冶金熔体中夹杂物一般动力学的理论研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
夹杂物的动力学一直是一个引起广泛兴趣的研究课题,其涉及的内容很广,基本的物理过程大致包括:形核、生长、聚合、传递等,夹杂物去除可以视为传递过程的结果。弄清冶金熔体中夹杂物动力学的一般规律,开展夹杂物去除技术的基础和应用研究,对于纯净钢生产、提高冶金企业的技术水平和市场竞争力具有重要的理论意义和现实意义。
     本文第一部分,对夹杂物动力学的若干方面进行了理论和实验研究。
     采用聚苯乙烯颗粒,对夹杂物颗粒运动阻力的形状修正系数进行了水模型实验。发现,在相同体积下,不同颗粒的形状修正系数的大小满足如下规律:棒状颗粒沿长轴方向<球形颗粒<十字形颗粒沿平面方向<簇状颗粒<十字形颗粒沿平面的法向<棒状颗粒沿横向;一般地,夹杂物的形状修正系数,可取1.5~2.8。
     对夹杂物在冶金容器壁面上吸附的稳定性进行了力学分析,结合已有的实验结果,提出了夹杂物吸附效率的一个预测关系,进而给出了夹杂物的壁面传质系数。结果表明,传质系数是流体壁面剪力的函数,随着壁面剪力的增大,传质系数呈现先增后减的规律,在某个临界剪力出现极大值,这个临界剪力大约是使夹杂物颗粒在壁面发生滚动的临界剪力的5倍。
     对夹杂物生长的两种主要形式“扩散长大”和“碰撞聚合”,进行适当的物理简化和数学建模,推导了夹杂物生长速率的解析关系,建立了夹杂物生长的动力学理论。本文获得的扩散长大率,得到前人实验结果的检验。理论分析显示,夹杂物的早期生长依赖于扩散长大和布朗运动碰撞,前者作用是主要的,后期生长依赖于湍流碰撞和Stokes碰撞,湍流碰撞占主导地位。在冶炼过程,碰撞聚合比较迅速,而在连铸过程,碰撞聚合作用并不明显,精炼过程则处于一个过渡状况。对夹杂物碰撞聚合的微观形态进行了Monte-Carlo模拟,结果与文献报道的实验观察一致。尝试用分形理论解释夹杂物的凝聚结构,发现夹杂物的分形维数约等于2.25。
     基于上述研究,把形核、生长、聚合和传递等基本物理过程耦合在一起,建立了一个有普适性的夹杂物通用动力学模型,为深入研究冶金反应器中夹杂物的动力学行为奠定了基础。
     论文第二部分,基于前面的研究,在Euler(流场)-Lagrange(颗粒运动)框架
    
    上海大学博士学位论文
    下,提出了一个夹杂物运动、聚合和去除祸合的统计模型。应用这个模型,对某
    工业中间包中夹杂物的传递和去除进行了数学模拟。结果发现,通过浮力上浮,
    是中间包中夹杂物去除的主要方式,壁面吸附、碰撞聚合增进了夹杂物的去除效
    果。半径10卿、20“m、30林m夹杂物的总去除效率接近20%、42%和75%,其
    中壁面吸附的贡献占1/6一1/4。碰撞长大对夹杂物去除的贡献<5%,表明中间包
    中夹杂物的碰撞长大并不显著,这个结论与传统的观点明显不同。
     论文第三部分,基于前面的研究,对新型金属液纯净技术—单电流电磁
    分离夹杂物技术进行了系统的理论和实验研究,以期提供了一种经济、实用的钢
    液净化手段。
     解析了直流和交流激励下,金属液在圆管、扁平管中的磁场分布,提出了相
    对电磁浮力、净化效率、净化时间的概念和理论关系,建立了单电流电磁分离夹
    杂物技术的基本框架。理论分析和数值计算表明,工频交流电产生的电磁力分布
    逼近直流电,使用直流电看上去没有必要;夹杂物的电磁净化效率是电流密度、
    颗粒半径及其在分离管中停留时间的函数,圆管和扁管的净化效率接近;矩形电
    磁净化管会在截面诱发二次流,二次流的出现扰乱了夹杂物的正常迁移,延滞了
    颗粒的迁移时间,对夹杂物的去除不利。
     利用AI一22%si和Al一5%Mg一2%Sic合金,采用工频电流进行了电磁分离夹
    杂物的静态实验。结果发现,通电305、电流密度保持4x106刀衬,初晶si在
    各种管道中都能完全偏聚,而半径大于50林m的siC颗粒,完全偏聚只要不到105
    的时间,SIC颗粒的偏聚比初晶Si快。电磁分离技术可望移植到表面增强梯度功
    能材料具的制备,从而提供一种经济、实用的新方法。
     利用AI一8%Mg一2%A12O3合金,采用工频电流进行了电磁分离夹杂物的连续
    实验。结果发现,在铝液流速2.3一2.9。而s,电流密度0.8一1 .4 xl护刀mZ的条件
    下,出口温度比入口温度提高了15一25℃,加热效果可以满足对金属液加热的需
    要。通电密度1.4x 107 A/mZ,金属液在管道中的停留时间保持105,A1203颗粒
    的去除效率可达95%。在净化处理后的铝液中,发现大于20林m的夹杂物都能成
    功去除。实验结果与理论预测基本吻合。
     论文第最后部分,研究了材料电磁制备过程中,晶粒磁取向的微观机制,提
    出了晶粒取向的一个动力学模型,获得了取向时间的一个分析解。对Bi一3%合金,
    在300℃下和已3T的磁场中进行了淬火实验,得到了有取向的BIMn织构。发现
    铁磁性的BIMn晶粒的磁取向时间小于l秒,与理论预测吻合。在BIMn织构的
    形成过程中,取向不是控制性环节。
With the increasing demands for the quality of steel product, much attention has been drawn to the production of pure steel in metallurgical enterprises throughout the world. It is key to how to control the level of impurity, especially the inclusion, which mainly responsible for the defect of most steel products. Therefore, it is of significance to investigate the law of dynamics, such as growth, transfer and removal of inclusions in molten melts, and further improve the conventional process or develop new techniques regarding pure steel.
