechanical properties and implant fixation upon bone loadingaround oral implants. Clin Oral Implants Res.1998,9(6):407-418.
    83. Duyck J, R nold HJ, Van Oosterwyck H, et al. The influence of static anddynamic loading on marginal bone reactions around osseointegratedimplants: an animal experimental study. Clin Oral Implants Res.2001,12(3):207-218
    84. Gotfredsen K, Berglundh T, Lindhe J. Anchorage of titanium implants withdifferent surface characteristics: an experimental study in rabbits. ClinImplant Dent Relat Res.2000,2(3):120–128.
    85. Yang J, Xiang HJ. A three-dimensional finite element study on thebiomechanical behavior of an FGBM dental implant in surrounding bone. JBiomech.2007,40(11):2377-2385.
    86. Ilizarov GA. The principles of the Ilizarov method. Bull Hosp Jt Dis OrthopInst.1988,48:1-11.
    87. Raghoebar GM, Liem RS, Vissink A. Vertical distraction of the severelyresorbed edentulous mandible: a clinical, histological and electronmicroscopic study of10treated cases. Clin Oral Implants Res.2002,13(5):558-65.
    88. Kong L, Sun Y, Hu K, et al. Selections of the cylinder implant neck taperand implant end fillet for optimal biomechanical properties: A three-dimensional finite element analysis. J Biomech.2008,41(5):1124-1130.
    89. Satow S, Slagter AP, Stoelinga PJ, et al. Interposed bone grafts toaccommodate endosteal implants for retaining mandibular overdentures. A1-7year follow-up study. Int J Oral Maxillofac Surg.1997,26(5):358-364.
    90. Triplett RG, Schow SR. Autologous bone grafts and endosseous implants:complementary techniques. J Oral Maxillofac Surg.1996,54(4):486-494.
    91. Caplanis N, Sigurdsson TJ, Rohrer MD, et al. Effect of allogeneic,freeze-dried, demineralized bone matrix on guided bone regeneration insupra-alveolar peri-implant defects in dogs. Int J Oral Maxillofac Implants.1997,12(5):634-642.
    92. Jensen OT, Greer RO Jr, Johnson L, et al. Vertical guided bone-graftaugmentation in a new canine mandibular model. Int J Oral MaxillofacImplants.1995,10(3):335-344.
    93. Cano J, Campo J, Moreno LA, et al. Osteogenic alveolar distraction: areview of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2006,101(1):11-28.
    94. Kim SG, Mitsugi M, Kim BO. Simultaneous sinus lifting and alveolardistraction of the atrophic maxillary alveolus for implant placement: apreliminary report. Implant Dent.2005,14(4):344-346.
    95. Perdijk FB, Meijer GJ, Strijen PJ, et al. Complications in alveolar distractionosteogenesis of the atrophic mandible. Int J Oral Maxillofac Surg.2007,36(10):916-921.
    96. Chiapasco M, Consolo U, Bianchi A, et al. Alveolar distraction osteogenesisfor the correction of vertically deficient edentulous ridges: a multicenterprospective study on humans. Int J Oral Maxillofac Implants.2004,19(3):399.
    97. Gaggl A, Schultes G, Karcher H. Vertical alveolar ridge distraction withprosthetic treatable distractors: a clinical investigation. Int J Oral MaxillofacImplants.2000,15(5):701.
    98. Garcia AG, Martin MS, Vila PG, et al. Minor complications arising inalveolar distraction osteogenesis. J Oral Maxillofac Surg.2002,60(5):496
    99. Jensen OT, Cockrell R, Kuhike L, et al. Anterior maxillary alveolardistraction osteogenesis: a prospective5-year clinical study. Int J OralMaxillofac Implants.2002,17(1):52.
    100. McAllister BS, Gaffaney TE. Distraction osteogenesis for vertical boneaugmentation prior to oral implant reconstruction. Periodontol2000.2003,33:54-66.
