纯钛表面制备复合纳米薄膜对钛瓷结合强度影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纯钛金属凭借其优良的生物相容性、耐腐蚀性等优点已经被广泛的应用于口腔修复临床。随着低熔点、低热膨胀系数的钛瓷粉成功投放于市场,钛烤瓷技术也有了较大的发展,但是钛瓷结合强度仍明显低于镍铬合金与瓷的结合强度。其原因主要是由于高温环境下,钛表面极易形成疏松多孔且附着性差的氧化膜。纳米材料颗粒粒径小,表面张力大,表面结合能高,具有不饱和性,所以表现出极强的化学活性,易与瓷及金属表面的氧发生键合作用。本实验采用溶胶-凝胶技术,在钛金属表面均匀的涂附一层纳米薄膜,并对其进行相应的热处理,以期能限制在瓷烧结过程中钛表面的过度氧化,改善钛瓷结合性能,提高钛瓷结合强度;并模拟口腔环境,研究钛瓷结合强度在酸性含F-的人工唾液中的变化规律,探讨其腐蚀机理,为钛瓷修复体进一步的临床应用提供理论依据。
     研究结果如下:
     1.采用溶胶-凝胶技术均匀的在钛金属表面涂附TiO_2-SiO_2纳米薄膜,经750°C热处理后其钛瓷结合强度与对照组相比提高了21.77%,而300°C热处理后的钛瓷结合强度却降低了13.28%,两者均具有统计学差异;经750°C热处理不同时间后的钛瓷结合强度均显著增加,但是相互间无统计学差异;纳米薄膜各组成成分的摩尔比率对钛瓷结合强度也无显著的影响,但是随着Ti含量降低,Si含量增高,钛瓷结合强度呈现降低的趋势。
     2.不同温度热处理的TiO_2-SiO2纳米薄膜X线衍射图谱(XRD)显示,尽管750°C组的XRD图明显不同于300°C和500°C组,但是所有试件均未发现金红石相TiO_2。这说明涂附在钛金属表面的TiO_2-SiO_2纳米薄膜可以作为氧隔离屏障,能够有效的防止钛在瓷熔附过程中继续氧化。改变热处理时间和各组成成分的摩尔比率,TiO_2-SiO2纳米薄膜的晶型无明显变化。
     3.通过对表面涂附TiO_2-SiO2纳米薄膜的钛瓷界面进行扫描电镜(SEM)观察发现,300°C和500°C热处理后的纳米薄膜较为松散凌乱,薄膜开裂,且缝隙较大。而经750°C热处理的纳米薄膜相对较为致密,未见明显的裂缝存在。观察750°C热处理后的钛瓷试件在三点弯曲测试后其横切面的SEM图发现,钛瓷断裂的位置发生了变化,不再是钛表面氧化膜与钛基底之间,而是位于TiO_2-SiO_2纳米薄膜内部。
     4.在上述研究的基础上,将Sn元素加入到TiO_2-SiO2纳米薄膜中,研究在不同处理条件下该复合型纳米薄膜对钛瓷结合强度的影响。实验结果显示,影响TiO_2-SiO_2-SnO_x纳米薄膜增强钛瓷结合强度的热处理温度与TiO_2-SiO_2纳米薄膜截然相反。其显著增强钛瓷结合强度的温度为300°C,约可提高21.32%。随着热处理时间的延长,钛瓷间的结合强度逐渐增大,但是无统计学意义。各组成成分的摩尔比率对钛瓷结合强度也有一定的影响作用,Ti:Si:Sn摩尔比率为5:4:1和2:2:1时的钛瓷结合强度显著提高,但是当三者比率为4:5.5:0.5时却无明显改变。
     5.比较不同温度热处理的TiO_2-SiO_2-SnO_x纳米薄膜X线衍射图谱(XRD)发现,与300°C组和500°C组相比,750°C组的XRD相图中无SnO晶相,取而代之的是SnO_2晶相。表明随着温度的升高SnO可能被氧化为SnO_2。而所有试件中均未发现金红石相TiO_2的结果则说明涂附在钛金属表面的TiO_2-SiO_2-SnO_x纳米薄膜可以作为氧隔离屏障,有效的防止钛在瓷熔附过程中继续氧化。热处理时间和各组成成分的摩尔比率对TiO_2-SiO_2-SnO_x纳米薄膜的晶型变化无明显影响。6.通过观察比较不同处理条件下表面涂附TiO_2-SiO_2-SnO_x纳米薄膜的钛瓷界面SEM图发现,经300°C热处理的纳米薄膜较为致密,均匀一致,无明显的裂缝存在。而500°C和750°C热处理后的纳米薄膜则杂乱无序,且表面存在着明显的缝隙。对300°C热处理后的钛瓷试件在三点弯曲测试后其横切面进行SEM观察发现,钛瓷断裂的位置发生了变化,不再是钛表面氧化膜与钛基底之间,而是位于TiO_2-SiO_2-SnO_x纳米薄膜内部。7.分别采用划痕法对不同热处理温度下TiO_2-SiO_2和TiO_2-SiO_2-SnO_x纳米薄膜与钛基底间的膜基结合强度进行测试发现,当热处理温度为300°C、500°C和750°C时,TiO_2-SiO_2纳米薄膜与钛基底的膜基结合力分别为15.3N、22N和28.5N,说明随着温度的升高,TiO_2-SiO_2纳米薄膜与钛基底的膜基结合力也随之升高;而TiO_2-SiO_2-SnO_x纳米薄膜与钛基底的膜基结合力则分别为18.5N、24.5N和22.8N,说明随着温度的升高,TiO_2-SiO_2-SnO_x纳米薄膜与钛基底的膜基结合力先升高再降低。8.通过比较钛瓷试件在酸性含F-的人工唾液中浸泡不同时间后的钛瓷结合强度发现,浸泡1天钛瓷结合强度即可出现明显降低,且与对照组相比具有统计学差异。而后随着时间的延长,钛瓷结合强度逐渐减少,最后趋于稳定;酸的类型与钛瓷结合强度的减少无关;酸的pH值、F-浓度以及酸的类型均无法改变钛瓷断裂发生的位置和方式,断裂仍主要发生在钛表面氧化层和钛基底之间。
With the excellent biocompatibility, corrosion resistance and otheradvantages, titanium has been widely used in oral clinical. Due to the lowmelting point, low thermal expansion coefficient of titanium porcelain powderwas successfully placed on the market, titanium-ceramic technology has alsobeen considerable development. But the titanium-porcelain bond strength wasstill significantly lower than the bond strength of Ni-Cr alloy and porcelain. Thereasons was that the titanium surface can easily form a porous and nonadherentoxide under the high temperature environment. With small particle size, highsurface tension and surface binding energy, nano-materials displays a strongchemical activity and can take place chemical reaction with the oxygen of theporcelain and metal surfaces. In order to limit the excessive oxidation oftitanium in the porcelain sintering process and improve the bond strength oftitanium-porcelain, the surface of titanium was coated with nano-coatings by thesol-gel technology and then impose the appropriate heat treatment in this study. Otherwise, with the purpose of obtaining a theoretical basis for the furtherclinical applications of titanium porcelain restorations, we simulated the oralenvironment and studied the variational rule of titanium-porcelain bondstrength in acidic artificial saliva with the F-and the corrosion mechanism. Theresults are as follows:
     1. Compared with the titanium-porcelain system without any intermediatecoatings, the bond strength of the same system coated with TiO_2-SiO_2nano-coatings, being produced by the sol-gel technology and fired at750°C wassignificantly increased by21.77%. While the titanium-porcelain bond strengthwas significantly reduced by13.28%under the heat treatment conditions of300°C; Little effect of heat treatment duration on the bond strength of titaniumporcelain was found; Though the effects of the molar ratio of nano-coatingscomposition to the titanium-porcelain bond strength was also not obvious, butthere was still the variational rule of the lower Ti content and the higher Sicontent, the lower bond strength of titanium-porcelain.
