塔河四区缝洞型碳酸盐岩储层地质建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塔河油田奥陶系碳酸盐岩油藏是一个与古风化壳有关的岩溶缝洞型油藏,由于多期岩溶作用改造和后期的洞穴垮塌作用,造成了油藏储集空间复杂多样,非均质性极强,储层定量评价和表征难度较大。随着技术的进步和勘探开发的要求,进行精细储层描述,建立精细的三维定量地质模型已成为当务之急。本文以塔河油田四区缝洞型碳酸盐岩储层为研究对象,综合应用多学科理论、方法和技术,建立了该类油藏储层单井、二维、三维地质模型。
     本文分析了塔河油田奥陶系储层发育特征,在此背景下,综合地质、测井、三维高分辨率地震等静态资料及生产动态资料,充分发挥井点资料垂向分辨率高和地震资料横向信息丰富的优势,按照单井地质模型-二维模型-三维模型的建模思路,将确定性建模和随机建模相结合,在储层分布预测的基础上,刻画缝洞型储层的地质模型和属性参数模型。
     通过以上研究,取得的成果认识有:1、缝洞型碳酸盐岩储层地质建模是一项综合性极强的工作,需要岩心、测井、FMI成像测井、地震等多种资料,综合建模;2、采用确定性建模和随机建模相结合的方法,可以极大地降低不确定性,提高储层建模精度;3、本次划分储层在测井资料的基础上,结合钻井、产量和酸压等生产资料,将储层划分为:溶洞型储集体(未充填型、半充填型、全充填型)、裂缝型储集体和裂缝孔洞型储集体,三个岩溶带,建立单井地质模型;4、通过分析统计地震属性与溶洞储层,建立了RMS和波阻抗与溶洞储层之间的定量关系,建立溶洞储层概率体;5、采用序贯指示的模拟方法,加上地震属性数据的约束,建立溶洞型储集体模型和属性模型;6、利用成像资料和岩性资料刻画常规测井的裂缝参数,提高了裂缝参数的解释精度,分别利用蚂蚁体追踪技术和经验公式计算建立大尺度裂缝模型及属性模型。最后,模型的好坏,既取决于建模工作者对储层地质条件的认识和了解程度,也取决于对建模原理方法和软件的熟悉程度,但地质认识更为重要。
The Ordovician carbonate reservoir in the Tahe Oilfield is a large fracture&cavesystem formed by supergene karstification. The maltiphasic karstification and thecollapse of karst cavities lead to complex reservoir space and a highly heterogeneousof reservoir. So, quantitative evaluation and characterization of the reservoircharacteristics is more difficult. As technology advances and to meet the needs ofexploitation, it is necessary to make accurate description and build refined threedimensional geological models. Based on the carbonate reservoir in in4district ofTahe Oilfield, combining with interdisciplinary studies, this thesis discussed themethod to build single-well model, two-dimensional models and three dimensionalgeological models.
     First of all, the article analyzes the geological characteristics of the Ordoviciancarbonate reservoir in Tahe Oilfield. It takes geology, logging, high-resolution3Dseismic data and dynamic production data as guidance, and makes full use of welldata. Then the article combines deterministic modeling methods with stochasticmodeling methods following the step of single well model--two dimensionalmodel-three dimensional model. Finally, geological model and property model offracture-cave carbonate reservoir of this area are established.