    The paper is divided into four parts. In the first part, the experimental and theoretical studies are carried out from several aspects involving the dynamics of inclusions as follows:
    The modification coefficients of motion resistance, Cs, of inclusion particles of different shape to the ideal spherical particle are measured by model experiments using polystyrene particle of radius 1-2.6mm. It is found that the order of increasing Cs is the rod-like particle oriented its long axis, the spherical particle, the flake-like particle oriented its plane, the cluster-type particle, the flake-like particle oriented the normal to its plane, and the rod-like particles oriented its radial axis. Commonly, Cs=1.5-2.8 for real inclusion particles.
    The mechanical condition that an inclusion adheres stably to the rough wall of vessel exposed to a shear flow is analyzed theoretically, then a relationship of the adhesion efficiency is formulated, and the mass transfer coefficient, , of inclusion to the wall due to turbulence fluctuation and field force effect is obtained which is the function of wall friction force of fluid. It indicates that there exists a peak for the mass transfer coefficient over the wall friction force, and in most cases, the turbulence promotes the transfer of inclusion to wall.
    A theory on inclusion growth of single particle in molten melts is developed. Two main growth modes, diffusion-reaction-precipitation and collision-coalescence, of inclusion are simplified physically and modeled mathematically, and some analytic
    
    
    solutions or relationships for the growth rate of inclusion are derived, which give an general physical picture of inclusion growth. The theoretical growth rate of diffusion is supported by the experimental results early reported by Japanese scholar. This theory shows that the early growth of inclusion depends on diffusion-reaction-precipitation and Braunian motion collision, and the former is decisive, while the latter growth depends on turbulence shear collision and Stokes' collision, and the former is dominant; The collision and coalescence proceeds quickly during smelting process, and is negligible in continuous casting process, moreover, a transition state exists in the refining process. Further, the micro- structure of inclusion aggregate is simulated by methods of Monte-Carlo, the resultant aggregates agree with the cluster inclusions reported in literatures. The Fractal theory is introduced to interpret the structure of the aggregate, the simulation shows that the cluster inclusion has a Fractal dimension of 2.25.
