孵化期间不同波长光照调控肉仔鸡肌肉生长的机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽类的眼睛对光特别敏感,光照是影响家禽生产力表现的主要环境因素之一。选择合适的人工光照制度,是现代家禽养殖业用于提高家禽生产性能的重要方式。快大型白羽肉鸡的孵化期为21天,几乎占其生命周期(按42日上市)的1/3,因此在孵化期间采取光照措施调控其肌肉生长对家禽生产具有重要意义。本研究分4个试验,采用分光光度法、放射免疫法、酶联免疫反应法、免疫组化学法、实时荧光定量PCR等方法研究孵化期间单色光刺激对肉仔鸡肌肉生长、血液激素水平、肌肉组分与品质、胸肌纤维形态、卫星细胞有丝分裂活性、生长因子及成肌调控因子mRNA表达的影响,探讨孵化期单色光照调控肉仔鸡肌肉生长的可能机理,以期为肉鸡孵化场确定合理的孵化工艺提供理论依据。
     试验一孵化期单色光刺激对肉仔鸡胸肉生长、胸肌成分和肉品质的影响
     本试验采用LED灯为光源,探讨孵化期单色光刺激对肉仔鸡生产性能、胸肌化学成分及其肉品质的影响。1320枚AA鸡商品代受精蛋随机分配到蓝光组(480nm)、绿光组(560nm)和黑暗组(对照)3种光照处理的孵化器中,采用持续光照,强度为蛋壳水平位置处15lx。肉仔鸡出壳后,从每个处理各选取120只公雏,每个处理6个重复,每个重复20只鸡。自由采食和饮水,统一采用白炽灯补光,强度30lx,光照时间23L:1D。结果显示,各处理种蛋孵化率、肉仔鸡初生重及生长期采食量均无显著差异(P>0.05)。与黑暗组或蓝光组相比,绿光刺激可显著提高肉仔鸡21d、35d和42d体重和采食量(P<0.05)。42d时,绿光组肉仔鸡胸肌重和胸肌率均最高,分别较黑暗组提高50.39g和11.78%,较蓝光组提高54.07g和12.70%(P <0.05)。绿光组0~35d和0~42d的饲料转化率分别为1.66和1.80,显著优于黑暗组(1.73和1.88,P <0.05)。各处理组肉仔鸡42d胸肌水分、粗蛋白、粗脂肪和粗灰分含量差异均不显著(P>0.05)。孵化期绿光或蓝光刺激均不影响肉仔鸡42d胸肌pH值、滴水损失、剪切力值、45min肉色(L~*、a~*和b~*值)及24h肉色a~*和b~*值(P>0.05),但绿光组蒸煮损失(P=0.08)和24h肉色L~*值(P=0.09)均有升高的趋势。本研究表明,孵化期绿光刺激可显著提高肉仔鸡生长期体重和胸肌产量,改善饲料转化率,但不影响胸肌化学成分和肉品质。
     试验二孵化期单色绿光刺激对肉仔鸡孵化后期和生长期血液激素水平的影响
     本试验通过检测孵化后期及生长期血浆中生长激素(GH)、胰岛素样生长因子I(IGF-I)、甲状腺素(T_4)、三碘甲腺原氨酸(T_3)和睾酮含量的变化,探讨孵化期单色绿光刺激对肉仔鸡促生长作用的神经-内分泌机制。880枚AA鸡商品代受精蛋随机分配到绿光组(560nm)和黑暗组2种光照处理的孵化器中,采用持续光照,强度为蛋壳水平位置处15lx。肉仔鸡出壳后,从每个处理各选取120只公雏,每个处理6个重复,每个重复20只鸡。按预先设计的采血时间点从孵化期第15天(E15)到生长期第42天(H42)采集血样,制备血浆。结果显示,与黑暗组相比,胚胎期绿光刺激可显著提高E19天胚胎到H5天肉仔鸡血浆中GH水平(P <0.05)。绿光组胚胎期E17到E19天和生长期H3到H35天血浆中IGF-I水平均显著高于黑暗组(P <0.05)。黑暗组和绿光组胚胎期及生长期肉仔鸡各检测点血浆T3、T4和睾酮水平均无显著差异(P>0.05)。与黑暗组相比,绿光组肉仔鸡血浆T3水平在H7天(P=0.09)到H21天(P=0.06)有升高趋势。本研究表明,孵化期绿光刺激通过促进生长轴激素GH和IGF-I的分泌调控肉仔鸡胚胎发育与出雏后肌肉生长。
     试验三孵化期单色绿光刺激对肉仔鸡孵化后期和生长期胸肌中相关生长因子基因表达的影响
     本试验通过检测孵化后期及生长期胸肌中GH受体(GHR)、IGF-I、IGF-I受体(IGF-IR)和肌肉生长抑制素(MSTN)mRNA表达量的变化,探讨绿光刺激的促生长作用是否受肌肉生长因子和MSTN调控。结果显示,与黑暗组相比,孵化期绿光刺激显著上调肉仔鸡胚胎后期和生长期胸肌中GHR(E17到H21天)和MSTN(E17到E19天和H5到H7天)mRNA表达量(P <0.05)。两处理组肉仔鸡胚胎期胸肌IGF-I和IGF-IR表达量无显著差异(P>0.05),但绿光组肉仔鸡生长前期胸肌IGF-I和IGF-IR表达量均显著高于黑暗组(P <0.05)。本研究表明,孵化期绿光刺激通过促进胚胎期及生长期关键生长因子和肌肉生长抑制素表达调控肉仔鸡的胚胎发育和肌肉生长。
     试验四孵化期单色绿光刺激对肉仔鸡孵化后期和出雏早期卫星细胞增殖和分化的影响
     本试验通过检测肉仔鸡胚胎后期(E15天)和出雏早期(H7天)胸肌重、肌纤维面积、卫星细胞有丝分裂活性和成肌调控因子MyoD和MyoG mRNA的表达量,探讨孵化期单色绿光刺激对调控肉仔鸡胸肌卫星细胞增殖分化的机理。与黑暗组相比,绿光组肉仔鸡H7天的体重和胸肌产量分别显著提高14.33g和1.46g(P <0.05)。绿光刺激显著提高肉仔鸡H1天和H3天的卫星细胞有丝分裂活性,及H5和H7天胸肌纤维面积(P<0.05)。此外,绿光组肉仔鸡胸肌MyoD(E17到H3天)和MyoG(H1到H5天)mRNA表达量均显著高于黑暗组(P <0.05)。本研究表明,孵化期绿光刺激通过提高胚胎后期和出雏早期胸肌卫星细胞的增殖和分化活性,促进肉仔鸡出雏早期的肌肉生长。
     本研究表明孵化期单色绿光刺激增加胚胎后期和生长期促生长轴激素GH和IGF-I的分泌,上调肉仔鸡胚胎后期和出雏早期胸肌中生长因子GHR和MSTN,及成肌调节因子MyoD和MyoG mRNA的表达量,提高骨骼肌卫星细胞的有丝分裂活性,促进卫星细胞增殖与分化,最终增加生长期肉仔鸡的胸肌生长。
Poultry are light sensitive species, and light had become an important environmentalfactor that influences the poultry performances. Artificial illumination has been widely usedto promote avian productive performance in modern poultry industry. The hatching period offast-growing broilers takes21days, which almost takes one third of its life span (calculatedby a42-day feeding period). Therefore, broiler performance promoted by light stimuli duringembryogenesis might be important for poultry industry. This dissertation consists of4experiments. The effect of monochromatic light stimuli during embryogenesis on breastmuscle growth, chemical composition, meat quality, blood hormone levels, muscle fibermorphology, satellite cell mitotic activity, along with expression of growth-related factors andmyogenic regulatory factors in pectoral muscle of broilers was systematically investigated byusing the methods of absorption spectrometry, radioimmunoassay, enzyme-linkedimmunoassay, immunohistochemistry, and real time quantitative RT-PCR. These data willprovide a scientific data for poultry hatchery.