    101. Hwang SJ, Jung JG, Jung JU, et al. Vertical alveolar bone distraction atmolar region using lag screw principle. J Oral Maxillofac Surg.2004,62(7):787.
    102. Kong L, Gu Z, Hu K, et al. Optimization of the implant diameter and lengthin type B/2bone for improved biomechanical properties: A three-dimensional finite element analysis. A DV ENG SOFTW.2009,40:935.
    103. Geng JP, Tan KB, Liu GR. Application of finite element analysis in implantdentistry: a review of the literature. J Prosthet Dent.2001,85(6):585-598.
    104. Saulacic N, Zix J, Iizuka T. Complication rates and associated factors inalveolar distraction osteogenesis: a comprehensive review. Int J OralMaxillofac Surg.2009,38(3):210-217.
    105. Garcia-Garcia A, Somoza-Martin M, Gandara-Vila P, et al. Alveolardistraction before insertion of dental implants in the posterior mandible. BrJ Oral Maxillofac Surg.2003,41(6):376-379.
    106. Chiapasco M, Romeo E, Vogel G. Vertical distraction osteogenesis ofedentulous ridges for improvement of oral implant positioning: a clinicalreport of preliminary results. Int J Oral Maxillofac Implants.2001,16(1):43-51.
    107. Femandes CP, Glantz PO, Svensson SA, et a1. A novel sensor for bite forcedeterminations. Dent Mater.2003,19(2):118—126.
    108. DeLong R, Sakaguchi RL, Douglas WH, et al. The wear of dental amalgamin an artificial mouth: a clinical correlation. Dent Mater.1985,1(6):238-242.
    109. Sakaguchi RL, Douglas WH, DeLong R, et al. The wear of a posteriorcomposite in an artificial mouth: a clinical correlation. Dent Mater.1986,2(6):235-240.
    110. Lei W, Wu Z. Biomechanical evaluation of an expansive pedicle screw incalf vertebrae. Eur Spine J.2006,15(3):321-326.
    111. Goel VK, Winterbottom JM, Weinstein JN. A method for the fatigue testingof pedicle screw fixation devices. J Biomech.1994,27(11):1383-1388.
    112. Hitchon PW, Brenton MD, Coppes JK, et al. Factors affecting the pulloutstrength of self-drilling and self-tapping anterior cervical screws. Spine.2003,28(1):9-13.
    113.王桥,何黎升,赵晋龙,等.种植型骨牵张器的初步实验研究.实用口腔医学杂志.2001,11(4):309-311.
    114. Oda T, Sawaki Y, Ueda M. Alveolar ridge augmentation by distractionosteogenesis using titanium implants: an experimental study. Int J OralMaxillofac Surg.1999,28(2):151-156.
    115. Reitan K, Kvam E. Comparative behavior of human and animal tissueduring experimental tooth movement. Angle Orthod.1971,41(1):1-14.
    116.文春媚,黄杨,陈文霞,等.犬年轻恒牙血管再生法动物模型建立的影响因素.临床口腔医学杂志.2011,27(6):340-342.
    117.陈磊,谢琳.萎缩性牙槽骨实验动物模型的建立.吉林医学.2011,32(6):1043-1044.
    118.胡杨,马莹,何惠宇.兔下颌骨前牙区剩余牙槽嵴模型的建立.中国组织工程研究与临床康复.2011,15(20):3653-3656.
    119. White SH, Kenwright J. The timing of distraction of an osteotomy. J BoneJoint Surg Br.1990,72(3):356–361.
    120. Aronson J. Experimental and clinical experience with distractionosteogenesis. Cleft Palate Craniofac J.1994:31(6):473-482.
    121. Mofid MM, Manson PN, Robertson BC, et al. Craniofacial distractionosteo-genesis: a review of3278cases. Plast Reconstr Surg.2001,108(5):1103–1114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700