    Based on above studies, a general dynamic model of inclusion coupling the nucleation, growth, coalescence and transfer has been developed firstly, which is expected to lay a foundation to further investigate widely and profoundly the basic behavior of inclusion in metallurgical vessels.
    In the second part, foregoing theory has been utilized to build a comprehensive mathematical model within the Lagrangian framework to study the transport of inclusion in some continuous casting tundish. The results demonstrate that the floatout by buoyancy is the main path of removal of inclusion, and the coalescence and adhesion to wall provide a secondary aid. In present tundish, a removal efficiency of 20%-75% can be obtained for inclusion of radius from 10m to 30m. The coalescence helps the removal of inclusion, but seems not notable, restricted by the practical condition of tundish.
    In the third part, as another application, the only-by-current ele
引文
1 栾燕.钢中非金属标准图谱及评定方法的发展动态.冶金标准化与质量,2000:37(2):8-11
    2 曲英.炼钢学原理(第二版).北京:冶金工业出版社,1994:188-200
    3 蒋国昌.纯净钢及二次精练.上海:上海科学技术出版社,1994:1-30
    4 郑沛然.连续铸钢工艺及设备.北京:冶金工业出版社,1990:141-142
    5 王一洲.超低头板坯夹杂物来源分析及控制实践.钢铁,2000:35(11):26-28
    6 向井 楠宏等.連続铸造浸渍介在物付着耐火物材質影赂介在物付着基考察.铁鋼,1999:85(4):19-25
    7 陈崇峰,傅秀琴.防止中间包水口堵塞新技术.云南冶金,1997:26(3):39-42
    8 贾斌.RH真空处理整体流场及脱气机理的研究.[硕士学位论文],包头钢铁学院,2000
    9 朱立光,唐国章.纯净钢及纯洁铸坯的生产技术.河北理工学院学报,2000:22(增刊): 6-11
    10 刘中柱,蔡开科.纯净钢生产技术.钢铁,2000:35(2):64-69
    11 朱立新,蒋晓权,许春蕾.宝钢纯净钢生产技术进展.钢铁,2000:35(11):15-18
    12 徐曾啟.炉外精炼.北京:冶金工业出版社,1994:18,177
    13 王建军,包燕平,曲英.中间包冶金.北京:冶金工业出版社,2000:1-5
    14 Y. Miki, S. Ogura, T. Fujii. Separation of Inclusions from Molten Steel in a Tundish by Use of a Rotating Electromagnetic Filed. Kawasaki Steel Technical Report, Nov, 1996; (35): 67-73
    15 G. K. Batchelor, J. T. Green. The Determination of the Bulk Stress in a Suspension of Spherical Particles to Order c~2. J Fluid Mech., 1972; 56(3): 401-427
    16 U. Lindborg, K.Torssell. A Collision Model for the Growth and Separation of Deoxidation Products. Trans. AIME, 1968; 242:94-102
    17 韩其勇.治金反应动力学.北京:治金工业出版社,1983:123-133
    18 F. S. Ham. Theory of Diffusion-Limited Precipitation. J Phys. Chem. Solids, 1958; 6:335-351
    19 E. T. Turkdogan. Nucleation, Growth and Floatation of Oxide Inclusions in Liquid Steel. J Iron Steel Inst., 1966; 204: 914-919
    20 E. T. Turkdogen. Deoxidation of Steel. J. Iron Steel Inst., Jan., 1972:21-36
    21 F.Oters著,倪瑞明等译.钢冶金学.北京:冶金工业出版社,1997:345
    22 坂上六郎,川崎千岁,钤木子,佐藤圭司.溶铁脱酸.铁鋼, 1969;(7):550-575
    23 果世驹.粉末烧结理论.北京:冶金工业出版社,1998:123-133
