采煤驱动下平原小流域生态演变规律及评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流域是地表水系的集水区域,流域内生态系统相对完整。在自然状态下,受气候、水文、地质活动的影响,流域生态演变是缓慢和渐进的,但是,在人类活动的干扰下,尤其是水利水电开发、矿山开采、毁林造田等活动,流域生态在短时期内发生了强烈的变化。其中,在煤炭资源蕴藏丰富的流域,煤炭资源的强烈开采严重破坏了水土资源,对小流域水文、土地利用、植被覆盖、景观等生态要素产生巨大影响,显著改变了流域生态系统。深入、系统地研究采煤驱动下流域生态演变规律,评价采煤对流域生态的影响,对于保护流域生态平衡,实现水土资源可持利用和煤炭资源绿色开采具有重要意义。
     基于上述背景,在国家环境保护公益性行业科研专项“煤炭井工开采的地表沉陷监测、预报及生态环境损害累积效应研究”(200809128)和国家863计划项目“矿山复杂地表环境下地物信息自动提取与目标识别的若干关键技术”(2007AA12Z162)支持下,本文以淮南泥河流域为例,根据流域生态学、地理学、开采沉陷学、景观生态学、生态影响评价等理论,采用遥感与地理信息技术,运用遥感影像、数字高程模型、矿井采掘工程资料等多源数据,从小流域尺度系统地研究了采煤驱动下流域地表水体、土地利用与景观格局演变规律,综合评价了采煤对流域生态的影响。论文取得以下主要成果:
     (1)采用Landsat MSS/TM数据进行了泥河流域水体提取和土地利用分类,引入NDVI、NDBI、MNDWI等指数特征以及TM Band 4的Mean、Variance、Entropy 3种纹理测度,建立了基于SVM的分层分类方案,结果表明所构建的分类方案具有较高精度,各年份分类结果Kappa系数均达到了0.8以上。
     (2)根据采煤对水体的影响特征,将流域水体划分为塌陷水体、受采煤影响水体和其它水体3种类型,提出了井下采场信息支持下流域不同类型水体识别方法与技术流程。泥河流域的识别结果表明塌陷水体自1987年的6.17hm~2增加至2009年的1031.55hm~2,泥河受影响范围由1987年的170.49hm~2增加至2009年的475.94hm~2,塌陷预计结果显示,2020年和2030年塌陷水体面积分别达到5879.43hm~2和7736.2hm~2,分别占流域水体总面积59.31%和66.25%。
     (3)提出了遥感影像分类后水体变化检测方法,综合采用动态度、水体变化检测、水体分布重心分析了采煤驱动下泥河流域地表水体时空演变特征,采用水体密度、区位熵指数比较了矿区内、外水体聚集特征差异。结果显示,1987年至2009年流域水体重心向塌陷水体扩展方向迁移了4.67km,矿区水体密度和区位熵指数逐年升高,2009年达到1987年的1.6倍以上。矿区水体密度和区位熵指数高于矿区外,2009年达到矿区外的2倍以上,说明矿区是流域内水体最为密集、演变最为剧烈的区域。构建了一种简单有效的流域水体演变采煤驱动指数(CMWDI),泥河流域年均CMWDI由1987-1994年的0.87升高至2006-2009年的4.13,表明采煤对流域水体演变的驱动力在逐渐增强。
     (4)采用土地利用变化动态度与面积变化幅度分析了泥河流域土地利用变化特征,构建了单一地类和综合土地利用变化采煤驱动指数(CMLDI),以泥河流域为例分别评价了流域和矿区尺度下土地利用变化的采煤驱动力。结果表明在流域尺度下采煤对水体演变的驱动力最强,其次是耕地、建设用地、林地和园地,矿区尺度下的单一地类与综合采煤驱动指数均大于流域尺度,无论矿区尺度还是流域尺度,综合采煤驱动指数呈波动性上升,采煤对流域和矿区土地利用变化的驱动力在逐渐增强。
     (5)采用RUSLE模型,提出了基于DEM的采煤塌陷盆地土壤侵蚀LS因子计算方法,并对潘北矿塌陷盆地土壤侵蚀进行了计算。结果表明,塌陷盆地最大土壤侵蚀模数比塌陷前增加78%,侵蚀模数增加显著的地区位于塌陷盆地边缘,在塌陷不积水的情况下,区域总侵蚀量比塌陷前增加23%,塌陷积水减少了区域内土壤侵蚀发生面积,使区域总侵蚀量仅增加0.4%。该方法适用于计算平原地区采煤塌陷盆地土壤侵蚀。
     (6)基于景观指数分析了采煤驱动下泥河流域景观格局演变规律。结果表明:在景观尺度上,泥河流域1987至2006年景观格局向破碎化、异质化和低连通性发展,2006年至2009年流域景观向连续化、均一化及高连通性方向发展;在类型尺度上,耕地是流域景观的模地,但是其优势度指数由1987年的63.38下降至2009年的58.85,塌陷水体优势度由1987年的0.12上升至2009年的2.69。塌陷水体斑块数量、边缘密度也逐渐升高,采煤对流域景观的异质化、破碎化和边缘效应的影响逐渐增强。采煤活动形成的斑块连通性大于流域其它斑块类型连通性。
     (7)筛选了采煤生态影响的关键因子,构建了平原小流域采煤生态响应指数(ERIcum),并提出了生态影响评价技术流程。泥河流域评价结果表明2009年至2030年流域植被覆盖指数、生物丰度指数逐渐降低,土地退化指数与水体密度指数逐渐升高,水体密度指数增长幅度大于其它指数变化幅度,导致生态响应指数升高。但是,采煤导致的生物多样性降低、植被覆盖减少等负面效应还应当引起重视。
A watershed is the land area that drains into a stream system. Within the watershed, the ecological system is relatively integrated. In the watershed with rich coal resources, mining subsidence makes great damage to land resources; coal mine industrial site construction occupies a lot of eco-land, which have significantly changed the land use, vegetation cover and landscape pattern. Studying the ecological evolution rules of watershed driven by coal mining systematically and intensively and evaluating the eco-impact of coal mining have an important significance to protect watershed ecological system and realize sustainable utilization of water resource and green mining.