     2. The X-ray diffraction patterns (XRD) patterns of the TiO_2-SiO_2nano-coatings fired at different temperatures was shown that although the XRDpattern of the specimen fired at750°C was significantly different from thespecimen fired at300°C and500°C, but the rutile phase was not found in allspecimens, which proved the TiO_2-SiO_2nano-coatings can be used as oxygenseparation barrier and effectively prevent oxidation of titanium in the process ofporcelain being fused to the titanium. With the different heat treatment durationand the molar ratio of the composition, no significant change of the crystal ofTiO_2-SiO_2nano-coatings was happened.
     3. The scanning electron microscope (SEM) photomicrographs of titanium-porcelain interface morphology of the specimens before porcelain fused with different heat treatment temperature、heat treatment duration and the molar ratioof the composition were observed that the TiO_2-SiO_2nano-coatings fired at300°C or500°C was loose and messy with larger cracks while the same coatingfired at750°C was compact and homogeneous without any obvious cracksexisting. The cross-sectional SEM microphotograph of the specimen fired at750°C after three-point bending test revealed that the location of thetitanium-porcelain fracture had been changed, which not existed between theoxide film of the titanium surface and titanium substrate, but within theTiO_2-SiO_2nano-coatings.
     4. With the basis of the above study, the Sn element was added into theTiO_2-SiO2nano-coatings to study the effects of the composite nano-coatings tothe bond strength of titanium-porcelain. The experimental results shown that thetemperature of the TiO_2-SiO_2-SnO_xnano-coatings fired which can significantlyincrease the bond strength of titanium-porcelain was opposite to the TiO_2-SiO_2nano-coatings. The bond strength of the titanium-porcelain system coated withTiO_2-SiO_2-SnO_xnano-coatings, being produced by the sol-gel technology andfired at300°C, was significantly increased by21.32%. With the more of heattreatment duration, the bond strength of titanium-porcelain was higher; Themolar ratio of nano-coatings composition can also effect the titanium-porcelainbond strength. When the molar ratio of Ti: Si: Sn was5:4:1and2:2:1, the bondstrength of titanium-porcelain was significantly increased, which was no notablychange under the three ratios for4:5.5:0.5.
     5. The X-ray diffraction patterns (XRD) patterns of the TiO_2-SiO2-SnOxnano-coatings fired at different temperatures was shown that compared with theXRD patterns of the specimens fired at300°C and500°C, no SnO phase wasfound in the XRD pattern of the specimen fired at750°C, which was replaced by the SnO2phase. The results shown that SnO maybe oxidized to SnO2with thefiring temperature elevated. The rutile phase was not found in all specimens,which indicated the TiO_2-SiO_2-SnO_xnano-coatings can be used as oxygenseparation barrier and effectively prevent oxidation of titanium in the process ofporcelain being fused to the titanium. No significant change of the crystal wasobserved under different heat treatment duration and the molar ratio of thecomposition.6. The scanning electron microscope (SEM) photomicrographs of titanium-porcelain interface morphology of the specimens before porcelain fused underdifferent processing conditions shown that compared with the disorderly andloose surface morphology of the TiO_2-SiO_2-SnO_xnano-coatings fired at500°Cor750°C, the same nano-coatings fired at300°C was compact andhomogeneous without any obvious cracks existing. The cross-sectional SEMmicrophotograph of the specimen fired at300°C after three-point bending testrevealed that the location of the titanium-porcelain fracture had been changed,which not existed between the oxide film of the titanium surface and titaniumsubstrate, but within the TiO_2-SiO_2nano-coatings.7. The bond strength between the TiO_2-SiO_2or TiO_2-SiO_2-SnO_xnano-coatingsfired at different temperatures and titanium substrate was respectively tested bythe scarification. When the heat treatment temperature was300°C、500°C and750°C, the bond strength of the TiO_2-SiO_2nano-coatings to the titaniumsubstrate was15.3N、22N and28.5N respectively, which shown that with theincreasing heat treatment temperature the bond strength of the nano-coatings tothe titanium substrate was also increased; while the bond strength of theTiO_2-SiO_2-SnO_xnano-coatings to the titanium substrate was18.5N、24.5N and22.8N respectively, which shown that with the increasing heat treatment temperature the bond strength of the nano-coatings to the titanium substrate wasincreased and then gradually decreased.