    24 H. Fischmeister, G. Drimvall. Ostwald Ripening—A Survey. Sintering and Related Phenomena. In: G. C. Kuczynski ed. Material Science Research Vol 6. Plenum Press, New York, 1973:119-130
    25 郑忠,李宁.分子与胶体的稳定和聚沉.北京:高等教育出版社,1995
    26 常青,傅金镒,郦兆龙.絮凝原理.兰州:兰州大学出版社,1993:57-110
    27 S. K. Friedlander. Smoke, Dust and Haze, Fundamentals of Aerosol Dynamics 2nd Edition. Oxford Univ. Press, New York., 2000:306-328
    28 A.N. Ernest, J. S. Bonner, R. L. Autenrieth. Determination of Particle Collision Efficiencies for Flocculent Transport Models. J Environ. Eng., 1995; 121 (4): 320-329
    29 P. G. Saffman, J. S. Turner. On the Collision of Drops in Turbulent Clouds. J. Fluid Mech.,
    
    1956; 1:16-29
    30 K. Nakanish, J. Szekely. Deoxidation Kinetics in a Turbulent Flow Field. Transactions ISIJ, 1975; 15:522-530
    31 Y. Miki, B. G. Thomas. Model of inclusion removal during RH degassing of steel. Proceeding of Steelmaking Conference, 1997:37-45
    32 L. Zhang, S. Taniguchi, K. Cai. Fluid flow and inclusion removal in continuous casting tundish. Metall. Materials Trans. B, 2000; 31:253-266
    33 方丁酉.两相流.长沙:国防科技大学出版社,1988:30
    34 C. Crowe, M. Sommerfad, Y. Tsuji. Multiphase Flows with Drops and Particles. CRC Press, New York, 2000: 37-112
    35 严宗毅.低雷诺数流理论.北京:北京大学出版社,2002
    36 A. T. Chwang, T. Y. T. Wu. Hydrodynamics of Low-Reynolds-number flow, Part 1. Rotation of Axisymmetric Prolate Bodies. J. Fluid Mech., 1974; 63(8): 607-662
    37 S. L. Soo. Multiphase Fluid Dynamics. Science Press, Beijing, 1990:61-65
    38 周力行.湍流气粒两相流动和燃烧的理论与数值模拟.北京:科学出版社,1994:145
    39 S. Joo, J. W. Han, R. I. L. Guthrie. Inlusion Behavior and Heat-Transfer Phenomena in Steelmaking Tundish Operations. Metall. Trans. B, 1993; 24:755-788
    40 盛东源,倪满森,邓开文等.中间包钢液流动、温度控制和夹杂物行为的数学模拟.金属学报,1996;32(7):742-747
    41 李东辉,李宝宽,赫冀成,中间包多孔挡板流动控制去除夹杂物效果的模拟研究,金属学报,1999;35(10):1107-1111
    42 O. J. Ilegbusi, J. Szekely. Effect of Magnetic Field on Flow, Temperature and Inclusion Removal in Shallow Tundishes. ISIJ Inter., 1999; 29(12): 1031-1039
    43 A. K. Sinha , Y. Sahai. Mathematical Modeling of Inclusion Transport and Removal in Continuous Casting Tundishs. ISIJ Inter., 1993; 33(5): 556-566
    44 P.G. Saffman. The Lift on a Small Sphere in a Slow Shear Flow. J. Fluid Mech., 1965; 22(2): 385-400
    45 S. L, Rubinow, J. B. Keller. The Transverse Force For on a Spinning Sphere Moving in a Viscous Fluid. J Fluid Mech., 1961; 11:447-459
    46 李保卫,贺友多.顶吹转炉内金属液滴的产生、运动及传热的数学模型.金属学报,1995;31(4):b145-150.
    47 李保宽,赫冀成.铁锰合金颗粒在底吹钢包内的运动分析.钢铁研究学报,1997:9(5): 1-5
    48 张炯明,赫冀成,李保宽.连铸结晶器中夹杂物粒子运动轨迹的数值模拟.中国有色金属学报,1997:7(增刊1):82-86.
