高压注采条件下岩石流变效应及最优注采平衡动态模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以大庆喇嘛甸油田北北过渡带SI组砂岩以及其顶部泥岩做为研究对象。在开发区的地质演化、沉积、以及应力、流体研究的基础上,主要采用有限差分的方法,对开发区泥岩的流变特性以及最优注采平衡问题开展模拟研究,获得的认识及成果如下:
     油田在注水开发过程中,地应力大小及分布受注采条件变化的影响。由增高的流体压力产生的作用力影响地应力的分布状态,导致其数值大小和方位的变化(偏转)。现场实验表明,改变注水井的工作条件后,最大主应力值变化达到了3~5MPa,最大主压应力方向由N84°E变化为N80°W。实际上,应力的变化及方位直接取决于流体压差的大小。因此,当油层内的最大主压应力接近区块压差时,就有可能导致地层段发生蠕动滑移以及地层内部出现裂缝,顶起上覆岩层。对于具有一定埋深的油层来说,当油层厚度与油层分布尺寸相比很小时,孔隙压力的改变只引起地层垂向变形,在水平面内的变形几乎为零。
     通过对研究区泥岩蠕变的数值模拟,得到研究区的最大主应力为-25.87~-24.88MPa,最小主应力为-19.95~-18.44MPa,下部应力大于上部;应变的分布与应力一致,其变化主要表现在垂向上,且底部应交增量大,约为0.53,往上则逐渐减小;位移方向垂直向上,底面上的相对位移量最大,达到了3.4mm,而顶面则接近于0。无论泥岩浸水与否,其应力、应变及位移都是随着下伏油层压力的增加而增大,且应变和位移都是在短时间内很快过渡到稳定状态。但是,泥岩浸水后,其流变效应显著增加。与未浸水时相比,当下伏油层压力增加1MPa时,上覆泥岩层中主应力增加了0.2MPa,位移增加了0.73mm,而应变则增加了约0.1。随着下伏油层压力的增加,两种情况下的主应力以及应变的差值都相应增大,而位移之间的差距却越来越小。另外,随着泥岩内含水量的增加,其孔隙压力也由0慢慢增大。而当下伏油层压力增加到7MPa时,泥岩内的孔隙压力则增加到1.9MPa。
     在物质平衡和渗流力学理论基础上,采用动态分析方法,推导了油藏产液能力、吸水能力以及地层压力之间的关系。对于注水开发油田来说,稳产阶段的采油速度的自然对数与注水速度的倒数呈直线下降的关系。而地层压力的变化,主要取决于年注水速度和年地下采液速度的关系,当年注水速度大于年地下采液速度时,地层压力就会上升;反之地层压力就会下降;当两者相等时,地层压力就会保持恒定,此时即达到注采平衡状态。
     从技术界限研究成果来看,开发区SI组的最大允许地层压力为13.0MPa。如果考虑到地层压力与采收率的变化关系,则合理的地层压力应为10.7MPa。另外,从套损、断层复合以及油层破裂的角度,得到的最大允许注水压力为13.4MPa;而从地层压力与油井流动压力的关系,得到的开发区合理流压界限为6.8MPa。油层动态模拟结果显示,当前油田注采处于非平衡状态,如果继续保持现有注采条件,则油层压力最终将超过最大允许的地层压力。而当地层压力保持在10.7MPa时,在平衡条件下,水井的注入强度不变,而油井的采液强度可提高1.7m~3/(d.m)。开发区相应的可采储量测算结果为2111.4×10~4t,采收率为36.24%,比实际提高了1.79个百分点。
Based on the research of basal geology, depositional evolution, stress and fluid of the development area, this thesis simulated the sandstone of SI and its cap mudstone which located at the Beibei Transition Strap of Lamadian in Daqing Oil field by limited difference method to learn mudstone rheological property and optimum balance of injection-productionin in high-fluid-pressure system. The following main results have been achieved:
     During the oil production, the procedures of water-injection can significantly change the distribution of principal stress both on its power and direction. Field experiments indicated that changing the methods of water-injection could change the main principal stress (MPS) up to 3~5MPa in power and from N84°E to N80°W in direction. The changes of MPS were actually controlled by the pressure difference in the fluid (i.e., water and oil). The strata would creep or break when the main stress in the oil layer increased to the pressure-difference threshold of the local strata. To deep layers, changes in pore pressure would only cause deformation of strata in vertical direction and nearly nothing in horizontal direction if the ratio between the thickness of vertical direction and plane is very small.