     The author comes to the following conclusion and understanding through aboveresearch:1. Geological modeling of fracture-cave carbonate reservoir is a verycomprehensive work, which needs various information and should follow the way ofintegrative modeling method;2. Combining deterministic modeling with stochasticsimulation, we can greatly reduce uncertainly and increase reservoir modelingprecision;3. Based on the logging data, combining with well drilling, output and acidfracturing data, the author divided the reservoir to cave reservoir(unfilled cave,half-filled cave, filled cave), fracture reservoir and cave-fracture reservoir. At thesame time, three karst belts are recognized and single well geological models are built;4. By analyzing seismic attribute and cavity reservoir, the article describes thecorrelativity between RMS, acoustic impedance data and cave reservoir, buildsseismic probability model of cave reservoir as well;5. By utilizing “SequentialIndicator Simulation” method and restraining of the seismic property data, the authorbuilds the cave reservoir model and property model;6. This article improves theinterpretation precision of fracture parameter through FMI and core data. Figuring up big size fracture models and property model by ant body tracking technique andempirical equation. Reservoir geological modeling establishment is subject toperson’s understanding about geological conditions of reservoir, and to person’sfamiliarity degree of modeling theory and software, among which geologicalknowledge is the most important and basic factor.
引文
Alden J M, Stephen T S, Dan J H. Characterization of petrophysical flow units incarbonate reservoir[J]. AAPG Bulletin.1997,81(5):731-759.
    Ali-Nandalal J, Gunter G. Characterizing reservoir performance for theMahogany20gas sand based in petrophysical and rock typing methods[C]. SPE Paper81048,2003.
    Bennion D W, Griffiths J C. A stochastic model for predicting variations inreservoir rock properties[J]. Trans AIME,1966,6(1):9-16
    Charles K. Karst controlled reservoir heterogeneity in Ellenburger Groupcarbonates of west Texas [J].AAPG Bulletin,1998.72(10):1160-1183.
    Deutsch C V, Journel A G. GSLIB: Geostatistical software library and userguide[M]. New York: Oxford University Press,1992.
    E.Charlotte Sullivan,Kurt J. Marfurt, Alfred Lacazette, Mile Ammerman.Application of new seismic attributes to collapse chimneys in the Fort WorthBasin[J].Geophysics,200671(4):111-119.
    Edward H. Isaaks, R.Mohan Srivastava.(1989).Applied Geostatistics.New YorkUniversity Press.
    Gunter G W, Pinch W J, Finneran J M, etal. Overview of an integrated processmodel to develop petrophysical based reservoir parameters[C]. SPE Paper38748,1997b.
    Haldorsen H H, Lake L W. A new approach to shale management in field scalesimulation models[C] MSPE10976(Presented at the57th Annual Fall TechnicalConference and Exhibition of the SPE, New Orleans),1982(1):23-32
    Journel A.G. Stochastic modeling of a fluvial reservoir: a comparative review ofalgorithms [J]. JPSE,1998:95-121.
    Journel A G. Geostatistics for conditional simulations of ore bodies[J]. EconomicGeology,1974,69(5):673-687
    Loucks R G, Mescher P K, Mcmechan G A. Three dimensional architecture of acoalesced, collapsed paleocave system in the Lower Ordovician Ellenburger Group,central Texas [J]. AAPG Bulletin,2004,88(5):545-564.
    More,H.(2000).Stochastic reservoir models conditioned to non-linear productionhistory observations. Sixth International Geostatistics Congress.
    N.P.James P.W.Choquette(著),胡文海,胡征钦(译).古岩溶[M],石油工业出版社,1992:22-26.
    Robert G.Louors. paleotave carbonate Reservoirs: origins, Burial-Depthmodification, spatial complexity, and Reservoir Implications. AAPG Bulletun.1999,83(11):1795-1834.
    Srinivasan, S.(2000).Integration of production data into reservoir models: aforward modeling perspective. PhD thesis, Stanford University, Stanford, CA.
    Srivastava,M.(1995). An overview of stochastic methods for reservoircharacterization. In Yarus, J. and Chambers, R.,editors, Stochastic modeling andgeostatistics: principles, methods, and case studies,volumes3.AAPG ComputerApplications in Geology.
    T.D.范高尔夫-拉特.裂缝油藏工程基础[M].陈钟祥,金铃年,秦同洛译。北京石油工业出版社,1989:14-17.
    Xiaoyu Yu, Xue L. The Application of Sequential Indicator Simulation andSequential Gaussian Simulation in modeling[C].2010International Conference onRemote Sensing (ICRS),2010:164-167.