    49 张邦文.连铸中间包中夹杂物运动和分形聚合的计算机模拟.[硕士学位论文],包头钢铁学院,1999
    50 M. Li, R. I. L Guthrie. Numerical Studies of the Motion of Particles in Current-Carrying Liquid Flowing in a Circular Pipe. Metallurgical and Materials Transactions B, 2000; 31B: 357-363
    51 A. D. Gosman, E. Ioannides. Aspects of Computer Simulation of Liquid-Fueled Combustors. J. Energy, 1983; 7 (1): 482-490
    52 S. T. Johansen, F. Boysan. Fluid Dynamics in Bubble Stirred Ladies: Part Ⅱ. Mathematical Modeling. Transaction B, 1988; 19B: 755
    
    
    53 T. Nakaoka. Evaluation of Inclusion Behavior in Tundish Using Numerical Simulation of Molten Steel Flow. CAMP-ISIJ, 1997; 10:760-761
    54 Y. Miki, B. G. Thomas. Modeling of Inclusion Removal in a Tundish. Metal. Mater. Trans., 1999; 30B: 639-654
    55 N. Kubol. Two-phase Flow Simulation of Molten Steel and Argon Gas in Continuous Casting Mold. CAMP-ISIJ, 1997; 10:758-759
    56 C. T. Crowe, M. P. Sharma and D. E. Stock. The Particle-Source-In Cell (PSI-CELL) Model for Gas-Droplet Flows. J. Fluids Engineering, 1977; 325-332
    57 G. A. Kallio, M. W. Reeks. A numerical Simulation of Particle Deposition in Turbulent Boundary Layers. J. Inter. Multiphase Flow, 1989; 15(3): 433-446
    58 樊建人,岑可法,谷口博等.气固多项流的数值模拟.浙江大学学报,1987;21(6), 13-19
    59 N. Lindskog, H. Sandberg. Studies on the Deoxidation Mechnism in a Stirred Steel Bath Using Radioactive Isotopes. Stand. J. Metallurgy, 1973; (2): 71-78
    60 S. Linder. Hydrodynamics and Collisions of Small Particles in a Turbulent Metallic Melt with Special Reference to Deoxidation of Steel. Scand. J. Metal., 1974; (3): 137-150
    61 T. A. Engh, N. Lindskog. Afluid Mechanical Model of Inclusion Removal. Scand. J. Metall., 1975; (4): 49-58
    62 A. Davies. Turbulence Phenomena, Academic Press, London, 1972:305
    63 K. Saylor, D. Bolger. Preventing Turbulence in the Tundish. Steel Technology International, 1995; 187-191
    64 樊俊飞,朱苗勇,张清朗,王文忠.六流连铸中间包内流动与传热耦合过程的数值模拟及控流装置优化.金属学报,1999:35(11):1191-1194,
    65 张捷宇,牛原,刘中兴,樊俊飞等.连铸中间包陶瓷过滤器优化设计的水力学模拟实验研究.包头钢铁学院学报,1997:16(2):102-109
    66 王存,潘公平,杨春政,张鉴等.中间包钢水等离子加热的实验研究.钢铁,1997;32 (9):21-24
    67 胡志高,邹海辉,王文明,范光前等.氮等离子体弧加热中间包用保护渣.钢铁研究学报,1998;9(4):13-17
    68 陈俊宏,盛开勋.隔热型镁质中间包涂抹材料的研制.鞍山钢铁学院学报,1999;22(3):152-154
    69 李东辉,李宝宽,赫冀成.中间包底部吹气过程中去除夹杂物效果的模拟研究.金属学报,2000;36(4):411-416
    70 Y. He, Y. Sahai. Fluid Flow Dynamics of Continuous Casting Tundish, Proceeding of 5th Inter. Iron Steel Congress, Washington, 1986:81-87
    71 贺友多,Y.Sahai.不同因素对连铸中间包流场的影响.金属学报,1989;25(4):B272-276
    72 B. Kaufmann, A. Nledermaryr, H. Sattler, A. Preuer. Separation of Nonmetallic Particles in Tundishes. Steel Research, 1993; 64(4): 203-209