     Numerical simulation on study area indicated that the maximum principle stress in this area is between -25.87—24.88MPa, and the minimum principle stress is -19.95~-18.44MPa. The distribution of strain consistent with stress which mainly behaved at vertical direction. The maximum increment of strain (about 0.53) is at the bottom of the mudstone and to the top is gradually diminished. The displacement is upward with relative maximum shift (~3.4 mm) at the bottom and nearly zero at the top. Whether the mudstone was soaked or not, all of the stress, strain and displacemen increased with bracing pressure of underlying sandstone, and became being stabilized in short time. Once mudstone was soaked, its rheological effect is significantly enhanced. Compared with un-soaked mudstone, when uploading stress of the sandstone increased 1 MPa, the increments were separately as below: principle stress is 0.2MPa, displacement is 0.73mm, and strain is about 0.1. Moreover, with the continuous stress increasing of underlying sandstone, the gaps of principle stress and strain between soaked or un-soaked mudstones became larger while the gap of displacement became smaller. When mudstone became saturated in water, its pore pressure started increasing from zero. Experiments indicated that pore pressure of mudstone would increase about 1.9MPa when bracing pressure of sandstone increase 7MPa.
     Based on the theories of Mass-balance and Seepage Mechanics, the relationship among oil productivity, water-injection rate and fluid pressure was calculated and discussed by applying dynamic analyses methods. During stable production period, the natural logarithm value of oil productivity was negatively correlated with reciprocal of water-injection rate. And fluid pressure of oil layer was mainly determined by annual water-injection rate and annual oil productivity. When annual water-injection rate was higher than annual oil productivity, the pressure would rise, and vice versa. If both of them were in equal, the original pressure of oil-layer would be maintained. Then this time must be in balanced state.
     Stress thresholds for SI oil layer in studying area were also calculated in this study. Results showed that the maximum bearing pressure is 13.0MPa. If the relationship of the pressure and recovery efficiency was thought about, the optimal pressure for SI oil layer should be 10.7MPa. And if considering the factors of casing damages, default and oil-layer breaking, the maximum water-injection pressure should be 13.4MPa. Based on the relationship between fluid pressure and oil-well flowing pressure, the optimal flowing pressure for study area was 6.8MPa. Dynamic simulation of oil layer further demonstrated that pressures from water-injection and oil production are not balanceable at present. The bracing pressure from oil layer would be over the maximum bearing pressure of cap mudstone if keeping current water-injection rate. However, if keeping strata pressure at 10.7MPa, oil productivity would increase 1.7m~3/(d · m) with constant water-injection strength. Recoverable reserves of study area was also calculated in this thesis, which is 2111.4×10~4t with a theoretical recovery efficiency of 36.24% which enhanced 1.79%.
引文
艾池,李士斌.大庆油阳泥岩浸水速度实验[J].石油钻采工艺,2002,24(4):1~3.
    安欧.构造应力场.北京:地震出版社,1992.
    蔡国华,王先荣.高压注水对油阳套管的损坏及防治分析[J].石油机械,2001,29(3):32~34.
    蔡厥珩,周吉培,黄红兵.评价注水油用注水利用率的一种新方法[J].特种油气藏,2006,13(2):40~42.
    曹耀华,王乃梁,任明达.松辽盆地下白垩统喇萨杏主力三角洲的形成条件及沉积模式演变[J].北京大学学报(自然科学版),1994,30(6):694~702.
    陈元千.油、气藏的物质平衡方程式及其应用[M].北京:石油工业出版社,1979.
    陈元千.油气藏工程计算方法[M].北京:石油工业出版社,1990:193~201.
    陈昭年、陈发景.松辽盆地反转构造[M].北京:地质出版社,1998,1~11.
    陈子光.岩石力学性质与构造应力场[M].北京:地质出版社,1986:118~120.
    程时清,李菊花,李相方.用物质平衡—二项式产能方程计算气井动态储量[J].西南石油学院学报,2005,26(2):181~182.