    Zhang Tuanfeng, Paul Switzer, and Andre Journel (2006). Filter-BasedClassification of Training Image Patterns for Spatial Simulation. MathematicalGeology38(1).
    蔡冬梅,陈烨非,赵伦,等.随机建模技术在国外某大型碳酸盐岩油田的应用[J].大庆石油地质与开发,2008,27(6):27-30.
    陈强路,钱一雄,马红强,等.塔里木盆地塔河油田奥陶系碳酸盐岩成岩作用与孔隙演化[J].石油实验地质,2003,25(6):729-734.
    陈清华,刘池阳,王书香,等.碳酸盐岩缝洞系统研究现状与展望[J].石油与天然气地质,2002,23(2):196-202.
    陈清华,孙述鹏.缝洞识别技术在塔河油田的综合应用[J].西部探矿工程,2004,102(11):69-71.
    程慧.基于地震资料的地质建模及效果评价[D].中国石油大学(华东),2009:56-70.
    陈继新编译.国外储层建模技术.中国石油天然气总公司情报研究所,1992:77-89.
    冯国庆,李允等.应用序贯指示模拟方法模拟沉积微相[J].西南石油学院学报,2001,23(2):1-4.
    胡望水,张宇焜,牛世忠,等.相控储层地质建模研究[J].特种油气藏,2010,(05):37-39.
    黄婷婷.塔河4区奥陶系油藏缝洞系统生产特征及油水分布模式[D].成都:成都理工大学,2007:7-9.
    贾爱林.中国储层地质模型20年[J].石油学报,2011,32(1):181-188.
    景建恩,梅忠武,李周波.塔河油田奥陶系碳酸盐岩岩溶发育模式的测井分析[J].吉林大学学报(地球科学版),2003,33(2):236-241.
    康玉柱.中国塔里木盆地石油地质特征及资料评价[M].北京:地质出版社,1996:56-90.
    康玉柱.塔里木盆地奥陶系形成大油气田地质条件[J].新疆地质,1999,17(2):97-109.
    康志宏.利用层序地层学恢复岩溶古地貌技术—以塔河油田6区为例[J].新疆地质,2003,21(3):290-292.
    康志宏.塔河碳酸盐岩油藏岩溶古地貌研究[J].新疆石油地质,2006,27(5):522-525.
    康志宏.碳酸盐岩油藏动态储层评价[D].成都理工大学,2003:34-56.
    李会军,丁勇,周新桂,等.塔河油田奥陶系海西早期、加里东中期岩溶对比研究[J].地址评论,2010,56(3):413-418.
    李翎,魏斌,贺铎华.塔河油田奥陶系碳酸盐岩储层的测井解释[J].石油与天然气地质,2002,23(1):49-54.
    李少华,尹艳树,张昌民.储层随机建模系列技术[M].北京:石油工业出版社,2007:66-70.
    李威.碳酸盐岩裂缝型储层地震预测技术研究[D].北京,中国地质大学(北京),2010,17-21.
    李阳,范智慧.塔河奥陶系碳酸盐岩油藏缝洞系统发育模式与分布规律[J].石油学报,2011,3(1):101-106.
    李宗杰.塔河油田碳酸盐岩缝洞型储层模型与预测技术研究[D].成都,成都理工大学,2008:45-50.
    廖新维,李少华,朱义清.地质条件约束下的储集层随机建模[J].石油勘探与开发,2004,31(2):92-94.
    刘文岭.地震约束储层地质建模技术[J].石油学报,2008,29(1):64-68.
    吕修祥,杨宁,周新源,等.塔里木盆地断裂活动对奥陶系碳酸盐岩储层的影响[J].中国科学:D辑,2008,38(增刊I):48-54.
    裘怿楠,贾爱林.储层地质模型10年[J].石油学报,2000,21(4)101-104.
    冉建斌.伊拉克Ahdab油田白垩系碳酸盐岩油藏描述与建模[D].北京,中国地质大学(北京),2005:22-27.
