基于DEM的黄土高原正负地形及空间分异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正负地形(Positive and Negative Terrains)是地球表面最具宏观统治力的二元地形结构。本文在分析黄土地貌正负地形结构特征的基础上,以沟沿线发育明显的晋西-陕北-陇东地区正负地形为切入点,基于地学信息图谱和数字地形分析理论,以均匀分布的86个样区为空间分异研究样区,以典型黄土地貌下多级嵌套流域为尺度序列研究样区,以1:1万比例尺数字高程模型为基本数据源,系统性的提出并阐述了黄土地貌正负地形概念模型、属性特征及分布特点,发现黄土地貌正负地形具有宏观抽象、区域差异、地貌对应、多要素性等地学特性,深入探讨了其图谱性质,并基于黄土地貌正负地形研究晋西-陕北-陇东黄土高原地貌宏观特征及其空间分异规律,在此基础上,基于多尺度分割分析方法,实现了研究区内正负地形特征的区域划分。
     论文的主要内容和结论如下:
     1.明确了黄土地貌正负地形概念模型。在分析黄土坡而结构及沟道发育特征的基础上,归纳了黄土地貌正负地形的基本特性,阐述其广义和狭义定义,并构建了正负地形分类体系。
     2.利用改进snake模型,设计了基于高分辨率DEM的正、负地形自动分割的方法。该方法立足于数字地形分析思想,基于黄土坡面形态特征,首先识别沟沿线点,继而利用改进的snake模型实现沟沿线断点的自动连接,从而实现正负地形的自动划分。
     3.构建正负地形特征量化指标体系并分析了指标间相关性。分别从地貌演化特征、地形统计特征和空间展布特征三个角度提出并构建了正负地形的量化指标体系(共10个),在此基础上分析了指标间的相关性。
     4.实现了晋西-陕北-陇东黄土地貌正负地形空间分异分析。基于86个样区正负地形因子,利用GIS空间插值方法,制作了研究区内10个正负地形特征空间分异专题地图,特别是正负地形面积对比指标——蚕食度指标的空间分异专题地图,并利用多尺度分割方法,基于相关性不显著的5个因子层面,实现了正负地形特征的区域划分,最后结合区划结果对正负地形因子进行了指标的厘定
     5.黄土地貌正负地形在描述黄土高原宏观地貌特征上表现出较大的优势与潜力。本文所构建的正负地形概念模型和研究方法体系,是黄土高原地表形态空间分异自然规律发现的有效切入点,丰富了黄土高原地区数字地形分析方法体系,是地学信息图谱分析思想的有益实践,是黄土高原地区水保措施制定的重要参考依据。
Loess Positive and Negative Terrains are the most macroscopic dualistic components of the earth's surface. The Loess Positive and Negative Terrains (P-N terrains), which are widely distributed on the Loess Plateau, are discussed in this paper by introducing its characteristic, demarcation, distribution rules as well as extraction method. Using 5 m-resolution DEMs (scale is 1:10000) as original test data, P-N terrains of 86 geomorphological units in different parts of west Shanxi, north Shaanxi and east Gansu Loess Plateau are extracted accurately by using of an improved Snake model method. Then ten indicators (Nibble Degree, Proximity Distance, Mean-slope Difference, Inciensiveness, Mean-Roughness-Ratio, Shape Index, Moran's Index, Evenness Index, Fragmentation, Fractal Dimension) for depicting the landform evolution, spatial configuration and geomorphologic landscape characteristics of P-N terrains are proposed, and the correlation between the indicators are discussed also. Ten thematic maps which describing the spatial variation of P-N terrains are made by using of the GIS spatial interpolation method. The spatial distribution rules of these indicators and the relationship between the P-N terrains and Loess relief are discussed for further understanding of Loess landform. Finally, with the integration of P-N terrains indices, a series of multi-scale segmentation classification methods are applied to make a proper classification which reflecting the features of positive and negative terrain well in the study area. Zonal statistics showed that nibble degree is 0.423 in loess tableland and tableland ridge area,0.826 in loess ridge area and 1.041 in area of loess hill and hill-ridge area. Results show that P-N terrains are an effect clue to reveal energy and substance distribution rules on the Loess Plateau. A continuous change of P-N terrains from south to north in Shaanxi Loess Plateau shows an obvious spatial difference of Loess landforms. This research is significant on the study of Loess land forms with the Digital Terrains Analysis methods, and is an important reference for the development of water conservation measures in the Loess Plateau.
