绵羊FMDV受体整联蛋白αvβ6的体外表达及组织分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口蹄疫(Foot-and-Mouth Disease, FMD)是由口蹄疫病毒(Foot-and-Mouth Disease Virus, FMDV)引起的一种急性、热性和高度接触性传染病。FMDV主要利用VP1 G-H环上一段高度保守的精氨酸-甘氨酸-天冬氨酸(Arg-Gly-Asp, RGD)序列与细胞表面的受体结合以感染细胞。研究表明至少有5种细胞识别机制,即细胞表面的整联蛋白αvβ3、αvβ6、αvβ1、αvβ8和硫酸乙酰肝素(Heparan Sulfate, HS)可作为FMDV的受体,有研究表明整联蛋白αvβ6可能是决定FMDV嗜性的主要功能受体。FMDV受体在动物体组织中的分布情况可以反映FMDV的感染途径、细胞嗜性及传播方式等,因此研究FMDV受体的生物学功能和组织分布情况对阐明其致病、逃避细胞免疫等机制具有重要作用。
     构建绵羊FMDV受体整联蛋白β6亚基配体结合域(LBD)的重组原核表达质粒pPRO/β6LBD,将其转化到BL21(DE3)宿主菌中并经IPTG诱导表达,SDS-PAGE鉴定重组蛋白的表达并利用镍离子亲和树脂对其纯化,通过酶联免疫吸附试验(ELISA)和Western-Blot方法分析鉴定表达产物。实验结果显示,成功诱导表达了目的蛋白,并利用pPROEXTM HTb上的6个组氨酸(His)标签纯化出高纯度的融合蛋白。纯化后的蛋白经间接ELISA和Western-Blot检测,与特异性抗体具有良好的特异性反应及抗原活性。
     构建真核表达载体pcDNA3.1(+)/β6S,将其转染至表达人αv亚基的结肠癌细胞株SW480,间接免疫荧光法(IFA)和Western-Blot方法检测整联蛋白αvβ6在转染细胞中的表达。IFA检测结果显示,转染细胞的细胞膜及细胞质内可见致密的绿色荧光,而未转染的SW480细胞和空载体转染细胞未检测到β6亚基的表达。Western-Blot结果显示,转染β6亚基的SW480细胞表达的重组蛋白可被抗FMDV猪源整联蛋白β6亚基的单克隆抗体所特异性识别。所构建的表达绵羊整联蛋白β6亚基的细胞系为深入研究整联蛋白αvβ6在FMDV感染中的生物学作用奠定了基础。
     间接免疫组化和间接免疫荧光法检测整联蛋白αvβ6在健康绵羊舌、鼻、唇等组织中的表达分布。结果显示,在羊舌、鼻、唇、蹄冠等多种被检组织的细胞膜及细胞质内均出现了特异性的阳性反应物,且阳性反应物主要见于各种上皮细胞。在阴性对照组中观察不到特异性的阳性反应物。表明FMDV整联蛋白受体αvβ6广泛分布于健康绵羊的多种器官组织的上皮细胞中。
     利用实时定量RT-PCR方法对健康羊体内不同组织中αv、β1、β6亚基的mRNA表达水平进行相对定量分析。实验数据显示,整联蛋白αv、β1亚基在各种组织中均有不同程度的表达,而整联蛋白β6亚基仅在部分组织中检测到了表达,其中在唾液腺、心脏、肺脏、鼻上皮等组织中的表达量最高,在下颌淋巴结、肝脏和脾脏中未检测到表达。结合免疫组化和免疫荧光试验结果总结αvβ6的表达分布规律,从而为深入研究FMDV的感染途径、细胞嗜性及整联蛋白αvβ6在FMDV感染中的作用奠定基础。
Foot-and-mouth disease (FMD) is an acute, febricity and highly contagious disease caused by foot-and-mouth disease virus (FMDV), which is classified by Office International des Epizooties (OIE; World Organisation for Animal Health) as the first one of OIE List A diseases. It has been demonstrated that there are at least five receptors for FMDV, including integrinαvβ3,αvβ6,αvβ1,αvβ8 and heparan sulfate(HS). Integrinαvβ6 serves as the major receptor that determines the tropism of FMDV for the epithelia normally targeted by this virus.