    崔孝秉,宋治,岳伯谦,等.注水开发油田套管损坏的机理研究[IJj.石油学报,1993,14(3):93~101.
    大庆油田研究院.国内外油阳套损机理、套损防护和修理技术调研究[R].1999.
    杜时贵,樊良本.岩体结构面粗糙度系数的统计估测[J].地球物理学报,1999,42(4):877~579.
    冯大晨,王文明,翟秀杰.扶杨油层储层砂体层次构成分析[J].大庆石油地质与开发,2003,22(3):13~15.
    冯恩山,朱苏清,黄晓荣.岩石特性与套管损坏关系研究[J].钻采工艺,2005,28(3):4~6.
    冯元桢.连续介质力学[M].北京:科学出版社,1984.
    傅征祥,桂萍.平行走滑断层相互作用的粘弹性模型和减震作用[J].地震,1999,9(2):127~134.
    高合明,刘建东,沈露禾,等.大庆油田取换套管井壁力学稳定性研究[J].岩石力学与工程学报,2002(10):1721~1724.
    高志华.松辽盆地天然气成藏规律及深层天然气勘探目标定量评价研究[D].博士学位论文,中国科学院广州地球化学研究所,2006.
    葛洪魁.地应力测试及其在勘探开发中的应用[J].石油大学学报,1998,(1).
    郭永存等.低渗透油藏渗流的差分法数值模拟[J].水动力学研究与进展,A辑,2004,19(3):288~293.
    韩大匡,陈钦雷,闫存章.油减数值模拟基础[M].石油工业出版社,1993,200~201.
    郝斐,张公社,刘东,等.用广义拟压力法确定产液气井流人动态[J].石油钻采工艺,2005,25(6):54~56.
    和传健,马淑梅,程艳,等.大庆调整井防漏水泥浆的研究[J].石油钻采工艺,1998,20(5):41~45.
    贺得才,张宏,张来斌.注水开发油田泥岩层套管蠕变损坏机理研究[J].石油机械,2005,33(6):17~19.
    胡显玉,牛全宇,王英柱,等.套损井原因分析及治理工艺[J].油气田环境保护,2003,13(3):25~37.
    黄荣樽,邓金根.流变地层的粘性系数及其影响因素[J].岩石力学与工程学报,2000,19(增刊):836~839.
    黄荣樽,邓金根,程远方,等.石油工程岩石力学研究进展[J].石油大学学报(自然科学版),1993,17(增刊):13~17.
    黄学峰,李敬功,吴长虹,等.注水井分层累计吸水量动态劈分方法[J].测井技术,2004,28(5):465~467.
    计秉玉.产量递减方程的渗流理论基础[J].石油学报,1995,16(3):86~91.
    冀宝发、徐正顺等.喇嘛甸油田高含水后期的注采系统调整[A].大庆油田工程论文集.北京:石油工业出版社,1995:135~160.
    贾自力,高文君,赵晓萍,等.水驱油田合理井网密度和注采井数比的确定[J]. 新疆石油地质,2005,26(5):562~564.
    金毓荪.大庆油田注水开发[M].北京:石油工业出版社,1985:111~120.
    郎兆新.油减工程基础[M].东营:石油大学出版社,1991.
    郎兆新.油气地下渗流力学[M].北京:石油大学出版社,2001.
    李广超,刘大锰,李广智,等.水驱砂岩油减开发后期确定合理注采比的一种方法[J].新疆地质,2006,24(1):81~83.
    李培超.多孔介质流-固耦合渗流数学模型研究[J].岩石力学与工程学报,2004,23(16):28~42.
    李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展(A辑),2003,18(4):419~426.
    李士伦,孙雷,汤勇.物质平衡法在异常高压气减储量估算中的应用[J].新疆石油地质,2002,23(3):219~223.
    李晓平,赵必荣.气水两相流井产能分析方法研究[J].油气井测试,2001,10(4):8~10.
    李志明,张金珠.地应力与油田勘探开发[M].北京:石油工业出版社,1997.
    李中华,鲁章成,张庆生.应用物质平衡方法测试抽油井的环空拟液面[J].断块油气田,1997,4(3):55~58.