引文
[1]. Bresson X, Esedoglu S, Vandergheynst P, et al. Fast global minimization of the active contour/snake model. J Math Imaging,2007,28:151-167.
    [2]. Chang K., Tsai B. The effect of DEM resolution on slope and aspect mapping, Cartography and Geographic Information Systems,1991,18:69-77.
    [3]. Christian Werner. Explorations into the formal structure of drainage basins. Earth surface processes and landforms,1994,19,747-762
    [4]. Cliff A D, Ord J K. Spatial Autocorrelat ion, London:Pion Limited,1973.
    [5]. Cliff A D,Ord J K. Spatial Processes:Models and Applications. London:Pion Limited,1981.
    [6]. Demoulin A, Bovy B, Rixho G, et al. An automated method to extract fluvial terraces from digital elevation models:The Vesdre valley, a case study in eastern Belgium, Geomorphology, 2007,91:51-64.
    [7]. Dikau R. The application of a digital relief model to landform analysis in geomorphology. In: Raper, J. (Ed.), Three Dimensional Applications in Geographic Information Systems. Taylor and Francis, London,1989:51-77.
    [8]. Dikau, R., Brabb, E.E., Mark, R.K., Pike, R.J.,. Morphometric Landform Analysis of New Mexico. Zeitschrift fur Geomorphologie, Supplementband.1995,101,109-126.
    [9]. Dinesh S. Computation of surface roughness of mountains extracted from digital elevation models. Journal of Applied Sciences,2008,8(2):262-270.
    [10]. Ding Zhongli, Sun Jimin and Nat W. Rutter et al. Changes in Sand Content of Loess Deposits along a North-South Transect of the Chinese Loess Plateau and the Implications for Desert Variations. Quaternary Research,1999,52:56-62
    [11].Doornkamp J C,,Trend-surface analysis of planation surface, with an East African case study, Spatial Analysis in Geomorphology, Harper&RowPublishers,1972,247-283.
    [12]. Erik van den Elsen, Hessel, R. and Baoyuan Liu et al. Discharge and sediment measurements at the outlet of a watershed on the Loess plateau of China. Catena,2003,54:147-160.
    [13]. Erik van den Elsen, XieYun and Liu Baoyuan et al. Intensive water content and discharge measurement system in a hillslope gully in China. Catena,2003,54:93-115.
    [14].Florinsky I.V. Accuracy of local topographic variables derived from digital elevation models, INT. J. Geographical Information Science,1998,12(1):47-61.
    [15].Fu Bojie, Yang Zhijian and Wang Yyanglin et al. A mathematical model of soil moisture spatial distribution on the hillslopes of the Loess Plateau. Science in China,2001,44 (5):395-402.
    [16].G. A.Tang, Y. N. Jia and W. Z. Qumu, The Terrain Analysis Based on Profile Line of Catchment Boundary of Loess Landform, International Postgraduate Conference on Infrastructure and Environment.2009.
    [17].Guo Zhengtang, Liu Tungsheng, and Guiot J. et al. High frequency pulses of East Asian monsoon climate in the last two glaciations:link with the North Atlantic. Climate Dynamics, 1996.12:701-709
    [18].Han Jiamao and Jiang Wenying. Particle size contributions to bulk magnetic susceptibility in Chinese loess and paleosol. Quaternary International,1999,62:103-110
    [19]. Harris P BC. Exploring spatial variation and spatial relationships in a freshwater acidification critical load data set for great britain using geographically weighted summary statistics. COMPUTERS & GEOSCIENCES.2010,36(1):54-70.
    [20].Hessel R,van Asch T. Modelling gully erosion for a small catchment on the chinese loess plateau. Catena,2003,54(1-2):131-146.