     8. The titanium-porcelain bond strength of the specimens immersed in the acidicartificial saliva containing F-was compared in this study, which wassignificantly decreased after1day. With the longer immersion time, the bondstrength of titanium-porcelain gradually reduced and finally stabilized. Therewas no obvious relationship between the bond strength of titanium-porcelainand the acid species. The location and manner of titanium-porcelain fracturecan’t changed with different pH values, F-concentration and acid species, thefracture still occurred mainly between the oxide film of the titanium surface andtitanium substrate.
引文
[1] Andersson M, Bergman B, Bessing C, et al. Clinical results with titaniumcrowns fabricated with machine duplication and spark erosion [J]. Acta OdontoScand.1989,47(5):279-286.
    [2] Koichi A, Yoshizo OM, et al. Properties of testmetal ceramic titanium alloys[J]. Prosthet Dent.1992,68(4):462-467.
    [3]郭天文主编.口腔科铸钛理论和技术[M].西安:世界图书出版社出版,1997:1-10.
    [4] Van Noort R. Review titanium: the implant materials of today[J]. J Mater Sci.1989,22:3801-3811.
    [5] Canay S, Hersek N, Culha A, et al. Evaluation of titanium in oral conditionsand its electrochemical corrosion behaviour[J]. Oral Rehabil.1998,25(10):759-764.
    [6] Hanawa T, Kaga M, Itoh Y, et al. Cytotoxicities of oxides, phosphates andsulphides of metals[J]. Biomaterials.1992,13(1):20-24.
    [7] Wang RR, Li, Y. In vitro evaluation of biocompatibility of experimentaltitanium alloys for dental restorations[J]. J Prosthet Dent.1998,80(4):495-500.
    [8]任卫红. RG钛专用低熔瓷粉的研制[D].第四军医大学博士论文,2001,18-65.
    [9] Togaya T, Suzuki M, Tsutsumi S, IDAK. An application of pure titanium tothe metal porcelain system[J]. Dental Material Journal.1983,2(2):210-219.
    [10] Menis DL, Moser JB, Greener EH. Experimental porcelain compositionsfor application to cast titanium (abstract). J Dent Res.1986,65:33-40.
    [11]何惠明.钛及钛合金的表面烤瓷基础研究[D].第四军医大学博士论文,1996,33-55.
    [12]汪大林,徐君伍,艾绳前,于家斗,周忠慎.钛材表面烤瓷的瓷金属界面研究[J].实用口腔医学杂志,1990,15(3):180-182.
    [13]莫安春,王建华,廖运茂,岑远坤.遮色瓷中结晶相对钛瓷结合强度的影响研究[J].华西口腔医学杂志,2001,19(6):357-359.
    [14] Watanabe K. Interface reactions between titanium and porcelain duringfiring[J]. JPn J Dent Mater.1993,12:620-629.
    [15] Hanawa T, Kon M, Oskawa S, Asaoka K. Diffudino of elements inporcelain into titanium oxide[J]. Dent Mater J.1994,13:164-173.
    [16] Suansuwan N, Swain MV. Adhesion of porcelain to titanium and a titaniumalloy[J]. J Dent.2003,31(7):509-518.
    [17] Kononen M, Kivilah ti J. Bonding of low-fusing dental porcelain tocommercially pure titanium[J]. J Biomed Mater Res.1994,28(14):1027-1031.
    [18] Kononen M, Kivilah ti J. Fusing of dental ceramics to titanium[J]. J DentRes.2001,80(3):848-852.
    [19]陆德明,腾立东,张建冰等.钛基生物搪瓷的密着机理研究[J].玻璃与搪瓷,1998,26(1):54-56.
    [20]何惠明,苗鸿雁,施长溪等.钛材专用烤瓷粉的微观结构研究[J].实用口腔医学分册,1997,13(1):53-55.
    [21] ISO9693, metal-ceramic dental restorative systems. InternationalOrganization for Standardization.Geneva,1999.
    [22] Probster L, Maiwald U, Weber H. Three-point bending strength of ceramicsfused to cast titanium[J]. Eur J Oral Sci.1996,104:313-319.
    [23] Yilmaz H, Dincer C. Comparison of the bond compatibility of titanium anda NiCr alloy to dental porcelain[J]. Journal of Dentistry.1999,27:215-222.
    [24] Atsil S, Berksun S. Bond strength of three porcelains to two forms oftitanium using two firing atmospheres[J]. J Prosther Dent.2000,84:567-574.
    [25] Troia MG Jr, Henriques GE, Nobilo MA, Mesquita MF. The effect ofthermal cycling on the bond strength of low-fusing porcelain to commerciallypure titanium and titanium-aluminium-vanadium alloy[J]. Dent Mater.2003,19(8):790-796.
    [26] Persson M, Bergman M. Metal-ceramic bond strength[J]. Acta OdontolScand.1996,54:160-165.
    [27] Liu J, Atsuta M, Watanabe I. Bond strength of porcelain to degassed casttitanium[J]. Int Chin J Dent.2002,2(6):67-74.
    [28] Suansuwan N, Swain MV. Adhesion of porcelain to titanium and a titaniumalloy[J]. J Dent.2003.31(7):509-518.
    [29]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,1984,1-350.
    [30] Satendra Kumar, T.S.N.Sankara Narayanan. Corrosion behaviour ofTi-15Mo alloy for dental implant applications[J]. Journal of Dentistry.2008,36:500-507.
    [31] Huang HH, Chiu YH, Lee TH, Wu SC, Yang HW, Su KH, et al. Ion releasefrom NiTi orthodontic wires in artificial saliva with various acidities[J].Biomaterials.2003,24:3585-3592.