    谭承军,周英杰,杜玉山,等.塔河油田四区奥陶系储集层非均质性[J].新疆石油地质,2001,22(6):209-211.
    万方,崔文彬,李士超.RMS提取技术在溶洞型碳酸盐岩储层地质建模中的应用[J].现代地质,2010,24(2):279-286.
    王根久,王桂宏,余国义,等.塔河碳酸盐岩油藏地质建模[J].石油勘探与开发,2002,29(1):109-111.
    王家华,张团峰.油气储层随机建模[M].北京:石油工业出版社,2001:12-19.
    王家华.迎接油气储层建模理论、应用的大发展--从2007年国际石油地质统计学大会谈起[J].地学前缘,2008,15(1):16-25.
    邬兴威,苑刚,陈光新,等.塔河地区断裂对奥陶系古岩溶的控制作用[J].断块油气田,2005,12(3):7-9.
    吴胜和.储层表征与建模[M].北京:石油工业出版社,2010:303-311.
    吴胜和,李宇鹏.储层地质建模的现状和展望[J].海相油气地质,2007,12(3):53-60.
    吴欣松,魏建新,昌建波,等.碳酸盐岩古岩溶储层预测的难点与对策[J].中国石油大学学报(自然科学版),2009,33(6):16-21.
    伍家和,李宗宇.缝洞型碳酸盐岩溶洞描述技术研究[J].石油地质与工程,2010,24(4):34-39.
    肖玉茹,王敦则,沈杉平.新疆塔里木盆地塔河油田奥陶系古洞穴型碳酸盐岩储层特征及其受控因素[J].现代地质,2003,17(1):92-98.
    杨辉廷,江同文,颜其彬.缝洞型碳酸盐岩储层三维地质建模方法初探[J].大庆石油地质与开发,2004,23(4):11-16.
    杨辉廷.缝洞型碳酸盐岩储层建模研究-以塔里木轮南油田奥陶系储层为例[D].西南石油学院,2004:67-78.
    杨宁,吕修祥,陈梅涛.塔里木盆地塔河油田奥陶系碳酸盐岩油气成藏特征[J].西安石油大学学报.2008,23(3):1-3.
    杨彦军,杨宇,康志宏.径向基函数神经网络及其在插值计算中的应用[J].新疆石油地质,2005,26(2):209-211.
    雍学善.提高地震储层预测与建模精度的方法与应用研究[D].中国石油大学,2006:45-50.
    云露.蒋华山.塔河油田成藏条件与富集规律[J].石油与天然气地质.2007,28(6):769-774.
    张峰铭.碳酸盐岩储层建模方法探讨[J].百科论坛,382-383.
    张抗.塔河油田似层状储集体的发现及勘探方向[J].石油学报,2003,24(5):4-9.
    张淑品,陈福利,金勇等.塔河油田奥陶系缝洞型碳酸盐岩储集层三维地质建模[J].石油勘探与开发,2007,34(2):175-180.
    张团峰,王家华.储层随机建模和随机模拟原理[J].测井技术,,1995,19(6):391-397.
    张伟.精细油藏地质模型的建立及其应用[D].中国石油大学,2004:34-45.
    张希明,杨坚,杨秋来,等.塔河缝洞型碳酸盐岩油藏描述及储量评估技术[J].石油学报,2004,25(1):13-18.
    张希明.新疆塔河油田下奥陶统碳酸盐岩缝洞型油气藏特征[J].石油勘探与开发,2001,28(5):17-22.
    赵彬,侯加根,刘钰铭.塔河油田奥陶系碳酸盐岩溶洞型储层三维地质建模与应用[J].石油天然气学报,2011,33(5):12-16.
    赵敏,康志宏,刘洁.缝洞型碳酸盐岩储集层建模与应用[J].新疆石油地质,2008,29(3):318-320.
    赵敏.随机建模方法及其在储层建模中的应用[D].成都,成都理工大学,2005:34-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700