    李自安,詹华明,尹中民,等.高压注水条件下大庆萨尔图油田南部开发区地层变形机理的模拟研究[J].现代地质,2005,19(增刊):240~244.
    梁何生,闻国峰,王桂华,等.孔隙压力变化对地应力的影响研究[J].石油钻探技术,2004,32(2):18~20.
    梁军彬,綦红芳,刘亚萍,等.胜利油田坨21断块套管状况监测及认识[J].测井技术,2004,28(Suppl):80~84.
    林志方,俞启泰等.高含水后期油田开发方法系统[J].新疆石油地质,1997,18(4):363~369.
    刘合,王秀喜.大庆油田泥岩粘弹性本构方程及套管受力计算[J].中国科学技术大学学报,2005,35(1):118~123.
    刘建军,刘先贵,胡雅礽,等.低渗透储层流固耦合渗流规律研究[J].岩石力学与工程学报,2002,21(1):88~92.
    刘义坤,王立军,楮英鑫,等.萨中地区成片套损区合理注水井压力的计算[J].大庆石油学院学报,2000,24(4):76~78.
    刘竹文.生产压差与合采井层含水关系研究[J].油气地质与采收率,2003,10(增):36~37.
    路保平,林永学,张传进.水化对泥页岩力学性质影响的实验研究[J].地质力学学报,1999,5(1):65~70.
    路保平,张传进,鲍洪志.油气开发过程中岩石力学性质变化规律实验研究[J].岩石力学与工程学报,2000,19(增刊):878~881.
    罗健生,鄢捷年.页岩水化对其力学性质和井壁稳定性的影响[J].石油钻采工艺,1999,21(2):7~13.
    马力,杨继良,丁正言.松辽瓮地-一个克拉通内的复合型陆相沉积盆地[C],朱夏,徐旺主编〈中国中新生代沉积盆地〉.北京:地震出版社,1990:7~23.
    牛世忠,尹丽娜,闫江慧.应用物质平衡方程预测油田注采比[J].新疆石油学院学报,2003,15(2):47~49.
    潘别桐,黄润秋.工程地质数值法[M].北京:地质出版社,1994.
    彭彦素.纯化油田中高含水期合理采油速度研究[J].内蒙古石油化工,2006,(5):138.
    普雷斯,W.H.,王璞等译.数值方法大全——科学计算的艺术[M].兰州:兰州大学出版社,1991.
    生如岩,丁良成,张伟伟.广义物质平衡计算在凝析气藏开采动态预测中的应用[J].中国海上油气(地质),2002,16(2):132~135.
    石广仁.油气盆地数值模拟方法[M].北京:石油工业出版社,1999.
    石永高,黄诚华等.大庆油田地面形变监测[J].石油规划设计,1995,2:34~37.
    舒干,李现东,冯定,等.套管损坏机理研究[J].江汉石油学院学报,1999,21(1):60~63.
    宋考平,张建国,孙立国,等.油田生产系统整体优化方法[J].大庆石油学院学报,2006,30(1):21~26.
    宋考平,高群峰,甘晓飞.喇嘛甸油田特高含水期油井合理地层压力及流压界 限[J].大庆石油学院学报,2004,28(20):98~100.
    孙继玲,常丽娟.特高含水油阳水驱注采结构优化方法研究[J].内蒙古石油化工,2006:77~78.
    孙讷正.地下水流的数学模型和数值方法[M].北京:地质出版社,1981.
    孙讷正.地下水污染——数学模型和数值方法[M].北京:地质出版社,1989.
    孙希贤,吴靓国,陈文仁.地质力学简明教程[M].北京:地质出版社,1991.
    孙雄,洪汉净.构造应力场对油气运移的影响[J].石油勘探与开发,1998,25(1):1~4.
    孙岩,本亮.论层滑、倾斜和走滑系统[J].地质力学学报,1999,5(3):53~27.
    唐刚,李农.吊钟坝高点气减动念储量计算[J].天然气勘探与开发,2004,27(1):20~22.
    唐莉,刘惠,姜雪源.大庆油田合理地层压力的保持水平[J].油气田地面工程,2006,25(1):11~12.
    陶一川.石油地质流体力学分析基础[M].武汉:中国地质大学出版杜,1993.