     Trial1focused on the effect of monochromatic light stimuli during embryogenesis onmuscular growth, chemical composition, and meat quality of breast muscle in male broilers.Fertile broiler eggs (Arbor Acres, n=1320) were preweighed and randomly assigned to oneof three treatment groups in3modified incubators:1) control group (in dark condition),2)monochromatic green light group (560nm), and3) monochromatic blue light group (480nm).The monochromatic lighting systems sourced from light-emitting diode lamps and wereequalized at the intensity of15lx at eggshell level. After hatching,120male chicks from eachgroup were placed in6replicates with20birds each. All the birds were housed under whitelight (30lx at bird-head level) with a light schedule of23L:1D. At21,35, and42d of age,BW and breast muscle weight in the green light group were significantly increased comparedwith birds in the blue or dark groups (P <0.05). The breast muscle weight and breast musclepercentages in birds incubated under green light were significantly elevated by50.39g (11.78%) and54.07g (12.70%) than those in dark condition or blue group at42d of marketage (P <0.05), respectively. In the green light group, feed intake during0~42d was higherthan that in the other2treatment groups (P <0.05); feed conversion ratio during0~35d and0~42d were lower than that in the dark condition (1.66vs.1.73during0~35d;1.80vs.1.88during0~42, P <0.05, respectively). No significant differences in the contents of breastmoisture, CP, crude fat and crude ash among all groups were observed (P>0.05). Green lightstimuli tended to increase cooking loss (P=0.08), and L~*value of24-h meat color (P=0.09).These results suggested that green light stimuli during embryogenesis enhanced the posthatchBW of male broilers, increased breast muscle growth, and improved the feed coversion ratio,but it did not cause any noticeable changes in breast chemical composition or overall meatquality characteristics.
     Trial2was aimed to investigate whether the regulation of chicken embryonic orposthatch growth by green light stimuli during incubation is associated with the changes ofexdocrine axes by measuring dynamical changes in plasma growth hormone (GH),insulin-like growth factor-I (IGF-I), triiodothyronine (T_3), thyroxine (T_4), and testosteroneconcentrations at different ages of embryogenesis and posthatching chicks. Fertile broilereggs (Arbor Acres, n=880) were preweighed and randomly assigned to1of2treatments in2modified commercial incubators:1) control group (in dark condition), and2) monochromaticgreen light group (560nm). Plasma samples were obtained from15d of embryogenesis (E15)to42d of posthatch (H42) according to sampling protocol. Compared to the control group,significantly higher plasma GH levels in embryos and chicks incubated under green lightwere observed from E19to H5(P <0.05). Green light stimuli during incubation significantlyincreased plasma IGF-I levels of embryos from E17to E19, and of chicks from H3to H35compared with those incubated under dark condition (P <0.05). No significant differenceswere found (P>0.05) in plasma T3, T4and testosterone in embryos or hatched chicksbetween the2groups, although green light group showed a trend in increasing plasma T3levels in hatched chicks from H7(P=0.09) to H21(P=0.06). These data suggested thatsomatotropic axis hormone GH and IGF-I might be the most important contributor to chickgrowth promoted by green light stimuli during embryogenesis.
     Tiral3was carried out to assess whether the regulation of chicken embryonic orposthatch growth by green light stimuli during incubation was associated with the changes ofgrowth-related factors in pectoral muscle by measuring dynamical changes in mRNAexpression of GHR, IGF-I, IGF-IR and MSTN at different ages of embryogenesis andposthatching chicks. Compared to the birds in control group, green light stimuli duringincubation significantly up-regulated pectoral muscle GHR mRNA levels from E17to E19, and MSTN mRNA levels of embryos from E17to E19and of chicks from H5to H7(P <0.05), respectively. No significant differences were observed in pectoral muscle IGF-I andIGF-IR mRNA levels of embryos between green light group and control group (P>0.05).However, green light stimuli significantly up-regulated muscle IGF-I (from H3to H1) andIGF-IR (from H5to H7) mRNA levels of posthatch chicks (P <0.05). These resultssuggested that green light stimuli during incubation promote posthatch muscle growth byup-regulating the expression of these growth-related factors and MSTN in late embryos andearly posthatch stage.
     Tiral4was conducted to further investigate the morphological and molecular basis ofthis phenomenon by measuring changes in BW, pectoral muscle weight, satellite cell mitoticactivity, and the developmental expression of MyoD and MyoG mRNA in pectoral muscle inembryos and early posthatch broilers. At7d of age (H7), BW and pectoral muscle weight inthe green light group were significantly increased by14.33g and1.46g compared with birdsin the blue or dark groups (P <0.05). Green light stimuli during embryogenesis significantlyincreased myofiber cross-sectional areas of pectoral muscle on H5to H7(P <0.05). Index ofsatellite cell mitotic activity was also higher in the green light group on H1and H3(P <0.05).Besides, in green light group, higher MyoD mRNA levels from E17to H3, and highermygenin mRNA levels from H1to H5were observed in pectoral muscle of embryos orbroiler (P <0.05), respectively. These data suggested that green light stimuli duringembryogenesis promoted posthatch muscle growth by increasing satellite cell mitotic activity,enhancing myoblast proliferation and differentiation in late embryos and early posthatchstage.
     In summary, monochromatic green light stimuli during embryogenesis stimulated thesecretion of somatotropic axis hormone GH and IGF-I in late embryos and posthatch chicks,upregulated pectoral muscle growth-related factors (GHR and MSTN) and muscle regulatoryfactors (MyoD and MyoG) mRNA expression, increased satellite cell mitotic activity,enhanced myoblast proliferation and differentiation in late embryos and early posthatch stage,and improved subsequently pectoral muscle growth of posthatch broilers.
引文
曹静,陈耀星,王子旭,李俊英,谢电,贾六,李艳红.2007b.单色光对肉鸡睾丸形态结构的影响.畜牧兽医学报,38(9):972~976.
    曹静,陈耀星,王子旭,李俊英,谢电,贾六军.2007a.单色光对肉鸡生长发育的影响.中国农业科学,40(10):2350~2354.
    陈耀星,王子旭,内藤顺平.2002.鸡投射视顶盖视网膜节细胞的形态学分类.解剖学报,33(1):47~50.
    段龙,张自广,李锦春.2010.间歇光照对肉仔鸡免疫器官和部分免疫指标的影响.安徽农业科学,38(5):2367~2369.
    额尔敦木图,陈耀星,王子旭,李俊英,曹静,贾六军,巢国正.2007a.单色光对产蛋鸡血清中LH和FSH含量的影响.中国农业科学,40(9):2079~2083.
    额尔敦木图,陈耀星,王子旭,李俊英,曹静,贾六军,巢国正.2007c.单色光对蛋鸡产蛋高峰期的影响.中国农业大学学报,12(1):56~60.
    额尔敦木图,陈耀星,王子旭,李俊英,曹静,贾六军.2007b.单色光对蛋鸡产蛋性能的影响.畜牧兽医学报,38(1):40~45.
    额尔敦木图,陈耀星,王子旭,李俊英,曹静,贾六军.2007d.单色光对蛋白高度,哈氏单位和蛋黄颜色的影响.中国家禽,28(21):11~13.
    方志烈.1992.半导体发光材料和器件.上海:复旦大学出版社:80.
    何飞.2004. Notch-Deltal对人牙髓干细胞增殖及分化影响的实验研究.[博士学位论文].西安:第四军医大学.
    李春茂.2009.单色光LED及其应用研究.高科技与产业化,2:105~107.
    李然,陈耀星,王子旭,谢电,贾六军.2009.单色光对产蛋期蛋鸡脾脏组织结构及脾细胞增殖的影响.畜牧兽医学报,40(6):910~915.