     This thesis presents a case study in Nihe watershed of Huainan, which focuses on the evolution rules of surface water bodies, land use and landscape pattern and the comprehensive ecological impact assessment of coal mining on small watershed scale, using Remote Sensing (RS) and Geographic Information System (GIS) techniques with multi-source data. This thesis is jointly supported by National Environmental Protection Specialized Fund for Commonweal Industry (200809128) and the National High Technology Research and Development Program of China (“863 Program”) (2007AA12Z162). Main contents of the thesis are listed as follows:
     (1) Water body and land use information was extracted from Landsat MSS and TM image data. A hierarchical classification strategy based on SVM was built. The result shows that the strategy has higher accuracy.
     (2) According to the features of coal mining impact on water bodies, three kinds of water bodies in a watershed are classified which are water bodies formed by subsidence (WBS), water bodies affected by coal mining (WBCM) and other water bodies (OWB). One kind of water body type identification technique was proposed, which is supported by mining field information.
     (3)Based on the water body extraction and land use classified results, a method for detecting water body change was proposed. Dynamic degree index, water body change detecting and spatial distribution center were used for systematically analyzing temporal-spatial evolution features. Using water body density and location entropy, the spatial clustering features within and without mining area were analyzed. A simple and effective water body change driving index of coal mining (CMWDI) was constructed.
     (4) The land use change characteristics of Nihe watershed were analyzed using land use dynamic degree and area change value. The single land use class and comprehensive land use change driving index of coal mining (CMLDI) were built and applied in Nihe watershed at different scales. The CMLDI of Nihe watershed shows the driving strength of water body change is the biggest of all land use classes. The single and comprehensive CMLDI at mining area scale are larger than that at watershed scale.
     (5) Using RUSLE model, a method for calculating LS factors of subsidence basin based on DEM was proposed and applied in Panbei coal mine. The result indicates that the maximum soil erosion modulus of subsidence basin increases. The significant increasing area is located on the edge of subsidence basin. Comparing with normal landscape, the total erosion value increases by 23 percent after subsidence without water logging. Under the condition of subsidence with water logging, the total erosion amount only increased by 0.4 percent compared with normal landscape.
     (6)The characteristics of landscape pattern change of Nihe watershed were analyzed based on landscape metrics. The landscape pattern became more fragmented, heterogeneous and lower connective from 1987 to 2006. However, it became more continuous, homogeneous and higher connective from 2006 to 2009. Farm land is the matrix of Nihe watershed, while its dominance declined from 1987 to 2009 and the dominance of SWB ascended from 1987 to 2009. The patch number and edge density of SWB increased from 1987 to 2009. The connectivity of the patch classes formed by coal mining is the highest of all classes.
     (7)The key factors of coal mining impact on plain small watershed ecosystem were selected and an eco-response index (ERIcum) was constructed. The technique process of assessment was proposed and applied in Nihe watershed. The result shows the ERIcum increases from 2009 to 2030. But more attention should be paid on the biodiversity destroy, vegetation cover decreasing and other adverse effects induced by coal mining in the future.
引文
[1]尚宗波,高琼.流域生态学——生态学研究的一个新领域[J].生态学报, 2001, 21(3): 468-473.
    [2]魏晓华,孙阁.流域生态系统过程与管理[M].北京:高等教育出版社. 2009.
    [3]李春艳,邓玉林.我国流域生态系统退化研究进展[J].生态学杂志, 2009, 28(3): 535-541.
    [4]耿福明,薛联青,陆桂华.基于复合生态系统的流域梯级开发累积环境影响识别[J].水资源与水工程学报, 2006, 17(1): 30-33.