    [21 J.Hoffman. R, Krotkov. E. Terrain roughness measurement from elevation maps.SPIE. 19891195:104-114.
    [22].Hossein S, Rober B, Forood S, ect. Landform classification from digital elevation model and satellite imagery, Geomorphology,2008,100:453-464.
    [23]. Huang Chunchang, Pang Jiangli and Huang Ping. An early Holocene erosion phase on the loess tablelands in the southern Loess Plateau of China. Geomorphology,2002,43:209-218
    [24]. Huang Y. F., Chen X., Huang G. H. et al. GIS-based distributed model for simulating runoff and sediment load in the Malian River. Hydrobiologia,2003,494:127-134.
    [25].Inselberg A and Dimsdale B.Parallel coordinates:A tool for visualizing multidimensional geometry. Proceedings of the First IEEE Conference on Visualization,1990:362-378.
    [26].Iwahashi J,Pike R. Automated classifications of topography from dems by an unsupervised nested-means algorithm and a three-part geometric signature[J]. GEOMORPHOLOGY,2007, 86(3-4):409-440.
    [27].Jozef M, Ian E. Elementary forms for land surface segmentation:The theoretical basis of terrain analysis and geomorphological mapping, Geomorphology,2008,95:236-259.
    [28].K.ass M, Witkin A,Terzopoulos D. Snake:Active contour models[J]. International Journal of Computer Vision,1988,1 (4):321-331.
    [29].Kirkby MJ,Bracken LJ. Gully processes and gully dynamics. Earth Surface Processes and Landforms,2009,34(14):1841-1851.
    [30].Kuhn NJ YA, Grubin MK. Spatial distribution of surface properties, runoff generation and landscape development in the zin valley badlands, northern negev, israel. EARTH SURFACE PROCESSES AND LANDFORMS.2004,29(11):1417-1430.
    [31]. Lee, J., Snyder, P.K. and Fisher, P.F. Modeling the effect of data errors on feature extraction from digital elevation models. Photogrammetric and Remote Sensing,1992,58 (10) 1461-1467.
    [32].Lindsay JB. The terrain analysis system:A tool for hydro-geomorphic applications. Hydrological Processes,2005,19(5):1123-1130.
    [33]. Liu P J, Zhu, Q K; Wu D-L,etal. Automated extraction of shoulder line of valleys based on flow paths from grid Digital Elevation Model (DEM) data. Journal of Beijing Forestry University.2006,28 (4):72-76.
    [34]. Liu Tungsheng, Ding Zhongli and Nat Rutter. Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5 Ma. Quaternary Science Reviews, 1999,18:1205-1212
    [35]. Lu H, Liu X,Bian L (2007) Terrain complexity:Definition, index, and dem resolution, vol. 6753, p 675323.
    [36].Lua Haishen. Zhua Yonghua, Skaggs Todd H.. Comparison of measured and simulated water storage in dryland terraces of the Loess Plateau, China. Agricultural Water Management, 2009,96 (2):299-306.
    [37].MacMillan, R A, Perrapiece W W, Norlan S C, et al. A generic procedure for automatically segmentation landforms into landform elements using DEMs, heuristic rules and fuzzy logic, Fuzzy sets and systems,2000,113:81-109.
    [38].Mark, D.M. Automatic detection of drainage networks from digital elevation models, Cartographica,1984,21 (2/3):168-178.
    [39]. Michael.L.Stein. Interpolation of spatial data:Some theory for kriging. Chicago:Springer Series in Statistics Andersen.1999.
    [40]. Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch mountain area, Virginia and Tennessee.
    [41]. Montgomery D,Dietrich W. Source areas, drainage density, and channel initiation. Water Resources Research,1989,25(8):1907-1918.
    [42].Moran PAP, Notes on continuous stochastic phenomena Biometrika,1950,37:17-33
    [43].Moran PAP.The interpretation of statistical maps. Journal of the Royal Statistical Society B. 1948,37:243-251
    [44].O'Callaghan J, Mark D, Mitusov A V, Fundamental quantitative methods of land surface analysis. Geoderma,2002,107:1-43.