    [32] Thomson-Neal D, Evans GH, Meffert RM. Effects of Various Prophy-lacticTreatments on Titanium.Sapphire and Hydroxyapatite Coated Im-plant:An SEMStudy[J]. Int J Periodont Rest Dent.1989,9(3):300-311.
    [33]佟宇.纯钛铸件表面氮化处理的实验研究[D].第四军医大学学位论文,2009.
    [34] Screenivas K, Michael ER, Thomas JB, et al. Microbial colonization ofdental implants in partially edentulous subjects[J]. J Prosthet Dent.1993,70(2):141-143.
    [35]宋应亮,徐君伍,马轩祥.Aay4对钛及钛75合金表面失泽腐蚀的研究[J].中华口腔医学杂志,2000,35(4):256-258.
    [36]宋应亮,徐君伍,马轩祥.白色念珠菌对铸钛、Co-Cr合金、Ni-Cr合金修复体失泽腐蚀的影响[J].实用口腔医学杂志,2000,16(2):111-114.
    [37]宋应亮,徐君伍,马轩祥.牙龈卟啉菌381对纯钛及钛75合金种植体表面失泽的腐蚀[J].第四军医大学学报,2000,21(8):916-917.
    [38]宋应亮,徐君伍,马轩祥.远缘链球菌g型对铸钛、钴铬合金、镍铬合金修复体腐蚀失泽的研究[J].华西口腔医学杂志,2002,20(1):14-17.
    [39] Schiff N, Grosgogeat B, Lissac M, et al. Influence of fluoride content andpH on the corrosion resistance of titanium and its alloys[J]. Biomaterials.2002,23:1995-2000.
    [40] Nakagawa M, Matsuya S, Shiraishi T, Ohta M. Effect of fluorideconcentration and pH on corrosion behavior of titanium for dental use[J]. J DentRes.1999,78(9):1568-1572.
    [41] Nakagawa M, Matono Y, Matsuya S, et al. Effect of fluoride concentrationand pH on corrosion behavior of titanium for dental use[J]. Biomater.2005,26(15):2239-2246.
    [42] Reclaru L, Meyer JM. Effects of fluorides on titanium and other dentalalloys in dentistry[J]. Biomater.1998,19(1-3):85-92.
    [43]张晓芳,陈旭,潘琳.氟化物涂膜后唾液氟浓度的变化[J].上海口腔医学,2003,12(4):241-243.
    [44]葛瑶,王勤.缓释氟粘贴片对唾液氟浓度的影响[J].现代口腔医学杂志,2001,15(3):185-186.
    [45]赵红萍,吴补领,吴道澄.使用含氟漱口液后菌斑和唾液氟离子水平的动态观察[J].临床口腔医学杂志,2003,19(3):145-147.
    [46] Walter M, Reppel PD, BOning K. Six-year follow-up of titanium andhigh-gold porcelain-fused-to-metal fixed partial dentures[J].Oral Rehabil.1999,26(2):91-96.
    [47] Fischer J. Ceramic bonding to a dental gold-titanium alloy[J]. Biomater.2002,23(5):1303-1311.
    [48] Litong Guo, Xiaochen Liu, Zengying He, Jiqiang Gao. Effect of fluoridecorrosion on the bonding strength of Ti-porcelain[J]. Materials Letters.2008,62:2200-2202.
    [49] Litong Guo, Haitao Wu, Xiaochen Liu, Yabo Zhu, Jiqiang Gao, TianwenGuo. Effect of fluoride corrosion on the bonding strength of Ti-porcelain understatic loads[J]. Materials Letters.2009,63:2486-2488.
    [50] Koichi A, Yoshizo OM, Tomoji M, et al. Properties of test metal ceramictitanium alloys[J]. J Prosthet Dent.1992,68:462-467.
    [51] Adachi M, Mackert JR Jr, Parry EE, et al. Oxide adherence and porcelainbonding to titanium and Ti-6Al-4V alloy[J]. J Dent Res.1990,69(6):1230-1235.
    [52]任卫红,李笑梅,郭天文.纯钛自身氧化膜的黏附强度测试[J].实用口腔医学杂志,2007,23(2):280-283.
    [53] Pang IC, Gilbert JL, Chai J, et al. Bonding characteristics of Low-fusingporcelain bonded to pure titanium and palladium-cop-per alloy[J]. J ProsthetDent.1995,73:17-22.
    [54] Derand T, Hero H. Bond strength of porcelain on cast vs. Wroughttitanium[J]. Scand J Dent Res.1992,100:184-190.
    [55] Menis DL, Moser JB, Greener EH. Experimental porcelain compositionsfor application to cast titanium[J]. J Dent Res.1986,65:343-348.
    [56] Whittle DP, Stringer J. Improvements in high temperature oxidationresistance by additions of reactive elements or oxide dispersions[J]. Philos.Trans R Soc Lond A.1980,295:309-329.
    [57] Gibbs GB, Hales R. Influence of metal lattice vacancies on the oxidation ofhigh temperature materials[J]. The metals society.1977,201-207.
    [58]陈治清.口腔材料学[M].北京:人民卫生出版社,1995:97.
    [59]汪大林,戴维霞,唐卫忠等.不同温度下钛表面生成的氧化物研究[J].中华口腔医学杂志,2000,35(3):239-241.
    [60] Wang RR, Eung KK. Oxidation behavior of surface modified titanium fortitanium-ceramic restorations[J]. J Prosthet Dent.1997,77:423-434.
    [61] White SN, Caputo AA, Goo E, et al. Strength of porcelain fused totitanium beams[J]. J Prosthet Dent.1996,75:640-648.
    [62]刘洋,巢永烈,陈小冬,崔永志等.钛瓷反应层适宜厚度及元素构成分析[J].第四军医大学学报,2004,25(20):1890-1892.
    [63] Derand T, hero H. Bond strength of porcelain on cast vs. Wroughttitanium[J]. Scand J Dent Res.1992,100:184-188.
    [64] Rimmer A. The flare-up index:a quantitative method to describe thephenomenon[J]. J Endodo.1993,19(5):255-256.