    [5] Tang Z, Engela B A, Pijanowskib B C, et al. Forecasting land use change and its environmental impact at a watershed scale [J]. Journal of Environmental Management, 2005, 76(1): 35-45.
    [6]赵艳波,刘正茂,吴凤梅.挠力河流域湿地水文特征变化研究[J].水文, 2005, 25(1): 58-61.
    [7]马蓓蓓,鲁春霞,张雷.中国煤炭资源开发的潜力评价与开发战略[J].资源科学, 2009, 31(2): 224-230.
    [8]中煤国际工程集团北京华宇工程有限公司,国家环境保护总局环境工程评估中心.环境影响评价技术导则煤炭工业矿区总体规划编制说明[EB/OL]. (2006-7-21)[2009-4-5].http://www. zhb.gov.cn/tech/hjbz/bzwb/other/pjjsdz/200607/W020070319365740507.pdf.
    [9]胡振琪,李晶,赵艳玲.中国煤炭开采对粮食生产的影响及其协调[J].中国煤炭, 2008, 34(2): 19-21.
    [10]李连济.煤炭城市采空塌陷及经济转型[J].晋阳学刊, 2006, 5: 56-60.
    [11]徐良骥,严家平,高永梅.煤矿塌陷水域水环境现状分析及综合利用——以淮南矿区潘一煤矿塌陷水域为例[J].煤炭学报, 2009, 34(7): 933-937.
    [12]杨叶.以湿地系统为核心的矿区生态改造——以唐山南湖生态区为例[D].天津:天津大学, 2008.
    [13]毛文永.生态环境影响评价概论[M].北京:中国环境科学出版社. 2003.
    [14]史培军,江源,王静爱,等.土地利用/覆盖变化与生态安全响应机制[M].北京:科学出版社. 2003.
    [15]余新晓,张晓明,牛丽丽,等.黄土高原流域土地利用/覆被动态演变及驱动力分析[J].农业工程学报, 2009, 25(7): 219-225.
    [16] IGBP Secretariat. GLP Science plan and implementation strategy [R]. Stockholm: IGBP and IHDP, 2005.
    [17]孙永军.黄河流域湿地遥感动态监测研究[D].北京:北京大学, 2008.
    [18]朱丽,秦富仓,姚云峰,等.北京市红门川流域森林植被/土地覆被变化的水文响应[J].生态学报, 2010, 30(16): 4287-4294.
    [19]张伟科,封志明,杨艳昭,等.北方农牧交错带土地利用/覆被变化分析——以西辽河流域为例[J].资源科学, 2010, 32(3): 573-579.
    [20]张钰,刘桂民,马海燕,等.黑河流域土地利用与覆被变化特征[J].冰川冻土, 2004, 26(6): 740-746.
    [21] Alemayehu F, Taha N, Nyssen J, et al. The impacts of watershed management on land use and land cover dynamics in Eastern Tigray (Ethiopia) [J]. Resources, Conservation and Recycling, 2009, 53(4): 192-198.
    [22] Adam H I, Williams L, Richard H, et al. The net carbon flux due to deforestation and forest re-growth in the Brazilian Amazon: analysis using a process-based model [J]. Global Change Biology, 2004, 10(5): 908-924.
    [23] Gautam A P, Webb E L, Shivakoti G P, et al. Land use dynamics and landscape change pattern in a mountain watershed in Nepal [J]. Agriculture, Ecosystems and Environment, 2003, 99(1-3): 83-96.
    [24] Fung T, LaDrew E. Application of principal components analysis to change detection [J]. Photogrammetric Engineering and Remote Sensing, 1987, 53(12): 1649-1658.
    [25] Alvarez R, Bonifaz R, Lunetta R S, et al. Multi-temporal land-cover classification of Mexico using Landsat MSS imagery [J]. International Journal of Remote Sensing, 2003, 24(12): 2501-2514.
    [26] Dewidar K M. Detection of land use/land cover changes for the northern part of the Nile delta (Burullus region), Egypt[J]. International Journal of Remote Sensing, 2004, 25(20): 4079-4089.
    [27] Jones K B, Anne C. Neale, Wade T G, et al. The consequences of landscape change on ecological resources: an assessment of the U. S. Mid-Atlantic region, 1973-1993[J]. Ecosystem Health, 2001, 7(4): 229-242.
    [28]彭苏萍,王磊,孟召平,等.遥感技术在煤矿区积水塌陷动态监测中的应用——以淮南矿区为例[J].煤炭学报, 2002, 27(4): 374-378.
    [29]杜培军,郭达志. GIS支持下遥感图像中采矿塌陷地提取方法研究[J].中国图象图形学报, 2003, 8(2): 231-235.
    [30]陈龙乾,郭达志,胡召玲,等.徐州矿区土地利用变化遥感监测及塌陷地复垦利用研究[J].地理科学进展, 2004, 23(2): 10-15.
    [31]王行风,杜培军,孙久运.充济滕矿区地表塌陷遥感信息解译研究[J].水土保持研究, 2007, 14(5): 259-262.