    [45].Pike, R.J., Geomorphometry-diversity in quantitative surface analysis. Progress in Physical Geography.2000,24(1):1-20.
    [46]. Pike, R.J., Geomorphometry-progress, practice, and prospect. Zeitschrift fur Geomorphologie, Supplementband.1995,101:221-238.
    [47].Prima O, Echigo A, Yokoyama R, et al. Supervised landform classification of northeast honshu from dem-derived thematic maps. GEOMORPHOLOGY,2006,78(3-4):373-386.
    [48].Quinn, P.F. et al. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models, In:Beven, K.J. and Moore, I.D., (eds.). Terrain analysis and Distributed Modelling in Hydeology, Chichester, UK:John Willy & Sons,1991,63-83
    [49].Rajendra, M.Patrikar modeling and simulation of surface roughness.Apllied Surface Science, 2004,228:213-220.
    [50].Richthofen F.V. On the mode of origin of the loess. Geol.Mag.9,1882
    [51].Ruszkiczay-Rudiger Z FL, Horvath E, et al. Discrimination of fluvial, eolian and neotectonic features in a low hilly landscape:A dem-based morphotectonic analysis in the central pannonian basin, hungary. GEOMORPHOLOGY,2009,104(3-4):203-217
    [52].Saa. A,Gasco. G, Grau. J.B, etcl. Comparison of gliding box and box-counting methods in river network analysis. NONLINEAR PROCESSES IN GEOPHYSICS,2007, 14(5):603-613.
    [53].Saadat H, Bonnell R, Sharifi F, et al. Landform classification from a digital elevation model and satellite imagery. Geomorphology,2008, (100):453~464.
    [54].Saito H, Nakayama D, Matsuyama H. Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence:The Akaishi Mountains, Japan. Geomorphology,2009, (109):108~121.
    [55].Schumm S A. The evaluation of drainage system s and slope in badland at Perth Amboy new jersey. Geol Soc Amer Bull,1956,67 (3):596-646
    [56].Segura FS, Pardo-Pascual JE. Rossello VM, et al. Morphometric indices as indicators of tectonic, fluvial and karst processes in calcareous drainage basins, south menorca island. spain[J]. Earth Surface Processes and Landforms.2007,32(13):1928-1946.
    [57].Segura FS, Pardo-Pascual JE. Rossello VM, et al. Morphometric indices as indicators of tectonic, fluvial and karst processes in calcareous drainage basins, south menorca island, spain[J]. Earth Surface Processes and Landforms,2007,32(13):1928-1946.
    [58].Shary P A, Sharayab L S, Mitusov A V. Fundamental quantitative methods of land surface analysis, Geoderma,2002,107:1-43.
    [59].Shary P., Sharaya L. and Mitusov A., Fundamental quantitative methods of land surface analysis. Geoderma,2002,107(1-2):1-32.
    [60]. Shi Hui and Shao Mingan. Soil and water loss from the Loess Plateau in China. Journal of Arid Environments,2000,45:9-20.
    [61].Skidmore A.K. A comparison of techniques for the calculation of gradient and aspect from a griided digital evevation model, International Journal of Geographical Information Systems. 1989,3:323-334.
    [62]. Stephen C,Porter. Chinese loess record of monsoon climate during the last glacial-interglacial cycle. Earth-Science Reviews,2001,54:115-128
    [63].Strahler AN. Quantitative geomorphology of drainage basins and channel networks. In Handbook of Applied Hydrology, Chow VT (ed.). McGraw-Hill:New York; 1964,49.
    [64]. Sun Jimin. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters,2002,203:845-859
    [65].Tang G A, Xiao C C, Jia D X, et al. DEM based investigation of loess shoulder-line, in Geoinformatics:Geospatial Information Science.2007, Vol.6753,67532E.
    [66].Tang G, Li F, Liu X, et al. Research on the slope spectrum of the loess plateau. Science in China Series E:Technological Sciences,2008, (51):175-185.
    [67].TOBLER W. A computer movie simulating urban growth in the detroit region. Economic Geography,1970,46 (2):234-240.
    [68].Tucker GE, Bras RL.Hillsope processes, drainage density, and landscape morphology. Water Resources Research.1998,34:2751-2764.