    [65] Anusavice KJ. Recent development in restorative dental porcelain[J]. J AmDent Assoc.1993,124(2):72-84.
    [66] Nielsen JP, Tuccillo JT. Calculation of interfacial stress in dental porcelainbonded to gold alloy substrate[J]. J Dent Res.1972,51:1043-1047.
    [67] Kimura H, Horng CJ, Okazaki M, et al. Thermal compatibility of titaniumporcelain system[J]. J Osaka Univer Dent Sch.1990,30:43-52.
    [68] Stannard JG, Marks L, Kanchanatawewat K. Effect of multiple firing on thestrength of selected matched porcelain-fused-to-metal combinations[J].J Prosthet Dent.1990,63:627-629.
    [69] Iok-Chao Pang, Jeremy BDS, Gibert L, et al. Bonding characteristics oflow-fusing porcelain bonded to pure titanium and palladium-copper alloy[J].J Prosthet Dent.1995,73:17-25.
    [70] Coffey JP, Anusavice KJ. Influence of contraction mismatch and coolingrate on flexural failure of PFM systems[J]. J Dent Res.1988,67:61-65.
    [71] Reyes MJ, Oshida Y, Andres CJ, et al. Titanium-porcelain system. Part III:Effects of surface modification on bond strengths[J]. Biomed Mater Eng.2001,11(2):117-136.
    [72] Kern M, Thompson VP. Effects of sandblasting and silica-coatingprocedures on pure titanium[J]. J Dent.1994,22:300-305.
    [73] May KB, Van Putten MC, Bow DA, et al.4-META polymethylmethacrylateshear bond strength to titanium [J]. Oper Dent.1997,22(1):37-40.
    [74] Vojvodic D, Jerolimov V, Celebic A, et al. Bond strengths of silicoated andacrylic resin bonding systems to metal [J]. J ProsthetDent.1999,81(1):1-6.
    [75]莫安春,岑远坤,廖运茂,王建华.钛表面预处理对钛瓷剪切结合强度影响的研究[J].2003,21(2):104-106.
    [76]舒成军,骆小平,邬烈.表面处理对两种钛瓷粉的钛瓷结合力的影响[J].口腔医学研究,2007,23(5):505-508.
    [77]施长溪主编.美容牙科与口腔粘结技术[M].西安:陕西科学技术出版社,1995:17-19.
    [78] Mukai M, Fukui H, Hasegawa J. Relationship between sandblasting andcomposite resin-alloy bond strength by a silica coating [J]. J Prosthet Dent.1995,74(2):151-155.
    [79]李冬梅,郭天文,马楚凡,王宝成.不同喷砂粒度的预处理对钛与不同瓷聚合体粘接强度的影响[J].实用口腔医学杂志,2008,24(3):357-360.
    [80]王晓洁,郭天文,张玉梅,王宝成,张惠,郭莉.喷砂粒度对钛瓷结合强度影响的研究[J].临床口腔医学杂志,2007,23(3):162-164.
    [81]王晓洁,郭天文,张玉梅,王宝成,张惠,于淑湘.钛表面不同喷砂条件处理对钛瓷结合强度的影响[J].现代口腔医学杂志,2007,21(4):389-391.
    [82] Hautaniemi JA, Hero H, Juhanoja JT. Procelain bonding on Ti:Itsdependence on surface roughness, firing time and vacuum level[J]. SurfIntersurf Anal.1993,20(3):421-426.
    [83] Papadopoulos T, Tseteskou A, Eliades G. Effect of aluminium oxidesandblasting on cast commericially pure titanium surface[J]. Eur J ProsthodontRestor Dent.1999,7(1):15-21.
    [84] Kelly M, Asgar K, O Brien WJ. Tensile strength determination of theinterface between porcelain fused to gold[J]. J Biomed Mater Res.1969,3(3):403-407.
    [85] McLwan JW, Sced IR. Bond of dental porcelain to metal[J]. J Br CeramSoc.1973,5(2):229-235.
    [86] Lavine MH, Custer R. Variables affecting the strength of bond betweenporcelain and gold[J]. J Dent Res.1966,45(1):32-35.
    [87] Carpenter MA, Goodlind RJ. Effect of varying surface texture on bondstrength of semi-precious and one non-precious ceramo metal[J]. J ProsthetDent.1979,42(1):86-92.
    [88] Gilbert JL, Covey DA, Lautenschlager EP. Bond characteristics ofporcelain fused to milled titanium[J]. Dent Mater.1994,10:134-140.
    [89] Kononen M, Kivilahti J. Bonding of low-fusing dental porcelain tocommercially pure titanium[J]. J Biomed Mater Res.1994,28:1027-1035.
    [90] Fujishima A, Fujishima Y, Ferracane JL. Shear bond strength of fourcommercial bonding systems to cpTi[J]. Dent Mater.1995,11:82-87.
    [91] Al Hussaini I, Al Wazzan KA. Effect of surface treatment on bond strengthof low-fusing porcelain to commercially pure titanium[J]. J Prosthet Dent.2005,94(4):350-356.
    [92] Manoel G. Troia Jr., Guilherme E.P. Henriques, Marcelo F. Mesquita,Wagner S. Fragoso. The effect of surface modifications on titanium to enabletitanium-porcelain bonding[J]. Dental materials.2008,24:28-33.
    [93]沈丽娟,李冬梅,周天,郭天文.酸蚀处理对纯钛-Solidex黏结强度的影响[J].牙体牙髓牙周病学杂志,2003,13(7):392-394.
    [94] Ibrahim, Hussaini, Khalid A. Al Wazzan. Effect of surface treatment onbond strength of low-fusing porcelain to commercially pure titanium[J].J Prosthet Dent.2005,94:350-356.
    [95] Cai Z, Bunce N, Nunn ME, Okabe T. Porcelain adherence to dental cast CPtitanium: effects of surface modifications[J]. Biomaterials.2001,22(9):979-986.
    [96] Amr S. Fawzy, Farid S. El-Askary. Effect acidic and alkaline/heat treatmentson the bond strength of different luting cements to commercially pure titanium[J].Journal of dentistry.2009,37:255-263.