    [32]董彦芳,付碧宏,二宫芳树.利用光学卫星遥感数据监测抚顺地区煤矿开采引起的地貌变化[J].第四纪研究, 2008, 28(2): 363-370.
    [33]杨燕杰.基于RS/GIS的煤矿区土地利用变化及其生态效应研究[D].济南:山东师范大学, 2008.
    [34] Prakash A, Gupta R P. Land-use mapping and change detection in a coal mining area—a case study in the Jharia coalfield, India[J]. International Journal of Remote Sensing, 1998, 19(3): 391- 410.
    [35] Sharma T, Kiran P V S, Singh T P, et al. Hydrologic response of a watershed to land use changes: a remote sensing and GIS approach [J]. International Journal of Remote Sensing, 2001, 22(11): 2095-2108.
    [36] Lamb A D. Earth observation technology applied to mining-related environmental issues [J]. Bulletin and Transactions of the Institution of Mining and Metallurgy (Sect. A), 2000, 109(3): 153-157.
    [37] Ng A H-M, Ge L, Yan Y, et al. Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia[J]. Engineering Geology, 2010, 115(1-2): 1-15.
    [38] Antwi E K, Krawczynski R, Wiegleb G. Detecting the effect of disturbance on habitat diversity and land cover change in a post-mining area using GIS[J]. Landscape and Urban Planning, 2008, 87(1): 22-32.
    [39] Cihlar J. Land cover mapping of large areas from satellites: Status and research priorities[J]. International Journal of Remote Sensing, 2000, 21(6): 1093-1114.
    [40] Wulder M A, White J C, Goward S N, et al. Landsat continuity: Issues and opportunities for land cover monitoring [J]. Remote Sensing of Environment, 2008, 112(3): 955-969.
    [41] Wulder M A, Hall R J, Coops N C, et al. High spatial resolution remotely sensed data for ecosystem characterization[J]. BioScience, 2004, 54(6): 1-11.
    [42] Renard K G, Foster G R, Weesies G A, et al. RUSLE Revised universal soil loss equation[J]. Journal of Soil and Water Conservation, 1991, 46(1): 30-33.
    [43] Renard K G, Foster G R, Weesies G A, et al. Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE) [M]. USDA, Agriculture Handbook, No.703. 1996.
    [44] Toy T J, Osterkamp W R. The applicability of RUSLE to geomorphic studies [J]. Journal of Soil and Water Conservation, 1995, 50(5): 498-503.
    [45]陈云明,刘国彬,郑粉莉,等. RUSLE侵蚀模型的应用及进展[J].水土保持研究, 2004, 11(4): 80-83.
    [46]许月卿,蔡运龙,彭建.土地利用变化的土壤侵蚀效应评价——西南喀斯特山区的一个研究案例[M].北京:科学出版社. 2008.
    [47]洪华生,杨远,黄金良.基于GIS和USLE的下庄小流域土壤侵蚀量预测研究[J].厦门大学学报(自然科学版), 2005, 44(5): 675-679.
    [48] Cebecauer T, Hofierka J. The consequences of land-cover changes on soil erosion distribution in Slovakia[J]. Geomorphology, 2008, 98(3-4): 187-198.
    [49] Ozcan A U, Erpul G, Mustafa Basaran, et al. Use of USLE/GIS technology integrated with geostatistics to assess soil erosion risk in different land uses of Indagi Mountain Pass—?ank?r?,Turkey[J]. Environmental Geology, 2008, 53(8): 1731-1741.
    [50] Martínez-Casasnovas J A, Sánchez-Bosch. I. Impact assessment of changes in land use/conservation practices on soil erosion in the Penedès-Anoia vineyard region (NE Spain)[J]. Soil and Tillage Research, 2000, 57(1-2): 101-106.
    [51]李文银,王治国,蔡继清.工矿区水土保持[M].北京:科学出版社. 1996.
    [52]喻权刚.多沙粗沙区煤田开发对环境的影响及防治对策——以神府-东胜矿区大柳塔矿为例[J].水土保持学报, 1994, 8(4): 36-41.
    [53]马祥爱,白中科,邵月红,等.黄土丘陵采煤塌陷地非污染生态影响评价[J].山西农业大学学报, 2004, 47-51.
    [54]贾晓娟.平顶山某煤矿生态环境影响评价[J].环境科学导刊, 2008, 27(5):91 - 94.
    [55]颜志丰,孔令海,秦鹏,等.准格尔矿区水土流失现状和趋势预测[J].人民黄河, 2008, 30(5):66-68.
    [56]白中科,段永红,杨红云,等.采煤沉陷对土壤侵蚀与土地利用的影响预测[J].农业工程学报, 2006, 22(6): 67-70.
    [57]邹兵华,李占斌,李鹏,等.石窑店煤矿建设及生产过程中水土流失预测研究[J].水土保持通报, 2008, 28(5): 28-32.
    [58]牛蒙,张玉秀,王扬军,等.煤矿生态环境影响评价分析[J].金属矿山, 2010, 3: 129-135.