    [69]. Tucker GE, Catani F, Rinaldo A, et al. Statistical analysis of drainage density from digital terrain data. GEOMORPHOLOGY,2001,36(3-4):187-202.
    [70]. Wood, J.D., The geomorphological characterisation of digital elevation model, PhD Thesis, University of Leicester.1996.
    [71]. Xiao Jule, Stephen C. Porter and An Zhisheng. Grain Size of Quartz as an Indicator of Winter Monsoon Strength on the Loess Plateau of Central China during the Last 130,000 Yr. Quaternary Research,1995,43:22-29.
    [72]. Xu C,Prince J Gradient vector flow:A new external force for snakes. Published by the IEEE Computer Society,1998,66-71.
    [73]. Yongxin Deng. New trends in digital terrain analysis:landform definition, representation, and classification, Progress in Physical Geography,2007,31(4):405-419.
    [74].Zhu Q, Zhao J, Zhong Z, et al. An efficient algorithm for the extraction of topographic structures from large scale grid DEMs. In:Li Z.L., Zhou Q M, Kainz W, eds. Advances in Spatial Analysis and Decision Making. Netherland:Balkema,2003,99-107.
    [75].Zhu T.X. Tunnel development over a 12 year period in a semi-arid catchment of the Loess Plateau, China. Earth Surface Processes and Landforms,2002,28:507-525.
    [76].Zhu T.X., Band L.E. and Vertessy R.A. Continuous modeling of intermittent stormflows on a semi-arid agricultural catchment. Journal of Hydrology,1999,226:11-29.
    [77].艾南山,陈嵘,李后强.走向分形地貌学,地理学与国土研究,1999,15(1):92-96
    [78].曹银真.黄土地区梁峁坡地特征与土壤侵蚀,地理研究,1983,2(3):19-29.
    [79].陈传康.陇东东南部黄土地形类型及其发育规律.地理学报,1956,22(3):223-231.
    [80].陈光伟等.黄土高原重点治理区资源与环境遥感调查研究.北京:电子工业出版社.1994.
    [81].陈浩.沟道流域坡而与沟谷侵蚀演化关系—以晋西王家沟小流域为例.地理研究,2004,23(3):329-338.
    [82].陈浩.陕北黄土高原沟道小流域形态特征分析.地理研究,1986,5(1):82-92.
    [83].陈军.多尺度空间数据基础设施的建设与发展.中国测绘,1999,(3):18-25
    [84].陈盼盼,2006年,基于DEM的山顶点及其属性空间分异规律研究-以陕西省为例,西北大学硕士学位论文
    [85].陈述彭,岳天祥,励惠国.地学信息图谱研究及其应用.地理研究,2000,19(04):337-343.
    [86].陈述彭.地理科学的信息化与现代化.地理信息世界,2001,21(3):193-197.
    [87].陈渭南.黄土墚峁地区影响黄土侵蚀的地貌条件分析.地理科学,1988,8(4):323-329.
    [88].陈彦光.基于moran统计量的空间自相关理论发展和方法改进.地理研究,2009,28(6):1451-1463.
    [89].陈永宗.黄河中游黄上丘陵区的沟谷类型.地理科学,1984,4(4):321-327.
    [90].陈正宜.陕北黄土高原地区遥感应用研究.北京:科学出版社,1991,6-7.
    [91].承继承,江美球.流域地貌数学模型,北京:科学出版社,1986,110-112.
    [92].崔灵周.流域侵蚀产沙与地貌形态特征耦合关系研究.杨凌:中国科学院、水利部水土保持研究所.2002,19-31.
    [93].邓成龙;袁宝印;.末次间冰期以来黄河中游黄土高原沟谷侵蚀-堆积过程初探.地理学报,2001,56(01):92-98.
    [94].丁文峰,李占斌,鲁克新,等.黄土坡而细沟侵蚀发生的临界条件.山地学报,2001,19(6):551-555.
    [95].冬青叶.地表负地貌.环境导报,1997,(02):41-42.
    [96].甘枝茂.黄土高原地貌与土壤侵蚀研究.西安:陕西人民出版社,1989.