    [97] E.Mcafferty, J.P.Wightman. An Xray photoelectron spectroscopy sputterprofile study of the native air-formed oxide film on titanium[J]. Appl. Surf. Sci.1999,143:92-100.
    [98] L.I. Vergara, M.C.G. Passeggi Jr, J. Ferron. The role of passivation intitanium oxidation:thin film and temperature effects[J]. Appl. Surf. Sci.2002,187:199-206.
    [99] Kimura H, Horng CJ, Okazaki M, et al. Oxidation effects on porcelain-titanium interface reactions and bond strength[J]. Dent Mater.1990,99(4):91-99.
    [100]何惠明,艾绳前,王宝成等.钛表面烤瓷的预氧化处理工艺研究[J].实用口腔医学杂志,1998,14(1):14-16.
    [101] Grassberger P and Procaccia I. Characterization of strange attractors[J].Phys Rev Lett.1983,50:346-355.
    [102]王晓洁,郭天文,张玉梅,王宝成,郭莉.钛表面预氧处理对钛瓷结合强度的影响[J].口腔医学,2009,29(4):177-179.
    [103] Pask JA. From Technology to the Science of Glass/Metal and Ceramic/metalSealing[J]. Ceramic Bulletin.1987,66(11):1587-1592.
    [104] O’Brien WJ, Ryge A. Relationship between molecular force caculationsand observed strengths of enamel-metal interface[J]. J Am Ceram Soc.1964,47(2):5-10.
    [105]任卫红,郭天文.钛的氧化行为对钛瓷结合力的影响[J].实用口腔医学杂志,2007,23(4):554-557.
    [106]刘洋,周立冬,傅敏杰,巢永烈.钛金属表面不同预处理对钛瓷结合强度的影响[J].中华老年口腔医学杂志,2003,1(3):156-158.
    [107]张惠,郭天文,王晓洁,潘景光,党勇刚,佟宇.预氧化对钛-瓷结合影响的实验研究[J].实用口腔医学杂志,2006,22(2):199-202.
    [108] Min Yan, Chai-Tze Kao, Jyh-Siang Ye, Tsui-Hsien Huang, Shinn-JyhDing. Effect of preoxidation of titanium on the titanium-ceramic bonding[J].Surface&Coatings Technology.2007,202:288-293.
    [109] Tanaka K, Kimoto K, Sawada T, et al. Shear bond strength of veneeringcomposite resin to titanium nitride coating alloy deposited by radiofrequencysputtering[J]. Dentistry.2006,34:277-282.
    [110]于绍冰,郭天文,越野,尹路.TiN镀膜提高纯钛与聚合瓷结合强度的研究[J].上海口腔医学,2008,17(2):158-160.
    [111] Oshida Y, Hashem A. Titanium-porccelain system. Part I:Oxidationkinetics of nitrided pure titanium simulated to porcelain firing process[J].Biomed Mater Eng.1993,3(4):185-198
    [112] Huang CT, Duh JG. Stress and oxidation behaviours of rf-sputtered(Ti,Al) N films[J]. Surface&Coating Technology.1996,81:164-171.
    [113] H. Zhang, T.W. Guo, Z.X. Song, X.J. Wang, K.W. Xu. The effect ofZrSiN diffusion barrier on the bonding strength of titanium porcelain[J]. Surface&Coatings Technology.2007,201:5637-5640.
    [114] Wang RR, Fung KK. Oxidation behavior of surface-modified titanium fortitanium-ceramic restorations[J]. J Prosthet Dent. l997,77(4):423-434.
    [115] Lee KM, Cai Z, Griggs JA, et a1. SEM/EDS evaluation of porcelainadherence to gold-coated cast titanium[J]. J Biomed Mater Res.2004,68(2):165-173.
    [116]张惠,郭天文,李均明,潘景光,党勇刚,佟宇.铬铝钛氮复合涂层对钛瓷结合强度的影响[J].南方医科大学学报,2006,26(2):154-157.
    [117] Isil Ozcan, Hakan Uysal. Effects of silicon coating on bond strength of twodifferent titanium ceramic to titanium[J]. Dental Materials.2005,21:773-779.
    [118]张通和,吴瑜光.离子注入表面优化技术[M].北京:冶金工业出版社,1993:1-32.
    [119]钱苗根,姚寿山,张少宗.现代表面技术[M].北京:机械工业出版社,1999:211-216.
    [120] Sangwon Park, Yeonmi Kim, Hyunpil Lim, Gyejeong Oh, et al. Gold andtitanium nitride coatings on cast and machined commercially pure titanium toimprove titanium-porcelain adhesion[J]. Surface&Coatings Technology.2009,203:3243-3249.
    [121] Shaymaa E. Elsaka, Ibrahim M. Hamouda, Yehia A. Elewady, et al. Effectof chromium interlayer on the shear bond strength between porcelain and puretitanium[J]. Dental materials.2010,26:793-798.
    [122]钟兆伟,谢伟丽,朱兴国,马欣新等.纯钛表面离子注氮后的金瓷结合观察[J].口腔颌面修复学杂志,2006,7(2):105-107.
    [123] Wang RR,Welsch GE,Monteiro O.Silicon nitride coating on titanium toenable titanium-ceramic bonding[J].J Biomed Mater Res.1999,46(2):262-270.
    [124]梁英,朱瑞富,吕宇鹏等.纯钛表面涂层与烤瓷熔附的研究[J].中国口腔种植学杂志,2000,5(1):61-63.
    [125] Yerokhin AL, Nie X, Leyland A, et al. Plasma electrolysis for surfaceengineering[J]. Surface Coatings Technol.1999,122(2):73-93.
    [126]憨勇,徐可为.微弧氧化生成含钙磷氧化钛生物薄膜的结构[J].无机材料学报,2001,16(5):951-956.
    [127]黄平,徐可为,憨勇.基于表面生物学改性的多孔状二氧化钛/磷灰石复合薄膜的制备[J].硅酸盐学报,2002,30(3):316-319.