    [59] Toy T J, Foster G R, Renard K G. RUSLE for mining, construction and reclamation lands [J]. Journal of Soil and Water Conservation, 1999, 54(2): 462-467.
    [60] Haigha M J, Sansom B. Soil compaction, runoff and erosion on reclaimed coal-lands (UK)[J]. Mining Reclamation and Environment, 1999, 13(4): 135-146.
    [61] Kandrika S, Dwivedi R S. Assessment of the impact of mining on agricultural land using erosion-deposition model and space borne multispectral data [J]. Journal of Spatial Hydrology, 2003, 3(2): 1-17.
    [62]国家环境保护总局.环境影响评价技术导则非污染生态影响(HJ/T 19-1997) [M/OL]. (1998-6-1)[2010-8-13].http://www.mep.gov.cn/pv_obj_cache/pv_obj_id_C637862C884E17B6606AF78F8101D35266E41500/filename/4347.pdf.
    [63]国家环境保护部.环境影响评价技术导则生态影响(征求意见稿) [M/OL]. (2008-6-20)[2010-6-26].http://www.mep.gov.cn/pv_obj_cache/pv_obj_id_C8F3B72401643CEF1445A0140FDF52B0BB5C0600/ filename/W020080620327660204358.pdf.
    [64]国家环境保护总局.生态环境状况评价技术规范(试行)(HJ/T192-2006)[M].北京:中国环境科学出版社. 2006.
    [65]杨居荣,车宇瑚.大型露天煤矿开发的生态影响评价[J].环境科学学报, 1986, 6(1): 1-7.
    [66]贺亮.露天采矿的生态影响综合评价与生态环境保护[D].西安:西北大学, 2010.
    [67]陈树召,才庆祥,周伟,等.矿业开发的生态影响评价指标体系[J].中国矿业, 2009, 18(3): 42-44.
    [68]杨冬云.基于遥感调查的煤矿生态环境影响评价——以大同塔山矿为例[D].北京:中国地质大学(北京), 2006.
    [69]江红利.煤炭开发生态环境影响评价研究——以韩家湾煤矿为例[D].西安:西安科技大学, 2009.
    [70]牛冲槐,张敏,樊燕萍.山西省煤炭开采对生态环境影响评价[J].太原理工大学学报, 2006, 37(6): 649-653.
    [71]杨梅忠,刘亮,高让礼.模糊综合评判在矿山环境影响评价中的应用[J].西安科技大学学报, 2006, 26(4): 439-452.
    [72] Charou E, Stefouli M, Dimitrakopoulos D, et al. Using Remote Sensing to Assess Impact of Mining Activities on Land and Water Resources [J]. Mine Water and the Environment, 2009, 29(1): 45-52.
    [73] Monjezi M, Shahriar K, Dehghani H, et al. Environmental impact assessment of open pit mining in Iran [J]. Environmental Geology, 2009, 58(1): 205-216.
    [74] Cardenas A M, Hidalgo J M. Ecological impact assessment of the Aznalcollar mine toxic spill on edaphic coleopteran communities in the Guadiamar River basin (Southern Iberian Peninsula) [J]. Biodiversity and Conservation, 2006, 15(1): 361-383.
    [75] Antwi E K, Wiegleb G. Standards and indicators for monitoring impact of disturbance on biodiversity in a post-mining area using GIS [M]//SCHMIDT M, GLASSON J, EMMELIN L, et al. Standards and Thresholds for Impact Assessment. Berlin; Springer. 2008.
    [76] Katpatal Y B, Patil S A. Spatial analysis on impacts of mining activities leading to flood disaster in the Eraiwatershed, India [J]. Journal of Flood Risk Management, 2010, 3(1): 80-87.
    [77] Bongco I G, Santos-Borja A C, Nauta T A. Application of habitat evaluation procedure for impact assessment studies in Laguna de Bay, Philippines [J]. Hydrobiologia, 2003, 506(1): 811-817.
    [78] Etienne R S, Vos C C, Jansen M J W. Ecological impact assessment in data-poor systems: a case study on metapopulation persistence [J]. Environmental Management, 2003, 32(6): 760-777.
    [79] Crist P J, Kohley T W, Oakleaf J. Assessing land-use impacts on biodiversity using an expert systems tool [J]. Landscape Ecology, 2000, 15(1): 47-62.
    [80] Gontier M. Scale issues in the assessment of ecological impacts using a GIS-based habitat model—a case study for the Stockholm region [J]. Environmental Impact Assessment Review, 2007, 27(5): 440-459.
    [81]洪允和.煤矿开采方法[M].徐州:中国矿业大学出版社. 1991.
    [82] Wang X, Yin Z Y. A comparison of drainage networks derived from digital elevation models at two scales [J]. Journal of Hydrology, 1998, 210(1-4): 221-241.
    [83]杨传国,余钟波,林朝晖,等.大尺度分布式水文模型数字流域提取方法研究[J].地理科学进展, 2007, 26(1): 68-76.