     The fragment coding sheep integrinβ6 ligand-binding domain was amplified by PCR from the recombinant plasmid pGEM-β6. After doubly digested with BamHⅠand XhoⅠ, theβ6LBD fragment was subcloned into prokaryotic expression vector pPROEXTMHTb which was doubly digested with same enzymes. The recombinant expression plasmid pPRO/β6LBD was constructed and transformed into E.coli BL21(DE3) and induced by IPTG. The expression of fusion protein was detected by SDS-PAGE and purified by Ni-NTA His.Bind resins. The expressed product was identified by ELISA and Western-Blot assay. SDS-PAGE demonstrated that the fusion protein was expressed efficiently as inclusion body in E.coli with the expected molecular weight of 33KDa. ELISA and Western-Blot assays showed that the recombinant protein has the good antigenicity and specificity, which will lay a foundation for further research on distribution and the role of the ovine integrinβ6 subunit in FMDV infection.
     Eukaryotic expression primers forβ6 ligand-binding domain were designed and theβ6 gene was amplified, using pGEM-β6 as temple. The PCR product was ligated with the vector pcDNA3.1(+) to construct eucaryon expression vector pcDNA3.1(+)/β6S, and then transfected into Human Colon Carcinoma Cell line(SW480). The expression of integrinαvβ6 was detected by indirect immunofluorescence assay(IFA) and Western-Blot assay. IFA indicated that green fluorescence was appeared in cell membrane and cytoplasm of the pcDNA3.1(+)/β6S transfected cells, whereas, it can not be observed in SW480 and pcDNA3.1(+) transfected cells. The result of Western-Blot showed that the recombinant protein was expressed and could be recognized by the monoclonal antibody against porcine integrinβ6 subunit LBD.
     The integrin receptors of FMDV have been studied extensively in cell culture. However, the roles of the various integrins in determining the tissue tropism and pathogenesis of FMDV have not yet to be established. Here, we present analyses, using indirect immunohistochemistry assay (IHA), immuno?uorescence confocal microscopy and Real-time RT-PCR, ofαvβ6 expression within the different tissues that are normally targeted by FMDV in sheep. The results showed that idio-positive reaction was appeared in cell membrane and cytoplasm of tongue, nose, lip and so on,αvβ6 was mainly expressed on the surfaces of the epithelial cells at the sites where FMDV is known to replicate at a high level during a natural infection. Results of the Real-time RT-PCR study showed that theαv,β1 mRNA were transcripted at high or low level in the different tissues. In constrast, theβ6 mRNA is only restricted in the partial tissues, and at high level in the salivary gland, heart, lung and nasal epithelium, and not detected in the mandibular lymph node, liver and speen. These data suggest that integrinαvβ6 serves as the major receptor that determines virus tropism, andαvβ6 is expressed constitutively at levels sufficient to allow initiation of infection, which will lay a foundation for further understanding of the roles of integrinαvβ6 in FMDV infection.
引文
[1] Esteban D, Eric B, Cristina E, et al. Foot-and-mouth disease virus[J]. Comp Immun Microbiol Infect Dis, 2002, 25(4):297~308.
    [2] Logan D, Abu-Ghazaleh R, Blakemore W, et al. Structure of a major immunogenic site on foot-and-mouth disease virus[J]. Nature, 1993, 362(6420):566~568.
    [3] Berinstein A, Roivainen M, Hovi T, et al. Antibodies to the vitronectin receptor(integrinαvβ3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells[J]. J Virol, 1995, 69(4):2664~2666.
    [4] Jackson T, Sheppard D, Denyer M, et al. The epithelial integrinαvβ6 is a receptor for foot-and- mouth disease virus[J]. J Virol, 2000, 74(11):4949~4956.
    [5] Jackson T, Mould AP, Sheppard D, et al. Integrinαvβ1 is a receptor for foot-and-mouth disease virus[J]. J Virol, 2002, 76(3):935~941.