    [128] Oshida Y, Fung LW, Isikbay SC. Titanium-porcelain system. PartII: Bondstrength of fired porcelain on nitrided pure titanium[J]. Biomed Mater Eng.1997,7(1):13-34.
    [129]昱昕,憨勇,黄平等.微弧氧化钛膜的结合强度与生物活性[J].硅酸盐学报,2004,32(2):122-126.
    [130]蒋百灵,张菊梅,时惠英.钛合金微弧氧化膜表面形貌对膜/环氧树脂结合强度的影响[J].有色金属学报,2004,14(4):539-542.
    [131]张梅菊.能量参数对钛合金微弧氧化膜层表面形貌及膜层/环氧树脂结合强度的影响[D].西安理工大学学位论文,2004:1-20.
    [132]李健学,张玉梅,憨勇,刘啸晨,于凡.不同时间对钛表面微弧氧化处理后与瓷结合强度的影响[J].第四军医大学学报,2006,27(23):2113-2116.
    [133]李健学,张玉梅,黄平,沈丽娟.微弧氧化电压处理钛表面后对钛瓷结合强度的影响[J].临床口腔医学杂志,2006,22(9):534-536.
    [134]王晓洁,郭天文,张玉梅,王宝成.纯钛烤瓷中微弧氧化处理的实验研究[J].口腔颌面修复学杂志,2009,10(2):69-72.
    [135]王晓洁,郭天文,张玉梅,王宝成等.钛表面微弧氧化处理对钛瓷结合强度的影响[J].实用口腔医学杂志,2005,21(2):237-241.
    [136]李冬梅,马楚凡,郭天文.微弧氧化表面处理提高钛与瓷聚合体粘结强度的研究[J].中国美容医学,2008,17(2):240-242.
    [137] Yang Guangliang,Lu Xianyi,Bai Yizhaen,et al. The effects of currectdensity on the phase composition and microstructure properties of micro-arcoxidation coating[J]. J All Comp.2002,345:196-200.
    [138] Nie X,Leyland A,Matthews A. Deposition of layered bioceramichydroxyapatite/TiO2coatings on titanium alloys using a hybrid technique ofmicro-arc oxidation and electrophoresis [J]. Surface and Coatings Technology.2000,125:407-414.
    [139]任卫红,郭天文,张艺权,王保成.粘结剂对钛瓷结合性能的影响[J].第四军医大学学报,2002,23(9):780-782.
    [140] Aschl I, Rammelsberg P, Pospiech P, et al. Bond strength of low-fusingCeramics to Cast titanium[J]. J Dent Res.1990,77:941-945.
    [141] Yamagishi T, ItoM, Fujimura Y. Mechanical properties of laserwelds oftitanium in dentistry by pulsed Nd: YAG laser apparatus[J]. J Prosthet Dent.1993,70:264-273.
    [142] Berg E,Wagnere WC,Davik G, et al. Mechanical properties of laserweldedcast and wrought titanium[J]. J Prosthet Dent.1995,74:250-257.
    [143] Staffanou RS, Radke RA, Jendresen MD. Strength properties of solderedjoints from various ceramic-metal combinations[J]. J Prosthet Dent.1980,43:31-39.
    [144] Derand T. Porcelain bond to laser-welded titanium surfaces[J]. DentMater.1995,11(2):93-95.
    [145]朱娟芳,莫三心,何惠明,曲旭红等.激光焊接对钛-瓷结合的影响[J].口腔医学,2004,24(1):47-49.
    [146]朱娟芳,何惠明,高勃,王忠义.激光焊接影响铸造钛与瓷结合的实验研究[J].中华口腔医学杂志,2006,41(4):236-239.
    [147]范崇政,肖建平,丁延伟.纳米二氧化钛的制备与光催化反应进展[J].科学通报,2001,45(4):265-267.
    [148]杨雁飞,王丽,徐爱琴. TiO2纳米材料溶胶凝胶法的制备、表征及光催化研究进展[J].长春理工大学学报(高教版),2009,4(5):153-154.
    [149]彭峰,任艳群. TiO2-SnO2复合纳米膜的制备及其光催化降解甲苯的活性[J].催化学报,2003,24(4):243-247.
    [150]梅长松,钟顺和. Cu/SnO2-TiO2催化剂的结构、光吸收性能和催化反应性能[J].化学物理学报,2005,18(5):821-826.
    [151]杜志伦,李林刚. Sol-gel法制备纳米二氧化钛及其光活性能的研究[J].皖西学院学报,2009,25(2):70-72.
    [152]李怀祥,夏荣花,姜正伟,陈姗姗. TiO2-SnO2复合粉体光催化降解亚甲基蓝[J].山东师范大学学报(自然科学版),2007,22(4):77-80.
    [153]刘羽,吴东兵,张永涛. Sol-Gel法二氧化硅溶胶的制备及稳定性研究[J].延安大学学报(自然科学版),2009,28(3):70-73.
    [154]沈长斌,薛钰芝,王炜,李典斌,董晓刚.溶胶凝胶法制备SnO2薄膜[J].大连交通大学学报,2008,29(2):88-91.
    [155] Zhao Jie, Huo Li-Hua, Gao Shan, Zhao Hui, Zhao Jing-Gui. Alcohols andacetone sensing properties of SnO2thin films deposited by dip-coating[J].Sensors and Actuators B.2006,115:460-464.
    [156] Weizhong Jiang, Ying Wang, Lixia Gu. Influence of TiO2film onphoto-catalytic property of enamels[J]. Journal of Non-Crystalline Solids.2007,353:4191-4194.
    [157] Jui-Hung Chen, Chi-An Dai, Hung-Jen Chen, Pei-Chi Chien, Wen-YenChiu. Synthesis of nano-sized TiO2/poly(AA-co-MMA) composites byheterocoagulation and blending with PET[J]. Journal of Colloid and InterfaceScience.2007,308:81-92.