    刘世新.2006.实用生物组织学技术.北京科学出版社:80~82.
    刘淑英,齐景伟,赵怀平,徐斯日古楞,龄南,刘志楠.2006.不同光照条件下褪黑素对鸡鸭鹌鹁外周血淋巴细胞及其亚群变化的影响.中国兽医科学,36(4):327~330.
    刘文杰,陈耀星,王子旭,董玉兰,曹静,谢电,贾六军.2008.单色光对肉鸡肌肉生长、肌纤维发育及血清睾酮水平的影响.畜牧兽医学报,39(12):1759~1764.
    陆果.1998.基础物理学教程(下).北京:高等教育出版社:527.
    王彬.程雪.2010.单色光谱LED灯在温室害虫诱杀中的应用.安徽农业科学,38(15):8216~8217.
    谢电,陈耀星,王子旭,李俊英,曹静,贾六军.2007a.单色光对肉鸡生产性能和免疫功能的影响.中国家禽,29(1):14~17.
    谢电,陈耀星,王子旭,李俊英,曹静,贾六军.2007b.单色光对肉鸡免疫功能的影响.畜牧兽医学报,38(7):744~747.
    谢电,陈耀星,王子旭,李俊英,曹静,贾六军.2007c.单色光对脂多糖应激后肉鸡脾脏组织结构及脾细胞免疫功能的影响.中国农业大学学报,12(1):13~16.
    徐明芳.2001.光生物反应器内设LED光源的特性研究.食品与发酵工业,27(4):7~12.
    许宁一.2004.低氧等应激对大鼠GH-IGF-I轴的作用及其调控机制.[博士学位论文].杭州:浙江大学.
    杨威.王琨.陈岩.张勇.黄波.朱大海.2003.重组肌肉抑制素功能分析及其对鸡肌肉发育的抑制作用.细胞研究.35(11):1016~1022.
    张林.2009.运输应激对肉仔鸡肌肉品质的影响及其机理.[硕士学位论文].杨凌:西北农林科技大学.
    张学松.2002.色光对家禽生产的影响.中国家禽,24(3):39~41.
    周志坚.2007.大学物理教程(下).成都:四川大学出版社.546.
    朱峰.2004.大学物理.北京:清华大学出版社:250.
    朱勇文.2010.光照对家禽生产的影响.家禽科学,12:44~46.
    Adam J H, Dimond S J.1971. Influence of light on the time of hatching in the domestic chick. AnimalBehaviour,19(2):226~229.
    Adams G R, McCue S A, Bodell P W, Zeng M, Baldwin K M.2000. Effects of spaceflight and thyroiddeficiency on hindlimb development. I. Muscle mass and IGF-I expression. Journal of Applied Physiology,88(3):894~903.
    Adams G R, McCue S A.1998. Localized infusion of IGF-I results in skeletal muscle hypertrophy inrats. Journal of Applied Physiology,84(5):1716~1722.
    Aige-Gil V, Murillo-Ferrol N.1992. Effects of white light on the pineal gland of the chick embryo.Histology and histopathology,7(1):1~6.
    Akiba Y, Jensen L S, Lilburn M S.1982. Effect of estrogen implants on hepatic lipid deposition inchicks fed different isonitrogenous and isocaloric diets. Journal of Nutrition,112(1):189~196.
    Allen R E, Boxhorn L K.1989. Regulation of skeletal muscle satellite cell proliferation anddifferentiation by transforming growth factor-beta, insulin like growth factor I, and fibroblast growth factor.Journal of Cellular Physiology,138(2):311~315.
    Allen R E, Merkel R A, Young R B.1979. Cellular aspects of muscle growth: Myogenic cellproliferation. Journal of Animal Science,49(1):115~127.
    Allouh M Z, Yablonka-Reuveni Z, Rosser B W C.2008. Pax7reveals a greater frequency andconcentration of satellite cells at the ends of growing skeletal muscle fibers. Journal of Histochemistry andCytochemistry,56(1):77~87.
    AOAC.2000. Official Methods of Analysis.17th ed. Association of Official Analytical Chemists,Gaithersburg, MD.
    Archer G, Shivaprasad H, Mench J.2009. Effect of providing light during incubation on the health,productivity, and behavior of broiler chickens. Poultry Science,88(1):29~37.
    Banes A J, Tsuzaki M, Hu P, Brigman B, Brown T, Almekinders L, Lawrence W T, Fischer T.1995.PDGF-BB, IGF-I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro.Journal of Biomechanics,28(12):1505~1513.
    Barton-Davis E R, Shoturma D I, Sweeney H L.1999. Contribution of satellite cells to IGF-I inducedhypertrophy of skeletal muscle. Acta Physiologica Scandinavica,167(4):301~305.
    Bell A W, Bauman D E, Beermann D H, Harrell R J.1998. Nutrition, development and efficacy ofgrowth modifiers in livestock species. Journal of Nutrition,128(2):360S~363S.
    Benoit J.1964. The role of the eye and of the hypothalamus in the photostimulation of gonads in theduck. Annals of the New York Academy of Sciences,117(1):204~215.
    Blatchford R, Klasing K, Shivaprasad H, Wakenell P, Archer G, Mench J.2009. The effect of lightintensity on the behavior, eye and leg health, and immune function of broiler chickens. Poultry Science,88(1):20~28.
    Borisov A B, Dedkov E I, Carlson B M.2005. Differentiation of activated satellite cells in denervatedmuscle following single fusions in situ and in cell culture. Histochemistry and Cell Biology,124(1):13~23.
    Brack S J, Conboy I M, Conboy M J, Shen J, Rando T A.2008. A temporal switch from Notch to Wntsignaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell,2(1):48~57.
    Buckingham M.2007. Skeletal muscle progenitor cells and the role of Pax genes. Comptes RendusBiologies,330(6-7):530~533.
    Burnside J, Cogburn LA.1992. Developmental expression of hepatic growth hormone receptor andinsulin-like growth factor-I mRNA in the chicken. Molecular and cellular endocrinology,89(1-2):91~96.
    Buys N, Buyse J, Hassanzadeh-Ladmakhi M, Decuypere E.1998. Intermittent lighting reduces theincidence of ascites in broilers: an interaction with protein content of feed on performance and theendocrine system. Poultry Science,77(1):54~61.
    Buyse J, Decuypere E, Veldhuis J D.1997. Compensatory growth of broiler chickens is associatedwith an enhanced pulsatile growth hormone (GH) secretion: preferential amplification of GH secretoryburst mass. British Poultry Science,38(3):291~296.
    Buyse J, Leenstra F R, Zeman M, Rahimi G, Decuypere E.1999. A comparative study of differentselection strategies to breed leaner meat-type poultry. Poultry and Avian Biology Reviews,10(3):121~142.
    Campbell R G, Steele N C, Caperna T J, McMurtry J P, Solomon M B, Mitchell A D.1989.Interrelationships between sex and exogenous growth hormone administration on performance, bodycomposition and protein and fat accretion of growing pigs. Journal of Animal Science,67(1):177~186.
    Campion D R.1984. The muscle satellite cell: A review. International Review of Cytology,87:225~251.
    Cao J, Liu W, Wang Z, Xie D, Jia L, Chen Y.2008. Green and blue monochromatic lights promotegrowth and development of broilers via stimulating testosterone secretion and myofiber growth. TheJournal of Applied Poultry Research,17(2):211~218.
    Carlson C J, Booth F W, Gordon S E.1999. Skeletal muscle myostatin mRNA expression is fiber-typespecific and increases during hindlimb unloading. American Journal of Physiology,277(2):R601~R606.
    Cason J A, Fletcher D L, Burke W H.1988. Effects of caponization on broiler growth. Poultry Science,67(6):979~981.