    [6] Jackson T, Clark S, Berryman S, et al. Integrinαvβ8 functions as a receptor for foot-and-mouth disease virus: role of theβ-chain cytodomain in integrin-mediated infection[J]. J Virol, 2004, 78(9):4533~4540.
    [7] Monaghan P, Gold S, Simpson J, et al. Theαvβ6 integrin receptor for foot-and-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle[J]. J Gen Virol, 2005, 86(10):2769~2780.
    [8] De Melker AA, Sonnenberg A. Integrins:alternative splicing as a mechanism to regulate ligand binding and integrin signaling events[J]. Bioessays, 1999, 21(6):499~509.
    [9] Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling[J]. Annu Rev Immunol, 2007, 25(6):619~647.
    [10] Stewart PL, Nemerow GR. Cell integrins: commonly used receptors for diverse viral pathogens [J]. Trends Microbiol, 2007, 15(11):500~506.
    [11] Wegener KL. Structural basis of integrin activation by talin[J]. Cell, 2007, 128(1):171~182.
    [12] Xiao T, Takagi J, Coller BS, et al. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics[J]. Nature, 2004, 432(7013):59~67.
    [13] Tugulua S, Silaccib P, Stergiopulos N, et al. RGD-Functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cells[J]. Biomaterials, 2007, 28(16):2536~2546.
    [14] Arnaout MA, Goodman SL, Xiong JP. Structure and mechanics of integrin-base cell adhesion[J]. Curr Opin Cell Biol, 2007, 19(16):495~507.
    [15] Shi M, Sundramurthy K, Liu B, et al. The crystal structure of the plexin-semaphorin-integrin domain/hybrid domain/I-EGF1 segment from the human integrinβ2 subunit at 1,8-A resolution [J]. J Biol Chem, 2005, 280(34):30586~30593.
    [16] Mould AP, Travis MA, Barton SJ, et al. Evidence that monoclonal antibodies directed against the integrinβsubunit plexin/semaphorin/integrin domain stimulate function by inducingreceptor extension[J]. J Biol Chem, 2005, 280(6):4238~4246.
    [17] Xie C, Shimaoka M, Xiao T, et al. The integrinαsubunit leg extends at a Ca2+-dependent epitope in the thigh/genu interface upon activation[J]. Proc Natl Acad Sci USA, 2004, 101(43): 15422~15427.
    [18] Shimaoka M, Xiao T, Liu JH, et al. Structures of theαL I domain and its complex with ICAM-1 reveal a shape- shifting pathway for integrin regulation[J]. Cell, 2003, 112(1):99~111.
    [19] Jin M, Andricioaei I, Springer TA. Conversion between three conformational states of integrin I domains with a C-terminal pull spring studied with molecular dynamics[J]. Structure, 2004, 12 (12):2137~2147.
    [20] Alonso JL, Essafi M, Xiong JP, et al. Does the integrinαA domain act as a ligand for itsβA domain[J]. Curr Biol, 2002, 12(10):R340~342.
    [21] Yang W, Shimaoka M, Salas A, et al.Intersubunit signal transmission in integrins by a receptor- like interaction with a pull spring[J]. Proc Natl Acad Sci USA, 2004, 101(25):2906~2911.
    [22] Stefansson A, Armulik A, Nilsson I, et al. Determination of N- and C-terminal borders of the transmembrane domain of integrin subunits[J]. J Biol Chem, 2004, 279(20):21200~21205.
    [23] Partridge AW, Liu S, Kim S, et al. Transmembrane domain helix packing stabilizes integrinαIIbβ3 in the low affinity state[J]. J Biol Chem, 2004, 280(8):7294~7300.
    [24] Kim M, Carman CV, Springer TA. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins[J]. Science, 2003, 301(5640):1720~1725.
    [25] Vinogradova O, Vaynberg J, Kong X, et al. Membrane-mediated structural transitions at the cytoplasmic face during integrin activation[J]. Proc Natl Acad Sci USA, 2004, 101(12):4094~ 4099.
    [26] Kiema T, Lad Y, Jiang P, et al. The molecular basis of filamin binding to integrins and competition with talin[J]. Mol Cell, 2006, 21(3):337~347.