    73 K. H. Takle, J. C. Ludwig. Steel Fow and Inclusion Separation in Continuous Casting Tundishes. Steel Research, 1987; 58(6): 262-269
    74 H. Tozawa et al. Agglomeration and Floatation of Alumina Clusters in Molten Steel. ISIJ Inter., 1999; 39(5): 426-434
    75 D.O. Hobson, I. Alexeff, V. K. Sikka. Method and Apparatus For Removal of Gaseous Liquid and Particulate Contaminants From Molten Metals, US patent 4786320, 1988
    
    
    76 N. El-Kaddah. Apparatus and a Method for Improved Filtration of Inclusion from Molten Metals, U.S. Patent 4909836, 1990
    77 钟云波 任忠鸣 邓康等.行波磁场净化金属液时矩形管及三角管内夹杂物去除效率的理论分析,金属学报,1999;35(5):503-508
    78 K. Sassa, H. Yamao, S. Asai. Separation of Inclusions in Liquid Meta; Using Alternating Magnetic Field. Proceeding of Inter. Symposium on EPM, 1997, Paris: 157-161
    79 D. Leenov, A. Kolin. Theory of Electromagnetophoresis. I. Magnetohydrodynamic Forces Experienced by Spherical and Symmetrically Oriented Cylindrical Particles. J Chem. Phys., 1954; 22(4): 683-688
    80 A. V. Andreev, U. T. Andres. Influence of Shape, Orientation and Conductivity of Bodies on Their Elctromagnetic Expulsion From Conducting Liquids. Zh. Prikl. Mekh. I Tekh. Fiz.,1964; (2): 140-143
    81 疏达,孙宝德,李天晓,张雪萍,周尧和.铝熔体中夹杂物形状与取向对其电磁分离的影响.金属学报,1999;36(9):956-960
    82 A. D. Patel, N. EL-Kaddah. On the Theory of Electromagnetics Separation in Alternating Electromagnetic Fields. Proceeding of Inter. Symposium on EPM, ISIJ, Nagoya, 1994: 115-120
    83 N. El-Kaddah, A. D. Patel, T. T. Natarajan. The Electromagnetic Filtration of Molten Aluminum Using an Induced Current Separator. JOM, 1995; 47(5): 46-49
    84 高桥功一,渡部正呈,谷口尚司等.溶鋼中非金属夹在物高周波磁埸分离关実验.CAMP-ISIJ,2001:14:42-45
    85 李克,孙宝德,李天晓 等.利用高频磁场分离铝熔体中的非金属夹杂.金属学报,2000;37(4):405-410
    86 田中佳子,佐健介,岩井一彦,浅井滋生.移动磁埸利用溶融金属中非金属介在物除去.铁鋼,1995:81(12):12-17
    87 钟云波.电磁力场作用下液态金属中非金属颗粒迁移规律及其应用研究.[博士学位论文],上海大学,1999
    88 S.Taniguchi, J. K. Brimacombe: Application of Pinch Force to the Separation of Inclusion Particles from Liquid Steel. ISIJ Int., 1994; 34(9): 722-731
    89 P. Marty, A. Alemany. Theoretical and Experimental Aspects of Electromagnetic Separation. Metallurgical Applications of Magnetohydrodynamics. Proceeding of a Symposium of the International Applied Mechanics. 1982, Cambridge, 245-259
    90 朴焌杓,森平淳志,佐健介,浅井滋生.电磁気力利用溶融金属中介在物除去.铁鋼,1994;80(5):31-36
    91 V. M. Korovin. Separation of Particles Suspended in a Conducting Liquid with the Help of an Alternating Electromagnetic Field. Magnetohydrodynamics, 1985; 21(3): 321-326
    92 徐世良.C语言程序集.北京:清华大学出版社,1994年:203