    Chakravarthy M V, Davis B S, Booth F W.2000. IGF-I restores satellite cell proliferative potential inimmobilized old skeletal muscle. Journal of Applied Physiology,89(4):1365~1379.
    Charge S B. Rudnicki M A.2004. Cellular and molecular regulation of muscle regeneration.Physiololy Reviews,84(1):209~238.
    Charles R, Robinson F, Hardin R, Yu M, Feddes J, Classen H.1992. Growth, body composition, andplasma androgen concentration of male broiler chickens subjected to different regimens of photoperiod andlight intensity. Poultry Science,71(10):1595~1605.
    Christensen V L, Davis G S.2001. Maternal dietary iodide influences turkey embryo thyroid function.Poultry Science,80(9):1286~1292.
    Chung C S, Etherton T D, Wiggins J P.1985. Stimulation of swine growth by porcine growthhormone. Journal of Animal Science,60(1):118~130.
    Cogburn L A, Liou S S, Rand A L, McMurtry J P.1989. Growth, metabolic and endocrine responses ofbroiler cockerels given a daily subcutaneous (s.c.) injection of natural or biosynthetic chicken growthhormone. Journal of Nutrition,119(8):1213~1222.
    Coleman M A, McDaniel G R.1975. The effect of light and specific gravity on embryo weight andembryonic mortality. Poultry Science,54(5):1415~1421.
    Conboy I M, Conboy M J, Smythe G M, Rando T A.2003. Notch mediated restoration of regenerativepotential to aged muscle. Science,302(5650):1575~1577.
    Conboy I M, Rando T A.2002. The regulation of Notch signaling controls satellite cell activation andcell fate determination in postnatal myogenesis. Developmental Cell,3(3):397~409.
    Cooper J B.1972. Effect of light during incubation on hatchability of turkey eggs. Poultry Science,51(4):1105~1108.
    Cooper R N, Tajbakhsh S, Mouly V.1999. In vivo satellite cell activation via Myf5and MyoD inregenerating mouse skeletal muscle. Journal of Cell Science,112(17):2895~2899.
    Cornelison D D, Wold B J.1997. Single-cell analysis of regulatory gene expression in quiescent andactivated mouse skeletal muscle satellite cells. Developmental Biology,191(2):270~283.
    Czerwinski S M, Cate J M, Francis G, Tomas F, Brocht D M, McMurtry J P.1998. The effects ofinsulin-like growth factor-I (IGF-I) on protein turnover in the meat-type chicken (Gallus domesticus).Comparative Biochemistry and Physiology, Part C,119(1):75~80.
    Dangott B, Schultz E, Mozdziak P E.2000. Dietary creatine monohydrate supplementation increasessatellite cell mitotic activity during compensatory hypertrophy. International Journal of Sports Medicine,21(1):13~16.
    Darras V M, Huybrechts L M, Berghman L, Kühn E R, Decuypere E.1990. Ontogeny of the effect ofpurified chicken growth hormone on the liver5' monodeiodination activity in the chicken: reversal of theactivity after hatching. General and Comparative Endocrinology,77(2):212~220.
    Darras V M, Rudas P, Visser T J, Hall T R, Huybrechts L M, Vanderpooten A, Berghman L R,Decuypere E, Kühn E R.1993. Endogenous growth hormone controls high plasma levels of3,3’,5-triiodothyronine (T3) in growing chickens by decreasing the T3-degrading type III deiodinase activity.Domestic Animal Endocrinology,10(1):55~65.
    Davis G, Parkhurst C, Brake J.1993. Light intensity and sex ratio effects on egg production, eggquality characteristics, and fertility in breeder Pekin ducks. Poultry Science,72(1):23~29.
    Davis R L, Cheng P F, Lassar A B, Weintraub H.1990. The MyoD DNA binding domain contains arecognition code for muscle-specific gene activation. Cell.60(5):733~746.
    Davis S L.1998. Environmental modulation of the immune system via the endocrine system.Domestic Animal Endocrinology,15(5):283~289.
    Dean C E, Hargis B M, Burke W H, Hargis P.1993. Alterations in thyroid metabolism are associatedwith improved posthatch growth of chickens administered bovine growth hormone in ovo. Growth,Development, and Aging,57(2):59~72.
    Decuypere E, Buyse J, Buys N.2000. Ascites in broiler chickens: exogenous and endogenousstructural and functional causal factors. World’s Poultry Science Journal.56(4):367~376.
    Decuypere E, Buyse J, Scanes C G, Huybrechts L M, Kühn E R.1987. Effect of hyper-or hypothyroidstatus on growth, adiposity, and on levels of growth hormone, somatomedin-C and thyroid metabolism inbroiler chickens. Reproduction, Nutrition and Development,27(2B):555~565.
    Decuypere E, Buyse J.2005. Endocrine control of postnatal growth in poultry. Journal of PoultryScience,42(1):1~13.
    Dewil E, Darras V M, Spencer S G, Lauterio T, Decuypere E.1999. The regulation of GH-dependenthormones and enzymes after feed restriction in dwarf and control chickens. Life Sciences,64(16):1359~1371.
    Dorminey R, Nakaue H.1977. Intermittent light and light intensity effects on broilers in light-proofpens. Poultry Science,56(6):1868~1875.
    Downs K, Lien R, Hess J, Bilgili S, Dozier III W.2006. The effects of photoperiod length, lightintensity, and feed energy on growth responses and meat yield of broilers. The Journal of Applied PoultryResearch,15(3):406~416.
    Dransfield E, Sosnicki A A.1999. Relationship between muscle growth and poultry meat quality.Poultry Science,78(5):743~746.
    Duclos M J, Beccavin C, Simon J.1999. Genetic models for the study of insulin-like growth factors(IGF) and muscle development in birds compared to mammals. Domestic Animal Endocrinology,17(2-3):231~243.
    Duclos M J, Berri C, Bihan-Duval E Le.2007. Muscle growth and meat quality. The Journal ofApplied Poultry Research,16(1):107~112.
    Duclos M J, Wilkie R S, Goddard C.1991. Stimulation of DNA synthesis in chicken muscle satellitecells by insulin and insulin-like growth factors: evidence for exclusive mediation by a type-I insulin-likegrowth factor receptor. Journal of Endocrinology,128(1):35~42.
    Er D, Wang Z, Cao J, Chen Y.2007. Effect of monochromatic light on the egg quality of laying hens.The Journal of Applied Poultry Research,16(4):605~612.
    Evock C M, Caperna T J, Steele N C, McMurtry J P, Rosebrough R W.1991. Influence of time ofinjection of recombinant porcine somatotropin (rpST) relative to time of feeding on growth performance,hormone and metabolite status, and muscle RNA, DNA, and protein in pigs. Journal of Animal Science,69(6):2443~2451.
    Feldman J L, Stockdale F E.1992. Temporal appearance of satellite cells during myogenesis.Developmental Biology,153:217~226.
    Felts J, Leighton Jr A, Denbow D, Hulet R.1990. Influence of light sources on the growth andreproduction of Large white turkeys. Poultry Science,69(4):576~583.
    Felts J, Leighton Jr A, Denbow D, Hulet R.1992. Effects of light sources and the presence or absenceof males on reproduction of female breeder turkeys. Poultry Science,71(11):1817~1822.
    Fennell M J, Scanes C G.1992. Effect of androgen (testosterone,5a-dihydrotestosterone,19-nortestosterone) administration on growth in turkeys. Poultry Science,71(3):539~547.
    Florini J R, Ewton D Z, Coolican S A.1996. Growth hormone and the insulin-like growth factorsystem in myogenesis. Endocrine Reviews.17(5):481~517.
    Foster R, Follett B.1985. The involvement of a rhodopsin-like photopigment in the photoperiodicresponse of the Japanese quail. Journal of Comparative Physiology A,157(4):519~528.