    [97].高玄彧.地貌形态分类的数量化研究.地理科学,2007,27(1):109-114.
    [98].郭正堂,丁仲礼,刘东生.黄土中的沉积—成壤事件与第四纪气候旋回.科学通报,1996,41(1):56-59
    [99].郝明德,党廷辉,谢永生.黄土高原沟壑区水土流失综合治理措施探讨——以长武王东沟小流域试验示范区为例.中国水土保持,2005,02):43-45.
    [100].何隆华,赵宏.水系的分形维数及其含义.地理科学,1996,16(2):124-128.
    [101].黄培之.提取山脊线和山谷线的一种新方法.武汉大学学报,信息科学版,2001,26(3):247-252.
    [102].贾旖旎.基于DEM的黄土高原流域边界剖面谱研究.2010.博士论文
    [103].江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究.土壤侵蚀与水土保持学报,1996,2(1):1-9.
    [104].江忠善,郑粉莉.坡面水蚀预报模型研究.水土保持学报,2004,18(1):66-69.
    [105].蒋德麒,赵诚信,陈章霖;黄河中游小流域径流泥沙来源初步分析.地理学报,1966,32(01):20-36.
    [106].蒋定生.黄土高原水土流失与治理模式.北京:中国水利水电出版社,1997
    [107].蒋忠信.低次趋势面描述云南地势宏观特征的探讨,地理研究,1990,9(1):10-17.
    [108].金德生主编.地貌实验与模拟.北京:地震出版社,1995.
    [109].景才瑞.中国黄土形成的气候条件、时代与成因.地理学报,1980,35(1):83-86
    [110].雷会珠,武春龙.黄土高原分形河网研究.山地学报,2001,19(5):474-477.
    [111].李德仁,夏松,江万寿.一种地形变化检测与dem更新的方法研究.武汉大学学报(信息科学版),2006,31(7):565-568.
    [112].李郎平,鹿化煜.黄土高原25万年以来粉尘堆积与侵蚀的定量估算.地理学报,2010,65(01):37-52.
    [113].李锰,朱令人,龙海英.不同类型地貌的各向异性分形与多重分形特征研究.地球学报2003,(03).
    [114].李培华,张田文.主动轮廓线模型蛇模型综述.软件学报,2000,11(6):751-757.
    [115].李天庆,张毅,刘志,等.Snake模型综述.计算机工程,2005,31(9):1-3.
    [116].李小文,曹春香,常超一.地理学第一定律与时空邻近度的提出.自然杂志,2007,02):69-71.
    [117].吕厚远,刘东生,郭正堂.黄土高原地质、历史时期古植被研究状况.科学通报,2003,48(01):1-7.
    [118].励强,陆中臣,袁宝印.地貌发育阶段的定量研究.地理学报,1990,45(1):110-120.
    [119].刘爱利,汤国安.中国地貌基本形态DEM的自动划分研究.地球信息科学,2006,04:8-14.
    [120].刘德林,李壁成.黄土高原小流域十地类型分类及制图研究.前言论坛,2009,01:32-37.
    [121].刘东生.黄河中游黄土.北京:科学出版社,1964.
    [122].刘东生.黄土的物质成分与结构.北京:科学出版社,1966.
    [123].刘东生.黄土与环境.北京:科学出版社,1985.
    [124].刘迪生.小比例尺分层设色地势图的编制问题——以苏联1:2,500,000比例尺分层设色地势图为例.地理学报,1957,23(04):447-458.
    [125].刘继生,陈彦光.河南省城镇体系空间结构的多分形特征及其与水系分布的关系探讨.地理科学,2003,23:713-720.
    [126].刘黎明,林培.黄土高原丘陵沟壑区土壤侵蚀定量方法与模型的研究.水土保持学报,1993,7(3):73-79.
    [127].刘少峰,王陶等.数字高程模型在地表过程研究中的应用,地学前缘,2005,12(1):303-309.
    [128].刘新华,杨勤科,汤国安.中国地形起伏度的提取及在水土流失定量评价中的应用.水土保持通报,2001,21(1):57-59.