    93 F. Loffier. Collection of Particles in Fibre Filter. Proceeding of 4th Int. Clean Air Congr., 1974; 800-804
    94 M. M. Sharma, H. Chemoun et al. Factors Controlling the Hydrodynamic Detachment of Particles from Surfaces. J. Colloid Inter. Surf. Sci., 1992; 149(1): 121-134
    95 S. G. Yiantsios, A. J. Karabelas. Detachment of Spherical Microparticles Adhering on Flat Surfaces by Hydrodynamic Forces. J. Colloid and Interface Science, 1995; 176:74-85
    96 A. A. Busnaina. Particle-substrate Collisions, Particle Rebound and Removal, Gordon and
    
    Breach Publishers. In: D. S. Rimal and L. H. Sharpe, ed. Advances in Particles Adhesion. Amsterdam, 1996:167-180
    97 S. T. Johansen, S. Taniguchi. Predicting of Agglomeration and Break-up of Inclusions during Metal Refining. In: B. Welch ed. Light Metals 1998, TMS, 1998:855-861
    98 M. E. O'Neill. A Sphere in Contact with a Plane Wall in a Slow LinearShear Flow. Chem. Eng. Sci., 1968; 23:1293-1298
    99 H.Schlichting著,徐燕侯等译.边界层理论(下册).北京:科学出版社,1991:672
    100 S. Taniguchi et al. Model Experiment on the Coagulation of Inclusion Particles in Liquid Steel. ISIJ Inter., 1999; 36 (Supplement): 117-120
    101 H. Matsuno. Coagulation and Separation of Inclusions in Molten Steel during RH Treatment. CAMP-ISIJ, 1997; 10:103-104
    102 张济忠.分形.北京:清华大学出版社,1995:202
    103 M. J. Vold. Computer Simulation of Floc Formation in Colloidal Suspension. J. Colloid Sci., 1963; 18:684-695
    104 B. Caprile, A. C. Levi. L. Liggieri. Random Rain Simulations of Dendritic Growth. In: L. Pietronero and E. Tosatti ed. Fractals in Physics. Elsevier Science Pub. B. V., 1986:279-282
    105 J.O.Hinze著,周光垌,魏中垒译.湍流(上册).北京:科学出版社,1987:191
    106 周德才,孙亦鸣.计算机随机模拟原理、方法即计算程序 武汉:华中理工大学出版社,1999:97-120
    107 大井浩,关根 稔,河西 悟郎.溶铁中生成構机.铁鋼,1973;(8):12-22
    108 大河平和男,佐藤 憲夫,森久.低炭素鋼中 Al_2O_3三次元的形态.铁鋼,1978;(8):100-107
    109 H. O. Randolph, M. A. Larson. Theory of Paniculate Processes, Analysis and Techniques of Continuous Crystallization, 2nd Edition. Academic Press, London, 1988:50-79
    110 T. E. Ramabhadran, T. W. Peterson and J. H. Seinfeld. Dynamics of aerosol coagulation and condensation. AIChE J., 1976; 22(5): 840-851
    111 T. W. Peterson, F. Gelbard and J. H. Seinfeld. Dynamics of source-reinforced, coagulating, and condensing aerosols. J. Colloid Interface Sci., 1978; 63(3): 426-445
    112 B. E. Launder, D. B. Spalding. Lectures in Mathematical Models of Turbulence. Academic pres, London, 1972
    113 D. S. Finnicum, J. Hanratty. Turbulent Normal Velocity Fluctuations Close to a Wall. Phys. Fluids, 1985; 28:1654-1658