    Gal-Levi R, Leshem Y, Aoki S, Nakamura T, Halevy O.1998. Hepatocyte growth factor plays a dualrole in regulating skeletal muscle satellite cell proliferation and differentiation. Biochimiya Biophysica Acta,1402(1):39~51.
    Gibson M C, Schultz E.1983. Age-related differences in absolute numbers of skeletal muscle satellitecells. Muscle Nerve.6(8):574~580.
    Giustina A, Veldhuis J D.1998. Pathophysiology of the neuroregulation of growth hormone secretionin experimental animals and the human. Endocrine Review,19(6):717~797.
    Gongruttananun N.2011. Influence of red light on reproductive performance, eggshell ultrastructure,and eye morphology in Thai-native hens. Poultry Science,90(12):2855-2863.
    Gregory N G.2007. Meat quality in: Animal Welfare and Meat Production, Second ed. CABInternational, Wallingford, UK:214~216.
    Guernec A, Berri C, Chevalier B, Wacrenier-Cere N, Le Bihan-Duval E, Duclos M J.2003. Muscledevelopment, insulin-like growth factor-I and myostatin mRNA levels in chickens selected for increasedbreast muscle yield. Growth Hormone and IGF Research,13(1):8~18.
    Halevy O, Biran I, Rozenboim I.1998. Various light source treatments affect body and skeletal musclegrowth by affecting skeletal muscle satellite cell proliferation in broilers. Comparative Biochemistry andPhysiology Part A,120(2):317~323.
    Halevy O, Geyra A, Barak M, Uni Z, Sklan D.2000. Early posthatch starvation decreases satellite cellproliferation and skeletal muscle growth in chicks. Journal of Nutrition,130(4):858~864.
    Halevy O, Hodik V, Mett A.1996. The effect of growth hormone on avian skeletal muscle satellite cellproliferation and differentiation. General and Comparative Endocrinology,101(1):43~52.
    Halevy O, Krispin A, Leshem Y, McMurtry J P, Yahav S.2001. Early-age heat exposure affectsskeletal muscle satellite cell proliferation and differentiation in chicks. American Journal of Physiology,281(1):R302~R309.
    Halevy O, Nadel Y, Barak M, Rozenboim I, Sklan D.2003. Early posthatch feeding stimulates satellitecell proliferation and skeletal muscle growth in turkey poults. Journal of Nutrition,133(5):1376~1382.
    Halevy O, Piestun Y, Allouth M, Rosser B, Rinkevitch Y, Reshef R, Rozenboim I, Wleklinski M,Yablonka-Reuveni Z.2004. The pattern of Pax-7expression during myogenesis in the posthatch chickenestablishes a model for satellite cell differentiation and renewal. Developmental Dynamics,231(3):489~502.
    Halevy O. Piestun Y, Rozenboim I, Yablonka-Reuveni Z.2006. In ovo exposure to monochromaticgreen light promotes skeletal muscle cell proliferation and affects myofiber growth in posthatch chicks.American Journal of Physiology,290(4):R1062~R1070.
    Hargis P S, Pardue S L, Lee A M, Sandel G W.1989. In ovo growth hormone alters growth andadipose tissue development of chickens. Growth, Development, and Aging,53(3):93~99.
    Harrison P, Latshaw J, Casey J, McGinnis J.1970. Influence of decreased length of different spectralphotoperiods on testis development of domestic fowl. Journal of Reproduction and Fertility,22(2):269~275.
    Hartley R S, Bandman E, Yablonka-Reuveni Z.1992. Skeletal muscle satellite cells appear during latechicken embryogenesis. Developmental Biology,153(2):206~216.
    Harvey S, Davidson T F, Chadwick A.1979. Ontogeny of growth hormone and prolactin secretion inthe domestic fowl (Gallus Domesticus). General and Comparative Endocrinology,39(3):270~273.
    Harvey S, Fraser R A, Lea R W.1991. Growth hormone secretion in poultry. Critical Reviews inPoultry and Avian Biology,3:239~282.
    Henry M H, Burke W H.1998. Sexual dimorphism in broiler chick embryos and embryonic muscledevelopment in late incubation. Poultry Science,77(5):728~736.
    Henry M H, Burke W H.1999. The effects of in ovo administration of testosterone or an antiandrogenon growth of chick embryos and embryonic muscle characteristics. Poultry Science,78(7):1006~1013.
    Herichová I, Mono íková J, Zeman M.2008. Ontogeny of melatonin, Per2and E4bp4lightresponsiveness in the chicken embryonic pineal gland. Comparative Biochemistry and Physiology Part A,149(1):44~50.
    Hodik V, Mett M, Halevy O.1997. Mutual effects of growth hormone and growth factors on chickensatellite cells. General and Comparative Endocrinology,108(1):161~170.
    Hughes S M, Schiaffino S.1999. Control of muscle fibre size: a crucial factor in ageing. ActaPhysiologica Scandinavica,167(4):307~312.
    Huybrechts L M, Decuypere E, Buyse J, Kühn E R, Tixier-Boichard M.1992. Effect of recombinanthuman insulin-like growth factor-I on weight gain, fat content, and hormonal parameters in broiler chickens.Poultry Science,71(1):181~187.
    Hyatt J-P K, McCall G E, Kander E M, Zhong H, Roy R R, Huey K A.2008. Pax3/7expressioncoincides with myod during chronic skeletal muscle overload. Muscle Nerve,38(1):861~866.
    Jennische E, Andersson G L.1991. Expression of GH receptor mRNA in regenerating skeletal muscleof normal and hypophysectomized rat. An in situ hybridization study. Acta Endocrinologica,125(5):595~602.
    Jorgensen J O, Muller J, Moller J, Wolthers T, Vahl N, Juul A, Skakkebaek N E, Christiansen J S.1994.Adult growth hormone deficiency. Hormone Research,42(4-5):235~241.
    Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G.2003. Mechanisms involved inthe inhibition of myoblast proliferation and differentiation by myostatin. Experimental Cell Research,286(2):263~275.
    Kambadur R, Sharma M, Smith T P, Bass J J.1997. Mutations in myostatin (GDF8) indouble-muscled Belgian Blue and Piedmontese cattle. Genome Research,7(9):910~916.
    Ke Y, Liu W, Wang Z, Chen Y.2011. Effects of monochromatic light on quality properties andantioxidation of meat in broilers. Poultry Science,90(11):2632~2637.
    Kim Y S, Bobbili N K, Paek K S, Jin H J.2006. Production of a monoclonal anti-myostatin antibodyand the effects of in ovo administration of the antibody on posthatch broiler growth and muscle mass.Poultry Science,85(6):1062~1071.
    King D B, May J D.1984. Thyroidal influence on body growth. Journal of Experimental Zoology,232(3):453~460.
    Kirby J D, Froman D P.1991. Evaluation of humoral and delayed hypersensitivity responses incockerels reared under constant light or a twelve hour light: twelve hour dark photoperiod. Poultry Science,70:2375~2378.
    Kocamis H, Kirkpatrick-Keller D C, Klandorf H, Killefer J.1998. In ovo administration ofrecombinant human insulin-like growth factor-I alters postnatal growth and development of the broilerchicken. Poultry Science,77(12):1913~1919.
    Kocamis H, Yeni Y N, Kirkpatrick-Keller D C, Killefer J.1999a. Postnatal growth of broilers inresponse to in ovo administration of chicken growth hormone. Poultry Science,78(8):1219~1226.
    Kocamis H, Kirkpatrick-Keller D C, Richter J.1999b. The ontogeny of myostatin, follistatin andactivin-B mRNA expression during chicken embryonic development. Growth Development Aging,63(4):143~150.