    [129].刘学军,王永君,晋蓓.利用点扩散函数进行dem尺度转换.武汉大学学报·信息科学版,2009,34(12):1458-1462.
    [130].刘志,江忠善.微机数字地形要素制图.水土保持研究,1989,10:24-30.
    [131].卢金发.黄河中游流域地貌形态对流域产沙量的影响.地理研究,2002,21(2):171-178.
    [132].陆中臣,贾绍凤,袁宝印.流域地貌系统.大连:大连出版社,1990.
    [133].鹿化煜,安芷生.前处理方法对黄土沉积物粒度测量影响的实验研究.科学通报,1997,42(23):2535-2538
    [134].罗来兴.划分晋西、陕北、陇东黄土区域沟间地与沟谷的地貌类型.地理学报,1956,22(3):201-222.
    [135].罗文锋等.Horton定律及分枝网络结构的分形描述.水科学进展.1998,9:118-123
    [136].闾国年,钱亚东,陈忠明.基于栅格数字高程模型提取特征地貌技术研究.地理学报,1998,53(6):562-570.
    [137].闾国年,钱亚东,陈钟明.黄土丘陵沟壑区沟谷网络自动制图技术研究.测绘学报,1998,27(2):131-137.
    [138].闾国年,钱亚东,陈钟明.基于栅格数字高程模型自动提取黄土地貌沟沿线技术研究地理科学,1998,18(6):567-573
    [139].闾国年,钱亚东,陈钟明.流域地形自动分割研究.遥感学报,1998,2(4):298-304.
    [140].马新中,陆中臣,金德生.流域地貌系统的侵蚀演化与耗散结构.地理学报,1993,48(4):367-376.
    [141].孟庆枚.黄土高原水土保持.郑州:黄河水利出版社,1996.
    [142].孟庆香,刘国彬,杨勤科.基于GIS的黄土高原气象要素空间插值方法.水土保持研究,2010,17(1):10-14.
    [143].穆桂春,郭跃,谭云贵.地貌研究中几个问题的探讨.西南师范大学学报(自然科学版),1987,01):46-53.
    [144].祁延年,王志超.关中平原与陕北高原南部的地貌及新地质构造运动.地理学报,1959,25(4):286-298.
    [145].秦承志,朱阿兴,施迅.坡位渐变信息的模糊推理.地理研究,2007,26(6):1165-1174.
    [146].沈玉昌,龚国元.河流地貌学概论.北京:科学出版社,1986
    [147].沈玉昌,苏时雨,伊泽生.中国地貌分类、区划与制图研究工作的回顾与展望.地理科学,1982,2(2):97-105.
    [148].石辉,田均良,刘普灵等.利用REE示踪法研究小流域泥沙来源.中国科学(E辑),1996,26(5):474-480.
    [149].桑广书,陈雄,陈小宁,et al.黄土丘陵地貌形成模式与地貌演变.干旱区地理,2007,03):375-380.
    [150].孙有斌,鹿化煜,安芷生.黄土-古土壤中石英颗粒的粒度分布.科学通报,2000,45(19):2094-2097
    [151].索安宁,赵文喆,王天明,等.近50年来黄土高原中部水土流失的时空演化特征.北京林业大学学报,2009,29(1):90-97.
    [152].汤国安.数字高程模型及地学分析的原理与方法,北京:科学出版社,2005.
    [153].唐克丽.中国水土保持.北京:科学出版社,2004.
    [154].王雷,汤国安,刘学军等.DEM地形复杂度指数及提取方法研究.水土保持通报,2004,24: 55-58.
    [155].王绍敏,孙晓静,王克峰,等.应用平行坐标系进行可视化优化设计.计算机与应用化学,2004,21(1):11-15.
    [156].王协康,方绎.流域地貌系统定量研究的新指标.山地研究,1998,16(1):8-12
    [157].王耀革,王玉海.基于等高线数据的地性线追踪技术研究,测绘工程,2002,11(3):42-44.
    [158].邬建国.景观生态学-过程、格局、尺度与等级.北京:高等教育出版社.2007.