    [84] Maidment D R. Arc Hydro GIS for water resources [M]. Redlands, California; ESRI Press. 2002.
    [85]汤国安,杨昕. ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社. 2006.
    [86] Reuter H I, Nelson, Javis A. An evaluation of void-filling interpolation methods for SRTM data [J]. International Journal of Remote Sensing, 2007, 21(9):983-1008
    [87]桂和荣,胡友彪,宋晓梅,等.矿区城市浅层地下水资源研究——淮南市浅层地下水资源评价与开发[M].北京:煤炭工业出版社, 2001.
    [88]王长荣,顾也萍.安徽淮北平原晚更新世以来地质环境与土壤发育[J].安徽师范大学学报(自然科学版), 1995, 18(2): 59-75.
    [89]国土资源部信息中心.淮南市土地利用总体规划(1997-2010年) [EB/OL]. (2007-4-6)[2010-3-15]. http://www.lrn.cn/basicdata/landplan/city/200704/t20070406_47934.htm.
    [90] Jenson J R.遥感数字影像处理导论[M].北京:机械工业出版社. 2007.
    [91]赵英时,陈冬梅,杨立明,等.遥感应用分析原理与方法[M].北京:科学出版社, 2003.
    [92] Lambin E F, Geist H. Land-use and Land-cover change local processes and global impacts [M]. Berlin; Springer-Verlag. 2006.
    [93] Anderson J R, Hardy E E, Roach J T. A land use and land cover classification system for use with remote sensor Data [EB/OL]. [2009-12-23].http://landcover.usgs.gov/pdf/anderson.pdf.
    [94]延昊.中国土地覆盖变化与环境影响遥感研究[D].北京:中国科学院遥感应用研究所, 2002.
    [95]陈百明,周小萍.《土地利用现状分类》国家标准的解读[J].自然资源学报, 2007, 22(6): 994-1003.
    [96]沈焕锋,钟燕飞,王毅,等. ENVI遥感影像处理方法[M].武汉:武汉大学出版社, 2009.
    [97]田庆久,闵祥军.植被指数研究进展[J].地球科学进展, 1998, 13(4): 327-333.
    [98]查勇,倪绍祥,杨山.一种利用TM图像自动提取城镇用地信息的有效方法[J].遥感学报, 2003, 7(1): 37-40.
    [99]杨山.发达地区城乡聚落形态的信息提取与分形研究——以无锡市为例[J].地理学报, 2000, 55(6): 671-678.
    [100]武鹏飞,王茂军,张学霞.基于归一化建筑指数的北京市城市热岛效应分布特征[J].生态环境学报, 2009, 18(4): 1325-1331.
    [101] McFeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. [J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432.
    [102]徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报, 2005, 9(5): 589-595.
    [103]姜清香,刘慧平.利用纹理分析方法提取TM图像信息[J].遥感学报, 2004, 8(5): 458-464.
    [104]骆剑承,周成虎,梁怡,等.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报, 2002, 6(1): 50-56.
    [105]张锦水,何春阳,潘耀忠,等.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报, 2006, 10(1): 49-57.
    [106]张锦水,潘耀忠,韩立建,等.光谱与纹理信息复合的土地利用/覆盖变化动态监测研究[J].遥感学报, 2007, 11(4): 500-510.
    [107]陈波,张友静,陈亮.结合纹理的SVM遥感影像分类研究[J].测绘工程, 2007, 16(5): 23-27.
    [108] Ozkan C, Erbek F S. The comparison of activation functions for multispectral Landsat TM image classification [J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(11): 1225-1234.
    [109] Vapnik V N. The nature of statistical learning theory [M]. New York: Springer-Verlag, 1995.
    [110]张睿,马建文.支持向量机在遥感数据分类中的应用新进展[J].地球科学进展, 2009, 24(5): 555-562.
    [111]何灵敏,沈掌泉,孔繁胜,等. SVM在多源遥感图像分类中的应用研究[J].中国图象图形学报, 2007, 12(4): 648-654.
    [112] Dixon B, Candade N. Multispectral landuse classification using neural networks and support vector machines: one or the other, or both? [J]. International Journal of Remote Sensing, 2008, 29(4): 1185-1206.
    [113] Huang C, Davis L S, Townshend J R G. An assessment of support vector machines for land cover classification [J]. International Journal of Remote Sensing, 2002, 23(4): 725-749.
    [114]陈秋晓,骆剑承,周成虎,等.基于多特征的遥感影像分类方法[J].遥感学报, 2004, 8(3): 239-245.
    [115]何强,井文涌,王羽亭.环境学导论[M].北京:清华大学出版社. 2004.
    [116]吕宪国,王起超,刘吉平.湿地生态环境影响评价初步探讨[J].生态学杂志, 2004, 23(1): 83-85.
    [117]黄少鹏.塌陷区全面治理应注重两个系统重建——以淮南、淮北市为例[J].生态经济(学术版), 2010, 1: 288-291.