    田杰,刘先贵,尚根华.基于流-固耦合理论的套损力学机理分析[J].水动力学研究与进展,2005,20(2):221~225.
    田文忠,孙雷,孙良田.异常高压油(气)藏物质平衡新方法的应用评价[J].西南石油学院学报,2005,27(3):35~40.
    章宪章.天然水驱和人工注水油藏的统计规律探讨[J].石油勘探与开发,1978,(6):38~39.
    王凤山,吴恩成.大庆油田套管损坏预防对策探讨[J].石油机械,2004,32(特刊):12~15.
    王贺强,陈智宇,张丽辉,等.亲水砂岩油藏注水吞吐开发模式探讨[J].石油勘探与开发,2004,31(5):86~88.
    王红庄.杨普华,朱怀江.碱水驱油过程中界面张力变化规律[J].石油勘探与开发.1996,23(6):58~61.
    王俊魁,王春艳,方亮.采油井合理井底压力界限的确定方法[J].大庆石油地质与开发,1999,18(5):21~22.
    王冒成,邵敏.有限元单元法基本原理和数值方法[M].北京:清华大学出版 社,1995:568.
    王平.地质力学方法研究—不同构造力作用下地应力的类型和分布[J].石油学报,1992,13(1):1~12.
    王平.含油盆地构造力学原理(第二版)[M].北京:石油工业出版社,2001.
    王秀娟,赵永胜,王良书,等.大庆喇萨杏油田水力压裂人工裂缝形态研究[J].石油学报,2002,23(4):51~55.
    王秀娟,杨学保,迟博,等.大庆外围低渗透储层裂缝与地应力研究[J].大庆石油地质与开发,2004,23(5):88~90.
    魏兆胜,王文军.榆树林油田套管损坏机理研究[J].大庆石油学院学报,1997,21(1):33~37.
    吴文祥,孙灵辉,胡锦强,等.聚合物及表面活性剂前置段塞对三元复合驱采收率影响[J].大庆石油学院学报,2005,29(6):95~97.
    吴文祥,张洪亮,胡靖邦,等.碱—表面活性剂—聚合物j元复合体系流变性研究[J].大庆石油学院学报,1994,18(4):31~33.
    武德宁,刘平良,张少标.物质平衡法测油井液面[J].油气井测试,2003,12(1):31~32.
    向传刚,陆正元,李建兵.四川盆地香溪群有水气藏的天然气储量计算方法[J].试采技术,2006,27(4):16~18.
    徐曾和,徐小荷.三维应力场下承压地层中渗流的液-固耦合问题[J].岩石力学与工程学报,1999,18(6):645~650.
    许荣奎,田树全,李宝泉.油田注采压力系统研究及应用[J].石油天然气学报,2005,27(3):383~385.
    薛世峰等.地下流固耦合理论的研究进展及应用[J].石油大学学报,2000,24(2):109~115.
    闫健文.石油天然气开采过程中流固耦合理论研究进展及应用[J].中国科学技术大学报,2004,34(增刊):527~532.
    闰相祯,杨恒林,杨秀娟.泥岩蠕变导致套管变形损坏机理分析[J].钻采工艺,2003,26(3):65~68.
    杨风波,梁文福.喇嘛甸油田合理地层压力研究[J].大庆石油地质与开发, 2003,22(6):36~37.
    杨继良.对松辽盆地北部石油地质特征的几点认识[J].大庆石油地质与开发,1984,3(3):299~309.
    杨玲,高炜欣,孙卫.用具有补给的物质平衡模型确定单井稳产水平[J].西北大学学报(自然科学版),2004,34(4):469~472.
    姚洪田,王伟,边志家.套管损坏原因与修井效果[J].大庆石油地质与开发.2001,20(1):35~36.
    尹中民.大庆萨尔图油田南部开发区套损机理研究[D].博士学位论文,中国科学院长沙大地构造研究所,2000.
    于学馥.现代工程岩土力学基础[M].北京:科学出版社,1995.
    袁建国等.任丘雾迷山组油藏高含水后期的注采系统调整的实践与认识[J].西安石油学院学报,1996,11(4):16~20.
    岳乐平,张莉,杨亚娟,等.断裂导水对哈南油田注采的影响及开发对策[J].石油与天然气地质,2001,48~51.