    [158] M.Langlet, M.Burgos, C.Coutier. Low Temperature Preparation of HighRefractive Index and Mechanically Resistant Sol-gel TiO2Films for MultilayerAntireflective Coating Applications[J]. Journal of Sol-Gel Science andTechnology.2001,22:139-150.
    [159] M. Houmard, D. Riassetto, F. Roussel, A. Bourgeois,G. Berthome′, J.C.Joud, M. Langlet. Morphology and natural wettability properties of sol-gelderived TiO2–SiO2composite thin films[J]. Applied Surface Science.2007,254:1405-1414.
    [160] S.Permpoon, M.Houmard, D.Riassetto, L.Rapenne, G.Berthomé,B.Baroux, J.C.Joud, M.Langlet. Natural and persistent superhydrophilicity ofSiO2/TiO2and TiO2/SiO2bi-layer films[J]. Thin Solid Films.2008,516:957-966.
    [161] Weon-Pil Tai, Jae-Hee Oh. Preparation and humidity sensing behaviors ofnanocrystalline SnO2/TiO2bilayered films[J]. Thin Solid Films.2002,422:220-224
    [162] Shujie Hai,Chunjie Yan,Hongjie Yu,Guoqi Xiao,Duo Wang. Preparationand near-infrared absorption of nano-SnO2/SiO2assemblies with doping andwithout doping[J]. Journal of Alloys and Compounds.2009,488:370-373.
    [163] Omer Kesmez, H. Erdem Camurlu, Esin Burunkaya, Ertugrul Arpac.Preparation of antireflective SiO2nanometric films[J]. Ceramics International.2010,36:391-394.
    [164] Stix G. Trend in nanotechnology-waiting for breakthtroughs[J]. Sci Am.1996,274(4):78-81.
    [165] Zhonglin Wang, Jinhui Song. Piezoelectric Nanogenerators Based on ZincOxide Nanowire Arrays[J]. Science.2006,(4):242-246.
    [166] Schleyer TL. Nanodentistry. Fact or fiction[J]. J Am Dent Assoc.2000,131(11):1567-1568.
    [167] Sternitzke M, Derby B, Brook R J. Alumina/silicon carbidenanocomposites by hybrid polymer/powder processing: microstructures andmechanical properties [J]. J Am Ceram Soc.1998,81(1):41-48.
    [168] YIN Ming-zhi, YAO Xi, WU Xiao-qing. Fabrication and characterizationof nanoporous silica film[J]. Chinese J Materials Research.2003,17(2):220-224.
    [169]方平安,吴召平.溶胶-凝胶制备二氧化硅薄膜的开裂问题研究[J].玻璃与搪瓷,2000,28(3):14-19.
    [172] Ozcan I, Uysal H. Effects of silicon coating on bond strength of twodifferent titanium ceramic to titanium[J]. Dent Mater.2005,21(8):773-779.
    [170] Yuqiang Huang, Shengling Jiang. Characterization of LLDPF/nano-SiO2composites by solid-state dynamic mechanical spectroscopy[J]. PolymerTesting.2004,23:9-15.
    [171] B. Lehmann, K. Friedrich. Improvement of notch toughness of olwnano-SiO2filled polyp ropylene composites[J]. Jouanal of Materials ScienceLetters.2003,22:l027-1030.
    [173]练方明,沙焱.不同纳米材料对钛-瓷结合强度的研究[J].医学研究杂志,2008,37(6):104-106.
    [174] Raghuraman K,Valeric R, Cathy C, et al. Nanocompatible chemistrytoward fabrication of arget-specific gold nanoparticles[J]. J Am Chemsoc.2006,128(78):11342-11343.
    [175]周淑,王瑜,章非敏,光寒冰.纳米硅涂层对钛瓷结合强度的影响[J].华西口腔医学杂志,2009,27(3):276-279.
    [176] Oyafuso DK, Ozcan M, Bottino MA, et al. Influence of thermal andmechanical cycling on the flexural strength of ceramics with titanium or goldalloy frameworks[J]. Dent Mater.2008,24(3):351-356.
    [177]张强,李彤,刘晓华,葛文章.纳米介质影响纯钛金瓷结合强度的实验研究[J].口腔颌面修复学杂志,2009,10(1):35-37.
    [178] Litong Guo, Xiaochen Liu, Yabo Zhu, Cheng Xu, Jiqiang Gao, TianwenGuo. Effect of Oxidation and SiO2Coating on the Bonding Strength ofTi-Porcelain[J]. Journal of Materials Engineering and Performance.2010,19(8):1189-1192.
    [179] Jaros aw Bienias, Barbara Surowska, Anna Stoch, Halina Matraszek, MariuszWalczak. The influence of SiO2and SiO2-TiO2intermediate coatings on bondstrength of titanium and Ti6Al4V alloy to dental porcelain[J]. Dental materials.2009,25:1128-1135.
    [180] Litong Guo, Xiaochen Liu, Zengying He, Jiqiang Gao, Jianfeng Yang,Tianwen Guo. Effect of SnOxfilm on the bonding of titanium-porcelain[J]. JSol-Gel Sci Technol.2008,47(3):239-242.
    [181] Litong Guo, Xiaochen Liu, Zengying He, Hui Zhang, Jiqiang Gao,Jianfeng Yang, Tianwen Guo. Surface modifications to improve Ti-porcelainbonding[J]. J Mater Sci.2009,44:502-509.
    [182] Boere G. Influence of fluoride on titanium acidic environment measuredby polarization resistance technique[J]. J Appl Biomater.1995,6:283-288.
    [183]Toumelin-Chemla F, Rouelle F, Burdairon G. Corrosive properties offluoride-containing odontologic gels against titanium[J]. J Dent.1996,24:109-115.
    [184] Noriko Horasawa, Miroslav Marek. Effect of fluoride from glass ionomer ondiscoloration and corrosion of titanium[J]. Acta Biomaterialia.2010,6:662-666.
    [185] Papazoglou E, Brantley WA. Porcelain adherence versus force to failurefor palladium-gallium alloys: a critique of metal-ceramic bond testing[J]. DentMater.1998,14:112-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700