    Kühn E R, Darras V M, Gysemans C, Decuypere E, Berghman L R, Buyse J.1996. The use ofintermittent lighting in broiler raising.:2. Effects on the somatotrophic and thyroid axes and on plasmatestosterone levels. Poultry Science,75(5):595~600.
    Kumar V, Rani S.1996. Effects of wavelength and intensity of light in initiation of body fattening andgonadal growth in migratory bunting under complete and skeleton photoperiods. Physiology and Behavior,60(2):625~631.
    Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R.2002. Myostatin inhibitsmyoblast differentiation by down-regulating MyoD expression. Journal of Biological Chemistry,277(51):49831~49840.
    Larzul C, Lefaucheur L, Ecolan P, Gogue J, Talmant A, Sellier P, Le Roy P, Monin G.1997.Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth,carcass and meat quality traits in large white pigs. Journal of Animal Science,75(12):3126~3137.
    Lassar A B, Skapek S X, Novitch B.1994. Regulatory mechanisms that coordinate skeletal muscledifferentiation and cell cycle withdrawal. Current Opinion in Cell Biology,6(6):788~794.
    Lauber J K.1975. Photoacceleration of avian embryogenesis. Comparative Biochemistry andPhysiology Part A,51(4):903~907.
    Lee S J.2004. Regulation of muscle mass by myostatin. Annual Review of Cell and DevelopmentalBiology,20:61~86.
    Lee S J. McPherron A C.1999. Myostatin and the control of skeletal muscle mass. Current Opinion inGenetics and Development,9(5):604~607.
    Lewis P D, Caston L, Leeson S.2007. Green light during rearing does not significantly affect theperformance of egg-type pullets in the laying phase. Poultry Science,86(4):739~743.
    Lewis P, Morris T.2000. Poultry and coloured light. World's Poultry Science Journal,56(3):189~207.
    Li X J, Piao X S, Kim S W, Liu P, Wang L, Shen Y B, Jung S C, Lee H S.2007. Effects ofChito-Oligosaccharide supplementation on performance, nutrient digestibility, and serum composition inbroiler chickens. Poultry Science,86(6):1107~1114.
    Li X, Velleman S G.2009. Effect of transforming growth factor-β1on embryonic and posthatchmuscle growth and development in normal and low score normal chicken. Poultry Science,88(2):265~275.
    Libby D A, Meites J, Schaible P J.1955. Growth hormone effects in chickens. Poultry Science,34(6):1329~1331.
    Liu W J, Wang Z X, Chen Y X.2010. Effects of monochromatic light on developmental changes insatellite cell population of pectoral muscle in broilers during early posthatch period. The AnatomicalRecord,293(8):1315~1324.
    Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-timequantitative PCR and the2-△△Ctmethod. Methods.25(4):402~408.
    Louvi A, Accili D, Efstratiadis A.1997. Growth-promoting interaction of IGF-II with the insulinreceptor during mouse embryonic development. Developmental Biology,189(1):33~48.
    Lu F Z, Chen J, Wang X X, Liu H L.2009. Investigation of the insulin-like growth factor system inbreast muscle during embryonic and postnatal development in Langshan and Arbor Acres chickenssubjected to different feeding regimens. Asian-Australasian Journal of Animal Sciences,22(4):471~482.
    Lu J W, McMurtry J P, Coon C N.2007. Developmental changes of plasma insulin, glucagon,insulin-like growth factors, thyroid hormones, and glucose concentrations in chick embryos and hatchedchicks. Poultry Science,86(4):673~683.
    Manceau M, Gros J, Savage K, Thomé V, McPherron A, Paterson B, Marcelle C.2008. Myostatinpromotes the terminal differentiation of embryonic muscle progenitors. Genes Development,22(5):668~681.
    Mauro A.1961. Satellite cells of skeletal muscle fibers. Journal of Biophysics and BiochemistryCytology,9:493~495.
    McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R.2003. Myostatin negativelyregulates satellite cell activation and self-renewal. Journal of Cell Biology,162(6):1135~1147.
    McFarland D C, Velleman S G, Pesall J E, Liu C.2007. The role of myostatin in chicken (Gallusdomesticus) myogenic satellite cell proliferation and differentiation. General and ComparativeEndocrinology,151(3):351~357.
    McFarland D C.1999. Influence of growth factors on poultry myogenic satellite cells. Poultry Science,78(5):747~758.
    McGuinness, M C, Cogburn L A.1991. Response of young broiler chickens to chronic injections ofrecombinant-derived human insulin-like growth factor-I. Domestic Animal Endocrinology,8(4):611~620.
    McMurtry J P.1998. Nutritional and developmental roles of insulin-like growth factors in poultry.Journal of Nutrition,128(2):302S~305S.
    McNabb F M A.2000. Thyroids. Pages461~471in Sturkie’s Avian Physiology. G. Whittow, ed.Academic Press, New York, NY.
    McPherron A C, Lawler A M, Lee S J.1997. Regulation of skeletal muscle mass in mice by a newTGF-beta superfamily member. Nature,387(6628):83~90.
    Miller L E, Krista L M, Brake J, Bolden S L, McDaniel G R, Mora E.1985. Effect of caponization onbody weight, atherosclerosis, and cardiovascular variables in hypertensive and hypotensive turkey lines.Poultry Science,64(5):1002~1014.
    Minshall R D, McFarland D C, Doumit M E.1990. Interaction of insulin-like growth factor I withturkey satellite cells and satellite cell-derived myotubes. Domestic Animal Endocrinology,7(3):413~424.
    Moellers R F, Cogburn L A.1995. Chronic intravenous infusion of chicken growth hormone increasesbody fat content of young broiler chickens. Comparative Biochemistry and Physiology Part A,110(1):47~56.
    Moohr O L.1919. Character changes caused by mutation of an entire region of a chromosome inDrosophila melanogaster. Genetics,4(3):275~282.
    Moore D T, Ferket P R, Mozdziak P E.2005a. Early post-hatch fasting induces satellite cellself-renewal. Comparative Biochemistry and Physiology, Part A,142(3):331~339.
    Moore D T, Ferket P R, Mozdziak P E.2005b. Muscle development in the late embryonic and earlypost-hatch poult. International Journal of poultry science,4(3):138~142.
    Moore D T, Ferket P R, Mozdziak P E.2005c. The effect of early nutrition on satellite cell dynamicsin the young turkey. Poultry Science,84(5):748~756.
    Morrison J C, Johnson E C, Cepurna W, Jia L.2005. Understanding mechanisms of pressure-inducedoptic nerve damage. Progress in retinal and eye research,24(2):217~240.
    Moss F P, Leblond C P.1971. Satellite cells as the source of nuclei in muscles of growing rats. TheAnatomical Record,170(4):421~436.
    Mozdziak P E, Pulvermacher P M, Schultz E.2000. Unloading of juvenile muscle results in a reducedmuscle size9wk after reloading. Journal of Applied Physiology,88(1):158~164.
    Mozdziak P E, Schultz E, Cassens R G.1994. Satellite cell mitotic activity in posthatch turkey skeletalmuscle growth. Poultry Science,73(4):547~555.
    Mozdziak P E, Schultz E, Cassens R G.1997. Myonuclear accretion is a major determinant of avianskeletal muscle growth. American Journal of Physiology,272(2):C565~C571.
    Mozdziak P E, Walsh T J, McCoy D W.2002. The effect of early posthatch nutrition on satellite cellmitotic activity. Poultry Science,81(11):1703~1708.
    Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton E R, Sweeney HL, Rosenthal N.2001. Localized IGF-I transgene expression sustains hypertrophy and regeneration insenescent skeletal muscle. Nature Genetics,27(2):195~200.
    Nishi M, Yasue A, Nishimatu S, Nohno T, Yamaoka T, Itakura M, Moriyama K, Ohuchi H, Noji S.2002. A missense mutant myostatin causes hyperplasia without hypertrophy in the mouse muscle.Biochemical and Biophysical Research Communications,293(1):247~251.