    张洪军.水驱强度对油井压力动态的影响研究[J].钻采工艺,2003,26(5):55~56.
    张继风,田晓东,郭玮琪.水驱油田累积存水率与含水率理论关系[J].新疆石油地质,2006,27(4):466~467.
    张建民,张国明,王怒涛.水驱气臧单井动态优化配产方法研究[J].海洋石油,2006,26(1):63~66.
    张杰,张铜洲,陈平,等.基于渗流理论的调整井地层压力预测方法[J].钻采工艺,2005,28(3):7~9.
    张恺,高明远,姚慧君.松辽盆地的演化及含油气远景评价[J].大庆石油地质与开发,1987,6(1):1~9.
    张琪,万仁溥.采油工程方案设计[M].北京:石油工业出版社,2002.
    张晓春等.岩体裂纹演化及其力学特性的研究进展[J].力学进展,1999,29(1):97~104.
    赵文津.中国石油勘探战略东移与大庆油田的发现[J].中国工程科学,2004,6(2):17~27.
    郑焕军,岳鸿雁,高波.喇嘛甸油田南中块西部葡I1—2油层[J].大庆石油地质与开发,2005,24(1):66~67.
    周祖辉.黄荣樽.庄锦江.大庆泥岩的三轴蠕变试验研究[J].华东石油学院学报,1985,4:22~30.
    Adel M. Elsharkawy. A material balance solution to estimate the initial gas in-place and predict the driving mechanism for abnormally high-pressured gas reservoirs[J]. Journal of Petroleum Science and Engineering, Volume 16, Issues 1-3, September 1996, Pages 33~44.
    Ahmadi,G., R.Jackson. A fluid mechanical theory of fluid mixture, a superimposed model of equipresent constituents, Indian J[J]. Technol., 1974(12): 195.
    B. Kh. Khuzhayorov, V. F. Burnashev. Modelling the multiphase flow of an oil-gas-condensate system in porous media[J]. Journal of Petroleum Science and Engineering, Volume 29, Issue 1, January 2001, Pages 67~82.
    Bear,J.,李竟生,陈崇希译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    Blashingame, T. A. and Johnston, et al. Type-Curve Analysis Using the Pressure Integral Method[C]. Paper SPE18799 Presented at the 1989. SPE California Regional Meeting Bakers Field, April, 5~7.
    Buckley, S.E., Leverett, M.C. Mechanism of fluid displacement in sands[J]. Trans. A. I. M. E., 1942(146):107.
    Duong, A. N. and Mc Lauchlin, L. A. Generalized Approach for Analyzing the Early-Time Pressure Data[C]. Paper SPE18880 Presented at the 1989 SPE PRODUCTION Operatin Symposium, Oklahoma City March, 12~14.
    Dusseault, Maurice B. et al. Casing shear: Causes, cases, cures. Proceedings of the 1998 6th International Oil & Gas Conference and Exhibition in China. IOGCEC I 1998, Soc Pet Eng(SPE). Richardson, TX. USA. SPE 48864: 337~345.
    Emmanuel O. Egbogah. EOR target oil and techniques of its estimation[J]. Journal of Petroleum Science and Engineering, Volume 10, Issue 4, April 1994, Pages 337~349.
    Emmanuel Udegbunam, Jude O. Amaefule. An improved technique for modeling initial reservoir hydrocarbon saturation distributions: applications in Illinois (USA) Aux Vases oil reservoirs[J]. Journal of Petroleum Science and Engineering, Volume 21, Issues 3-4, November 1998, Pages 143~152.
    Hawking B F,Tayiork C.表面活性剂和聚合物增强碱水驱的机理——在David Lloydminster及Wainwright Sparky油田的应用[J].唐朗青,译.天然气勘探与开发,1995,18(2):60~79.
    Hubbert, M. K. Darcy's law and the field equations of the flow underground fluids[J]. Trans. AIME, 1976, vol.207.
    Itasca Consulting Group, Inc.. Manual of Fast Lagrangian Analysis of Continua in 3 Dimension[R], Version 2.0. Minneapolis: Itasca Consulting Group, Inc., 1997.