    [118]何国清,杨伦,凌赓娣,等.矿山开采沉陷学[M].徐州:中国矿业大学出版社, 1991.
    [119]淮南矿业集团,中国矿业大学.淮南矿区开采沉陷参数及预计软件研究[M].徐州. 2006.
    [120]高明中.急倾斜煤层开采岩移基本规律的模型试验[J].岩石力学与工程学报, 2004, 23(3): 441-445.
    [121]朱会义,李秀彬.关于区域土地利用变化指数模型方法的讨论[J].地理学报, 2003, 58(5): 643-650.
    [122]赵作权.地理空间分布整体统计研究进展[J].地理科学进展, 2009, 28(1): 1-8.
    [123]陈定贵,周德民,吕宪国.长春城市发展过程中地表水体空间格局演变特征[J].吉林大学学报(地球科学版), 2008, 38(3): 437-443.
    [124]孟斌,王劲峰,张文忠,等.基于空间分析方法的中国区域差异研究[J].地理科学, 2005, 25(4): 393-400.
    [125]匡文慧,张树文,张养贞,等. 1900年以来长春市土地利用空间扩张机理分析[J].地理学报, 2005, 60(6): 841-850.
    [126]贾科利,常庆瑞.陕北农牧交错带土地沙漠化景观格局动态变化[J].应用生态学报, 2007, 18(9): 2045-2049.
    [127] Yue T, Fan Z, Liu J. Changes of major terrestrial ecosystems in China since 1960 [J]. Gobal and planetary change, 2005, 48(4): 287-302.
    [128]王秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展, 1999, 18(1): 81-87.
    [129]张佑印,马耀峰,高军,等.中国典型区入境旅游企业区位熵差异分析[J].资源科学, 2009, 31(3): 435-441.
    [130]毛加强,王陪咖.基于区位商方法的陕西产业集群识别与检验[J].兰州大学学报(社会科学版), 2007, 35(6): 134-137.
    [131]张会新,杜跃平,白嘉.陕北资源产业集群的区位熵和RIS模型分析[J].资源科学, 2009, 31(7): 1205-1210.
    [132]鲍文东.基于GIS的土地利用动态变化研究[D].青岛:山东科技大学, 2007.
    [133]陈军伟,孔祥斌,张凤荣,等.基于空间洛伦茨曲线的北京山区土地利用结构变化[J].中国农业大学学报, 2006, 11(4): 71-74.
    [134]董楠,陶军德.基于空间洛伦茨曲线和基尼系数的土地利用结构分析——以黑龙江省鹤岗市为例[J].国土资源情报, 2009, 6: 38-43.
    [135]谭少华.区域土地利用变化及其分析方法研究[D].南京:南京师范大学, 2004.
    [136]朱会义,何书金,张明.环渤海地区土地利用变化的驱动力分析[J].地理研究, 2001, 20(6): 669-678.
    [137]摆万奇,阎建忠,张镱锂.大渡河上游地区土地利用/土地覆被变化与驱动力分析[J].地理科学进展, 2004, 23(1): 71-78.
    [138]王静爱,何春阳,董艳春,等.北京城乡过渡区土地利用变化驱动力分析[J].地球科学进展, 2002, 17(2): 201-209.
    [139]胡振琪.我国煤矿区的侵蚀问题与防治对策[J].中国水土保持, 1996, 11-13.
    [140]摆万奇,赵士洞.土地利用变化驱动力系统分析[J].资源科学, 2001, 23(3): 39-41.
    [141]宋桂琴.谈水土流失、土壤侵蚀两概念的区别与联系[J].中国水土保持, 1997, 2): 47-49.
    [142]景可,王万忠,郑粉莉.中国土壤侵蚀与环境[M].北京:科学出版社, 2005.
    [143]李锐,上官周平,刘宝元,等.近60年我国土壤侵蚀科学研究进展[J].中国水土保持科学, 2009, 7(5): 1-6.
    [144]中国国土资源报.我国未来10年将投入2000亿治理坡耕地水土流失[EB/OL].(2010-3-2) [2010-7-23]. http://www.ahgtt.gov.cn/news_detail.jsp?row_id=2010070000005349.
    [145]中国水利部.土壤侵蚀分类分级标准(SL 190-2007)[M].北京:中国水利水电出版社, 2008.
    [146]郑粉莉,王占礼,杨勤科.我国土壤侵蚀科学研究回顾和展望[J].自然杂志, 2008, 30(1): 12-17.
    [147]谭绩文,刘亚民,王建瑞,等.矿山环境学[M].北京:地震出版社, 2008.
    [148]张发旺,侯新伟,韩占涛,等.采煤塌陷对土壤质量的影响效应及保护技术[J].地理与地理信息科学, 2003, 19(3): 67-70.
    [149] Zhang Y, Liu B, Zhang Q, et al. Effect of different vegetation types on soil erosion by water [J]. Acta Botanica Sinica, 2003, 45(10): 1204-1209.