    Oksbjerg N, Gondret F, Vestergaard M.2004. Basic principles of muscle development and growth inmeat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domestic AnimalEndocrinology,27(3):219~240.
    Olguin H C, Olwin B B.2004. Pax-7up-regulation inhibits myogenesis and cell cycle progression insatellite cells: a potential mechanism for self-renewal. Developmental Biology,275(2):375~388.
    Olson E N.1992. Interplay between proliferation and differentiation within the myogenic lineage.Developmental Biology,154(2):261~72.
    Onba lar E E, Erol H, Cantekin Z, Kayaü.2007. Influence of intermittent lighting on broilerperformance, incidence of tibial dyschondroplasia, tonic immobility, some blood parameters and antibodyproduction. Asian-Australasian Journal of Animal Sciences,20(4):550~555.
    Osol J G, Foss D C, Carew L B Jr.1980. Pinealectomy and light environment effects on testicular andcomb development in the46-day-old broiler cockerel. Poultry Science,59(4):918~920.
    Oustanina S, Hause G, Braun T.2004. Pax7directs postnatal renewal and propagation of myogenicsatellite cells but not their specification. EMBO Journal,23(16):3430~3439.
    Patel K, Amthor H.2005. The function of Myostatin and strategies of Myostatin blockade-new hopefor therapies aimed at promoting growth of skeletal muscle. Neuromuscular Disorders,15(2):117~126.
    Paul A C, Rosenthal N.2002. Different modes of hypertrophy in skeletal muscle fibers. Journal ofCell Biology,156(4):751~760.
    Piestun Y, Harel M, Barak M, Yahav S, Halevy O.2009. Thermal manipulations in late-term chickembryos have immediate and longer term effects on myoblast proliferation and skeletal muscle hypertrophy.Journal of Applied Physiology,106(1):233~240.
    Prayitno D S, Phillips C, Omed H.1997a. The effects of color of lighting on the behavior andproduction of meat chickens. Poultry Science,76(3):452~457.
    Prayitno D S, Phillips C J C, Stokes D K.1997b. The effects of color and intensity of light on behaviorand leg disorders in broiler chickens. Poultry Science,76:1674~1681.
    Prescott N, Wathes C.1999. Spectral sensitivity of the domestic fowl (Gallus g. domesticus). BritishPoultry Science,40(3):332~339.
    Pyrzak R, Siopes T.1986. The effect of light color on egg quality of turkey hens in cages. PoultryScience,65(7):1262~1267.
    Rao K Q, Xie J J, Yang X J, Chen L, Grossmann R, Zhao R Q.2009. Maternal low-protein dietprogrammes offspring growth in association with alterations in yolk leptin deposition and gene expressionin yolk-sac membrane, hypothalamus and muscle of developing Langshan chicken embryos. BritishJournal of Nutrition,10(6)2:848~857.
    Rawls A, Morris J H, Rudnicki M, Braun T, Arnold H H, Klein W H, Olson EN.1995. Myogenin’sfunctions do not overlap with those of MyoD of Myf-5during mouse embryogenesis. DevelopmentalBiology,172(1):37~50.
    Relaix F, Rocancourt D, Mansouri A, Buckingham M.2005. A Pax3/Pax7-dependent population ofskeletal muscle progenitor cells. Nature,435(7044):948~953.
    Reyns G E, Venken K, de Escobar G M, Kühn E R, Darras V M.2003. Dynamics and regulation ofintracellular thyroid hormone concentrations in embryonic chicken liver, kidney, brain, and blood. Generaland Comparative Endocrinology,134(1):80~87.
    Rozenboim I, Biran I, Uni Z, Robinzon B, Halevy O.1999. The effect of monochromatic light onbroiler growth and development. Poultry Science,78(1):135~138.
    Rozenboim I, Huisinga R, Halevy O, El Halawani M.2003. Effect of embryonic photostimulation onthe posthatch growth of turkey poults. Poultry Science,82(7):1181~1187.
    Rozenboim I, Biran I, Chaiseha Y, Yahav S, Rosenstrauch A, Sklan D, Halevy O.2004a. The effect ofa green and blue monochromatic light combination on broiler growth and development. Poultry Science,83(5):842~845.
    Rozenboim I, Piestun Y, Mobarkey N, Barak M, Hoyzman A, Halevy O.2004b. Monochromatic lightstimuli during embryogenesis enhance embryo development and posthatch growth. Poultry Science,83(8):1413~1419.
    Ryu Y C, Kim B C.2005. The relationship between muscle fiber characteristics, postmortemmetabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Science,71(2):351~357.
    Sadowski C L, Wheeler T T, Wang L H, Sadowski H B.2001. GH regulation of IGF-I and suppressorof cytokine signaling gene expression in C2C12skeletal muscle cells. Endocrinology,142(9):3890~3900.
    SAS Institute.2001. SAS User’s Guide. Version8.02ed. SAS Institute Inc., Cary, NC.
    SAS Institute.2002. JMP-Statistics and Graphics Guide, Version5. SAS Inst. Inc., Cary, NC.
    Scanes C G, Harvey S, Marsh J A, King D B.1984. Hormones and growth in poultry. Poultry Science,63(10):2062~2074.
    Schultz E, Gibson M C, Champion T.1978. Satellite cells are mitotically quiescent in mature mousemuscle: an EM and radioautographic study. Journal of Experimental Zoology,206(3):451~456.
    Schultz E, McCormick K M.1994. Skeletal muscle satellite cells. Reviews of Physiology,Biochemistry and Pharmacology,123:213~257.
    Seale P, Rudnicki M A.2000. A new look at the origin, function, and “stem-cell” status of musclesatellite cells. Developmental Biology,218(2):115~124.
    Shavlakadze T, Winn N, Rosenthal N, Grounds M D.2005. Reconciling data from transgenic micethat overexpress IGF-I specifically in skeletal muscle. Growth Hormone and IGF Research,15(1):4~18.
    Sheehan S M, Tatsumy R, Temm-Grove C J, Allen R E.2002. HGF is an autocrine growth factor forskeletal muscle satellite cells in vitro. Muscle and Nerve,23(2):239~245.
    Sherwood R I, Christensen J L, Conboy I M, Conboy M J, Rando TA, Weissman I L, Wagers A J.2004.Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engraftingskeletal muscle. Cell,119(4):543~554.
    Shinin V, Gayraud-Morel B, Gomes D, Tajbakhsh S.2006. Asymmetric division and cosegregation oftemplate DNA strands in adult muscle satellite cells. Nature Cell Biology,8(7):677~687.
    Shutze J, Lauber J, Kato M, Wilson W.1962. Influence of incandescent and coloured light on chickenembryos during incubation. Nature,196(11):594~595.
    Sklan D, Heifetz S, Halevy O.2003. Heavier chicks at hatch improves marketing body weight byenhancing skeletal muscle growth. Poultry Science,82(11):1778-1786.
    Siegel P B, Isakson S T, Coleman F N, Huffman B J.1969. Photoacceleration of development in chickembryo. Comparative Biochemistry and Physiology,28:753~758.
    Siopes T, Baughman G, Parkhurst C, Timmons M.1989. Relationship between duration and intensityof environmental light on the growth performance of male turkeys. Poultry Science,68(11):1428~1435.
    Siopes T.1991. Light intensity effects on reproductive performance of turkey breeder hens. PoultryScience,70(10):2049~2054.
    Smith C K II, Janney M J, Allen R E.1994. Temporal expression of myogenic regulatory genes duringactivation, proliferation, and differentiation of rat skeletal muscle satellite cells. Journal of CellularPhysiology,159(2):379~385.
    Smith J H.1963. Relation of body size to muscle cell size and number in the chicken. Poultry Science,42(2):283~290.