    [159].吴险峰,刘昌明等,栅格的水平分辨率对流域特征的影响分析.自然资源学报.2003,18(2):148-154.
    [160].吴险峰,王中根,刘昌明等.基于DEM的数字降水径流模型在黄河小花间的应用.地理学报,2002,57(6):671-678.
    [161].肖飞,张百平,凌峰,等.基于DEM的地貌实体单元自动提取方法.地理研究2008,27(2):459-466.
    [162].肖学年,崔灵周,王春.模拟流域地貌发育过程的空间数据获取与分析.地理科学,2004,24(4):439-443
    [163].信忠保,许炯心,马元旭.黄土高原面积-高程分析及其侵蚀地貌学意义.山地学报,2008,26(03):356-363.
    [164].徐建华,鲁风,卢艳.中国区域经济差异的时空尺度分析.地理研究,2005,(01):57-68.
    [165].闫云霞,许烔心,廖建华.中国东北地区侵蚀产沙尺度效应的空间分异.地理科学,2010,30(5):783-789.
    [166].严宝文.黄土沟谷下蚀趋势评价的指标体系研究.水土保持学报,2004,(01):122-125.
    [167].杨勤科,焦锋,雷会珠.论黄土高原山川秀美建设.水土保持研究,2000,7(2):52-54.
    [168].杨勤科,李锐.中国水土流失和水土保持定量研究进展.水土保持通报,1998,1(5):13-18.
    [169].杨勤科,赵牡丹,刘咏梅,等.DEM与区域土壤侵蚀地形因子研究.地理信息世界,2009,(01):25-31.
    [170].姚文波.历史时期董志塬地貌演变过程及其成因.博士论文 西安:陕西师范大学,2009
    [171].余新晓,张晓明,牛丽丽,等.黄土高原流域土地利用/覆被动态演变及驱动力分析.农业工程学报,2009,07:219-225.
    [172].余新晓.景观生态学.北京:高等教育出版社.2006.
    [173].袁宝印,巴特尔,崔久旭,等.黄土区沟谷发育与气候变化的关系(以洛川黄土塬区为例).地理学报,1987,42(04):328-337.
    [174].张奕雄;,李熙莹.基于gvf和压力snake模型的哑铃型目标提取.计算机工程与设计,2010,(09):2131-2134.
    [175].张大泉.论负地貌的意义及其研究方向.西南师范大学学报(自然科学版),1988,01):144-152.
    [176].张丽萍,马志正.流域地貌演化的不同阶段沟壑密度与切割深度关系研究.地理研究,1998,17(3):273-278.
    [177].张宗祜.黄土高原土壤侵蚀基本规律.第四纪研究,1993,(01):34-40.
    [178].张宗祜.中国黄土高原地貌类型图的编制原则.水文地质工程地质,1983,29-33.
    [179].张宗祜.我国黄土高原区域地质地貌特征及现代侵蚀作用.地质学报,1981,04):308-320+326.
    [180].赵景波.黄土的本质与形成模式.沉积学报,2003,21(2):198-204.
    [181].郑粉莉,杨勤科.水蚀预报模型研究.水土保持研究,2004,(04):13-24.
    [182].水土保持综合治理规划通则(GB/T 15772—1995)
    [183].周成虎,程维明,钱金凯,等.中国陆地1:100万数字地貌分类体系研究.地球信息科学学报,2009,11(6):707-724
    [184].周启鸣,刘学军,数字地形分析,科学出版社,北京,2006.
    [185].周亚利,鹿化煜,J. A. Mason.浑善达克沙地的光释光年代序列与全新世气候变化.中国科学(D辑),2008,38(4):452-462.
    [186].朱红春.基于DEM的黄土高原地貌类型提取与制图--以黄土高原丘陵沟壑实验样区为例.地球信息科学,2003(4):110-113.
    [187].朱庆,吴波,万能,等.具有良好重复率与信息量的立体影像点特征提取方法.电子学报.2006,34(2):205-209
    [188].朱水清,李占斌,崔灵周,流域地貌形态特征量化研究进展.西北农林科技大学学报(自然科学版),2005,33(4):149-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700