    114 M. R. Maxey, J. J. Riley. Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow. Phys. Fluids, 1983; 26:883-889
    115 S. V. Patanker. Numerical Heat Transport and Fluid Flow, McGraw-Hill Book Comp., New York, 1980
    116 陶文铨.数值传热学.西安:西安交通大学出版社,1988
    117 贺友多.传输过程的数值方法.北京:冶金工业出版社,1991
    118 钟顺时,钮茂德.电磁场理论基础.西安:西安电子科技大学出版社,1995
    119 汤蕴璆.电机内的电磁场.北京:科学出版社,1981
    120 R. L. Stoll. The Analysis of Eddy Currents. Oxford University Press, London, 1974: 63-70.
    121 H. E. Boyer et al. ASM Metals Reference Book. The ninth Edition, Ohio, 1985.
    122 许振明,李克,朱志亮,周尧和.电磁相分离制备自生表层复合材料.上海交通大学学
    
    报,2002;36(1):13-16
    123 李克.高频交变磁场对金属熔体中夹杂颗粒的分离作用及其应用研究.[博士学位论文],上海交通大学,2002
    124 秦曾煌.电工学(第四版).北京:高等教育出版社,1990:374
    125 M. N. Shetty, D. K. Rawat, K. N. Rai, Magnetic Properties of Directionally Solidified Bi-Mn Alloys. J. Materials Science, 1987; 22:1908-1912
    126 E. M. Savitsky, R. S. Torchinova, S. A. Turanov. Effect of Crystallization in Magnetic Field on the Structure and Magnetic Properties of Bi-Mn Alloys. J. Cryst. Growth, 1981; 52: 519-523
    127 H. Yasuda, I. Ohnaka, K. Shimamura et al, Processing for Aligned Structure by a Magnetic Field. Proceeding of 3rd Int Symp on EPM, ISIJ, Nagoya, Japan, 2000:647-652
    128 D. E. Farrel, B. S. Chandrasekhar, M. R. DeGuire et al. Superconducting Properties of Aligned Crystalline Grains of Y_1Ba_2Cu_3O_(7-δ). Physical Review B, 1987; 36(7): 4025-4027
    129 P. de Rango, M. Lee, P. Lejay et al. Texturing of Magnetic Materials at High Temperature by Solidification in a Magnetic Field. Nature, 1991; 349:770-772
    130 P. J. Ferreira, H. B. Liu, J. B. Vander Sande, A Model for the Texture Development of High-T_c Superconductors under an Elevated Magnetic Field. J. Mater. Res., 1999; 14(7): 2751-2763
    131 H. Morikawa, K. Sassa, S. Asai. Control of Precipitating Phase Alignment and Crystal Orientation by Imposition of a High Magnetic Field. Mater. Trans., JIM, 1998; 39(8): 814-818
    132 A. E. Mikelson, Y. K. Karkin. Control of Crystallization Process by Means of Magnetic Fields. J. Cryst. Growth, 1981; 52:524-529
    133 王晖.强磁场对合金析出相凝固行为的影响.[博士学位论文],上海大学,2003:39
    134 宛德福,马兴隆.磁性物理学.北京:电子工业出版社,1999:436
    135 R.F.Probstein著,戴干策等译.物理化学流体力学.上海:华东化工学院出版社,1992: 108
    136 S. E. Barrett, D. J. Durand, C. H. Pennington et al, ~(63)Cu Knight Shifts in the Superconducting State of YBa_2Cu_3O_(7-δ)(Tc=90K). Physical Review B, 1990; 41(10): 6283-6296
    137 D. Vaknin, S. K. Sinha, C. Stassis et al. Antiferromagnetism in Sr_2CuO_2Cl_2. Physical Review B, 1990; 41(4): 1926-1933
    138 R.C.O'Handly著,周永洽等译.现代磁性材料原理和应用.北京:化学工业出版社, 2002:39
    139 W.G. Moffatt. The Handbook of Binary Phase Diagrams. USA: Genium, 1984
    140 M. H. Davis. Collision of Small Cloud Droplets: Gas Kinetic Effects. J Atmos. Sci., 1972; 29: 911-915
    141 R. H. Davies. The Rate of Coagulation of a Dilute Polydisperse System of Sedimenting Spheres. J Fluid Mech., 1984; 145:179-199
    142 K. Higashitani, R. Ogawa, G. Hosokawa, Y. Matsuno. Kinetic Theory of Shear Coagulation for Particles in a Viscous Fluid. J Chem. Eng. Japan, 1982; 15 (4): 299-303
    143 K. Higashitani, K. Yamaguchi, Y. Matsuno, G. Hosokawa. Turbulent Coagulation of Particles Dispersed in a Viscous Fluid. J Chem. Eng. Japan, 1983; 16 (4): 299-304
    144 A.H.Nayfeh著,宋家骗译.摄动方法引论.上海:上海翻译出版公司,1990:304-350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700