    J. G. Savins, C. A. Dimon, G. C. Wallick. Two-phase flow of a shear thinning fluid in reservoir rock[J]. Journal of Petroleum Science and Engineering, Volume 1, Issue 2, December 1987, Pages 163~179.
    Javandel,I.,林学珏等泽.地下水运移数学模型手册[M].长春:吉林科学技术出版社,1985.
    John Parnell, David Middleton, Chert Honghan, Don Hall. The use of integrated fluid inclusion studies in constraining oil charge history and reservoir compartmentation: examples from the Jeanne d'Arc Basin, offshore Newfoundland[J]. Marine and Petroleum Geology, Volume 18, Issue 5, May 2001, Pages 535~549.
    L. Vega, M.A. Barrufet. Analysis of a non-volumetric gas-condensate reservoir using a generalized material balance equation with fluid properties from an equation of state[J]. Journal of Petroleum Science and Engineering, Volume 48, Issues 1-2, 30 July 2005, Pages 105~119.
    Larsen, L. A Simple Approach to Pressure Distributions in Geometric Shapes[J]. SPEJ,1985: 113~120.
    Li Junshi, Wang Xiaodong, Liu Pengcheng, etc. Review on the Development of Oil and Gas Flow in Underground Porous Media[J]. Petroleum Science, 1990, 4(1): 88~94.
    M. R. Riazi, R. C. Merrill, and G. A. Mansoori. Petroleum exploration and production research in the Middle East[J]. Journal of Petroleum Science and Engineering, Volume 42, Issues 2-4, April 2004, Pages 73~78.
    Mansuur S.A.碱驱对原油采收率的影响[J].张建,编译.国外油田工程,1998(3):10~11.
    Matthew Flett, Randal Gurton, Geoff Weir. Heterogeneous saline formations for carbon dioxide disposal: Impact of varying heterogeneity on containment and trapping[J]. Joumal of Petroleum Science and Engineering, In Press, Corrected Proof, Available online 30 November 2006.
    Narr, W. & Currie, J.B. Origin of fracture porosity: example from Altamonte Field[J], AAPG Bull., 1982,V.66:1231~1247.
    Oda M. An equivalent continumn model for coupled stress and fluid flow analysis in jointed in rock masses[J]. Water Resource Res.,1986,25(13): 1845~1856.
    Onur, M. and Peres, A., et al. New Pressure Functions for Well Test Analysis[J], SPEFE, June, 1993, 135~144.
    P. A. Charlez. Rock Mechanics-Theoretical Fundamentals[J]. Ed Technips. 1991
    Prickett, T. A. Modeling techniques for groundwater evaluation[J]. Advances in Hydroscience, Academic Press, 1975, vol. 10: 1~143.
    Saleem, Z. A.. Method for numerical simulation of flow in multiaquifer systems[J]. Water Resour. Res., 1973, vol.9:1465~1469.
    Streltsova, T.D. Hydrodynamics of groundwater flow in a fractured formation[J]. Water Resour. Res., 1976, vol. 12(3):405~414.
    Wenzhong Ding, Mustafa Onur, Albert C. Reynolds. Analysis of gas well late-time pressure and rate data[J]. Journal of Petroleum Science and Engineering, Volume 4, Issue 4, September 1990, Pages 293~307.
    William K. S. Pao, Roland W. Lewis. Three-dimensional finite element simulation of three-phase flow in a deforming fissured reservoir[J]. Computer Methods in Applied Mechanics and Engineering, Volume 191, Issues 23-24,29 March 2002, Pages 2631~2659.
    Wu Yan-qing, Zhang Zhuo-yuan. Research on lumped parameter model of coupled seepage and stress field in fracture rock mass[C]. Proc.7th Int. Congr. Assoc. of Engineering Geology. Lisboa,Portugal, 1995,4601-4604.
    Yi Zheng-ming, Zhou Jie-min, Chen Hong-rong. Numerical simulation of thermal process and energy saving of lime furnace[J]. J.CENT. SOUTH UNIV. TECHNOL., 2005, 12 (3) :295-299.
    Zhijun Jin, Guoping Bai, G. Ali Mansoori. An introduction to petroleum and natural gas exploration and production research in China[J]. Journal of Petroleum Science and Engineering, Volume 41, Issues 1-3, January 2004, Pages 1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700