    [150] Jabbar M T, Chen X. Soil degradation risk prediction integrating RUSLE with geo-information techniques, the case of Northern Shaanxi province in China [J]. American Journal of Applied Sciences, 2005, 2(2): 550-556.
    [151]张树文,王文娟,李颖,等.近50年来三江平原土壤侵蚀动态分析[J].资源科学, 2008, 30(6): 843-849.
    [152]史志华,蔡崇法,丁树文,等.基于GIS和RUSLE的小流域农地水土保持规划研究[J].农业工程学报, 2002, 18(4): 172-175.
    [153] Fu G, Chena S, McCool D K. Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS [J]. Soil & Tillage Research, 2006, 85(1-2): 38-49.
    [154]卜兆宏,唐万龙,潘贤章.土壤流失量遥感监测中GIS像元地形因子算法的研究[J].土壤学报, 1994, 31(3): 322-329.
    [155] Jabbar M T. Application of GIS to estimate soil erosion using RUSLE [J]. Geo-spatial Information Science, 2003, 6(1): 34-37.
    [156] Van Remortel R D, Hamilton M, Hickey R J. Estimating the LS factor for RUSLE through iterative slope length processing of digital elevation data [J]. Cartography, 2001, 30(1): 27-39.
    [157]汪邦稳,杨勤科,刘志红,等.基于DEM和GIS的修正通用土壤流失方程地形因子值的提取[J].中国水土保持科学, 2007, 5(2): 18-23.
    [158] Kouli M, Soupios P, Vallianatos F. Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece [J]. Environmental Geology, 2009, 57(3): 483-497.
    [159]吴侃.矿区沉陷预测预报系统[M].徐州:中国矿业大学出版社, 1999.
    [160]潘强.安徽省淮北地区水土流失规律及防治措施研究[D].合肥:合肥工业大学, 2007.
    [161]蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报, 2000, 14(2): 19-24.
    [162]傅世锋,查轩.基于GIS和USLE的东圳库区土壤侵蚀量预测研究[J].地球信息科学, 2008, 10(3): 390-395.
    [163]安徽省水土保持网. 2005年安徽省水土保持监测公报[EB/OL]. (2007-10-28)[2009-6-4]. http://www.wswj.net /dt2111111180.asp/docid=2111111410.
    [164] Liu B, Nearing M A, Risse L M. Slope gradient effects on soil loss for steep slopes [J]. Transactions of the American Society of Agricultural Biological Engineers, 1994, 37(6): 1835-1840.
    [165]邬建国.景观生态学——格局、过程、尺度与等级[M].北京:高等教育出版社. 2000.
    [166]陈利顶,洋刘,吕一河,等.景观生态学中的格局分析:现状、困境与未来[J].生态学报, 2008, 28(1): 5521-5531.
    [167] Yi He L, Chen L D, Fu B J. Analysis of the integrating approach on landscape pattern and ecological processes [J]. Process in Geography, 2007, 26(3): 264-270.
    [168] McGarigal K, Romme W H, Crist M, et al. Cumulative effects of roads and logging on landscape structure in the San Juan Mountains, Colorado (USA) [J]. Landscape Ecology, 2001, 16(4): 327-349.
    [169] Matsushita B, Xu M, Fukushima T. Characterizing the changes in landscape structure in the Lake Kasumigaura Basin, Japan using a high-quality GIS dataset [J]. Landscape and Urban Planning, 2006, 78(3): 241-250.
    [170]刘学录.盐化草地景观中的斑块形状指数及其生态学意义[J].草业科学, 2000, 17(2): 50-55.
    [171]周睿,王辉,葛剑平,等.松山自然保护区各功能区植被动态及变化格局[J].生物多样性, 2006, 14(6): 470-478.
    [172]胡振琪,李晶,赵艳玲.矿产与粮食复合主产区环境质量与粮食安全的问题、成因与对策[J].科技导报, 2006, 24(3): 21-24.
    [173]郭友红.采煤塌陷区水体生物多样性调查[J].中国农学通报, 2010, 26(10): 319-322.
    [174]杨华珂.区域生态质量评价方法及应用研究[D].长春:东北师范大学, 2002.
    [175] McGarigal K, Cushman S A, Neel M C, et al. FRAGSTATS: Spatial pattern analysis program for categorical maps. computer software program produced by the authors at the University of Massachusetts, Amherst[CP/DK]. http://www.umass.edu/landeco/research/fragstats/fragstats.html. 2002.
    [176]盛连喜,冯江,王娓.环境生态学导论[M]//第二版.北京:高等教育出版社. 2009.
    [177]国家环境保护总局.生态环境状况评价技术规范(试行)( HJ/T192 - 2006 )[M/OL].(2006-5-1)[2010-8-21]. http://www.sepa.gov.cn/image20010518/6257.pdf.
    [178]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社. 1989.
    [179]郑炜.水电规划陆生生态环境影响评价研究[D].武汉:华中师范大学, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700