    Song Z G, Zhang X H, Zhu L X, Jiao H C, Lin H.2011. Dexamethasone alters the expression of genesrelated to the growth of skeletal muscle in chickens (Gallus gallus domesticus). Journal of MolecularEndocrinology,46(3):217~225.
    Spencer G S G, Decuypere E, Buyse J, Zeman M.1996. Effect of recombinant human insulin-likegrowth factor-II on weight gain and body composition of broiler chickens. Poultry Science,75(3):388~392.
    Spencer G S, Decuypere E, Buyse J, Hodgkinson S C, Bass J J, Zeman M.1995. Passiveimmunization of insulin-like growth factor (IGF)-1and of IGF-1and IGF-2in chickens. ComparativeBiochemistry and Physiology, Part C,110(1):29~33.
    Stockdale F E.1992. Myogenic cell lineages. Developmental Biology,154(2):284~298.
    Tamimie H, Fox M.1967. Effect of continuous and intermittent light exposure on the embryonicdevelopment of chicken eggs. Comparative Biochemistry and Physiology,20(3):793~796.
    Taylor W E, Bhasin S, Artaza J, Byhower F, Azam M, Willard D H Jr, Kull F C Jr, Gonzalez-CadavidN.2001. Myostatin inhibits cell proliferation and protein synthesis in C2C12muscle cells. American Journalof Physiology Endocrinology and Metabolism,280(2):E221~E228.
    Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R.2000. Myostatin, a negativeregulator of muscle growth, functions by inhibiting myoblast proliferation. Journal of Biological Chemistry,275(51):40235~40243.
    Tixier-Boichard M, Huybrechts L M, Decuypere E, Kühn E R, Monvoisin J L, Coquerelle G, CharrierJ, Simon J.1992. Effects of insulin-like growth factor-I (IGF-I) infusion and dietary tri-iodothyronine (T3)supplementation on growth, body composition and plasma hormone levels in sex-linked dwarf mutant andnormal chickens. Journal of Endocrinology,133(1):101~110.
    Tomas F M, Pym R A, McMurtry J P, Francis G M.1998. Insulin-like growth factor (IGF)-I but notIGF-II promotes lean growth and feed effciency in broiler chickens. General and ComparativeEndocrinology,110(3):262~275.
    Tomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J.2000. Myostatin,a negative regulator ofmuscle growth, functions by inhibiting myoblast proliferation. The Journal of Biological Chemistry,275(51):40235~40243.
    Ullman M, Oldfors A.1991. Skeletal muscle regeneration in young rats is dependent on growthhormone. Journal of the Neurology Science,106(1):67~74.
    Valdez M R, Richardson J A, Klein W H, Olson E N.2000. Failure of Myf5to support myogenicdifferentiation without myogenin, MyoD, and MRF4. Developmental Biology,219(2):287~298.
    Valdivia A G, Martinez A, Damian F J, Quezada T, Ortiz R, Martinez C, Llamas J, Rodriguez M L,Yamamoto L, Jaramillo F, Loarca-Pina M G, Reyes J L.2001. Efficacy of N-acetylcysteine to reduce theeffects of aflatoxin B1intoxication in broiler chickens. Poultry Science,80(6):727~734.
    Vasilatos-Younken R, Scanes C G.1991. Growth hormone and insulin-like growth factors in poultrygrowth: required, optimal, or ineffective? Poultry Science,70(8):1764~1780.
    Velleman S G.2007. Muscle development in the embryo and hatchling. Poultry Science,86(5):1050~1054.
    Wabeck C J, Skuglund W C.1974. Influence of radiant energy from fluorescent light sources ongrowth mortality and feed conversion of broilers. Poultry Science,53(6):2055~2059.
    Wagers A J, Conboy I M.2005. Cellular and molecular signatures of muscle regeneration: currentconcepts and controversies in adult myogenesis. Cell,122(5):659~667.
    Walter J H, Voitle R A.1972. Effects of photoperiod during incubation on embryonic andpost-embryonic development of broilers. Poultry Science,51(4):1122~1226.
    Walter J H, Voitle R A.1973. Effects of photoperiod during incubation on embryonic andpost-embryonic development of quail and chickens. British Poultry Science,14(6):533~540.
    Williams P, Goldspink G.1978. Changes in sarcomere length and physiological properties inimmobilized muscle. Journal of Anatomy,127(3):459~468.
    Woodard A, Moore J, Wilson W.1969. Effect of wave length of light on growth and reproduction inJapanese quail (Coturnix coturnix japonica). Poultry Science,48(1):118~123.
    Wu G Q, Siegel P B, Gilbert E R, Yang N, Wong E A.2011. Expression profiles of somatotropic axisgenes in lines of chickens deivergently selected for56-day body weight. Animal Biotechnology,22(2):100~110.
    Xie D, Li J, Wang Z X, Cao J, Li T T, Chen J L, Chen Y X.2011. Effects of monochromatic light onmucosal mechanical and immunological barriers in the small intestine of broilers. Poultry Science,90(12):2697~2704.
    Xie D, Wang Z, Cao J, Dong Y, Chen Y.2008a. Effects of monochromatic light on proliferationresponse of splencyte in broilers. Anatomia, Histologia, Embryologia,37(5):332~337.
    Xie D, Wang Z, Dong Y, Cao J, Wang J, Chen J, Chen Y.2008b. Effects of monochromatic light onimmune response of broilers. Poultry Science,87(8):1535~1539.
    Xu L, Zhang L, Yue H Y, Wu S G, Zhang H J, Ji F, Qi G H.2011. Effect of electrical stunning currentand frequency on meat quality, plasma parameters, and glycolytic potential in broilers. Poultry Science,90(8):1823~1830.
    Yablonka-Reuveni Z, Paterson B M.2001. MyoD and myogenin expression patterns in cultures offetal and adult chicken myoblasts. Journal of Histochemistry and Cytochemistry,49(4):455~462.
    Yablonka-Reuveni Z, Seifert R A.1993. Proliferation of chicken myoblasts is regulated by specificisoforms of platelet-derived growth factor: evidence for differences between myoblasts from mid and latestages of embryogenesis. Developmental Biology,156(2):307~318.
    Yahav S, Hurwitz S, Rozenboim I.2000. The effect of light intensity on growth and development ofturkey toms. British Poultry Science,41(1):101~106.
    Wu G Q, Siegel P B, Gilbert E R, Yang N, Wong E A.2011. Expression profiles of somatotropic axisgenes in lines of chickens divergently selected for56-day boday weight. Animal Biotechnology,22(2):100~110.
    Yun J S, Seo D S, Kim W K, Ko Y.2005. Expression and relationship of the insulin-like growth factorsystem with posthatch growth in the Korean Native Ogol chicken. Poultry Science,84(1):83~90.
    Zhang L, Yue H Y, Wu S G, Xu L, Zhang H J, Yan H J, Cao Y L, Gong Y S, Qi G H.2010. Transportstress in broilers. II. Superoxide production, adenosine phosphate concentrations, and mRNA levels ofavian uncoupling protein, avian adenine nucleotide translocator, and avian peroxisomeproliferator-activated receptor-γ coactivator-1α in skeletal muscles. Poultry Science,89(3):393~400.
    Zhang L, Yue H Y, Zhang H J, Xu L, Wu S G, Yan H J, Gong Y S, Qi G H.2009. Transport stress inbroilers: I. Blood metabolism, glycolytic potential and meat quality. Poultry Science,88(10):2033~2041.
    Zhang L, Zhang H J, Qiao X, Yue H Y, Wu S G, Yao J H, Qi G H.2012. Effect of monochromatic lightstimuli during embryogenesis on muscular growth, chemical composition, and meat quality of breastmuscle in male broilers. Poultry Science,91(4):1026~1031.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700