    [27] Luo BH, Springer TA, Takagi J. A specific interface between integrin transmembrane helices and affinity for ligand[J]. PLoS Biol, 2004, 2(6):776~786.
    [28] Weljie AM, Hwang PM, Vogel HJ. Solution structures of the cytoplasmic tail complex from plateletαIIb- andβ3-subunits[J]. Proc Natl Acad Sci USA, 2002, 99(7):5878~5883.
    [29] Luo BH, Carman CV, Takagi J, et al. Disrupting integrin transmembrane domain hetero- dimerization increases ligand binding affinity, not valency or clustering[J]. Proc Natl Acad Sci USA, 2005, 102(10):3679~3684.
    [30] Wederell ED, De Longh RU. Extracellular matrix and integrin signaling in lens development and cataract[J]. Semin Cell Dev Biol, 2006, 17(6):759~776.
    [31] Hannigan G, Troussard AA, Dedhar S. Integrin-linked kinase:a cancer therapeutic target unique among its ILK[J]. Nat Rev Cancer, 2005, 5(1):51~63.
    [32] Mitra SK, Schlaepfer DD. Integrin-regulated FAK–Src signaling in normal and cancer cells[J]. Curr Opin Cell Biol, 2006, 18(5):516~523.
    [33] Lafrenie RM, Lee SF, Hewlett IK, et al. Involvement of integrinαvβ3 in the pathogenesis ofhuman immunodeficiency virus type 1 infection in monocytes[J]. Virology,2002, 297(1):31~38.
    [34] Summerford C, Bartlett JS, Samulski RJ.αvβ5 integrin: a co-receptor for adeno-associated virus type 2 infection[J]. Nat Med, 1999, 5(1):78~82.
    [35] Ciarlet M, Crawford SE, Cheng E, et al. VLA-2 (α2β1) integrin promotes rotavirus entry into cells but is not necessary for rotavirus attachment[J]. J Virol, 2002, 76(3):1109~1123.
    [36] Mackow ER, Gavrilovskaya IN. Cellular receptors and hantavirus pathogenesis[J]. Curr Top Microbiol Immunol, 2001, 256:91~115.
    [37] Takada A, Watanabe S, Ito H, et al. Downregulation ofβ1 integrins by Ebola virus glycoprotein: implication for virus entry[J]. Virology, 2000, 278(1):20~26.
    [38] Triantafilou M, Wilson KM, Triantafilou K. Identification of E-chovirus 1 and coxsackievirus A9 receptor molecules via a novel flow cytometric quantification method[J]. Cytometry, 2001, 43(4):279~289.
    [39] Thomas GJ, Nystrom ML, Marshall JF.αvβ6 integrin in wound healing and cancer of the oral cavity[J]. J Oral Pathol Med, 2006, 35(1):1~10.
    [40] Sharma A, Rao Z, Fry E, et al. Specific interactions between human integrinαvβ3 and chimeric hepatitis B virus core particles bearing the receptor-binding epitope of foot-and-mouth disease virus[J]. J Virol, 1997, 239(1):150~157.
    [41] Neff S, Sa-Carvalho D, Rieder E, et al. Foot-and-mouth disease virus virulent for cattle utilizes the integrinαvβ3 as its receptor[J]. J Virol, 1998, 72(5):3587~3594.
    [42] Neff S, Mason PW, Baxt B. High-efficiency utilization of the bovine integrinαvβ3 as a receptor for foot-and-mouth disease virus is dependent on the bovineβ3 subunit[J]. J Virol, 2000, 74(16): 7298~7306.
    [43] Jackson T, Sharma A, Ghazaleh RA, et al. Arginine-glycine-aspartic acid specific binding by foot-and-mouth disease viruses to the purified integrinαvβ3 in vitro[J]. J Virol, 1997, 71(11): 8357~8361.
    [44] Duque H, LaRocco M, Golde WT, et al. Interactions of foot-and-mouth disease virus with soluble bovineαvβ3 andαvβ6 integrins[J]. J Virol, 2004, 78(18):9773~9781.
    [45] Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrinανβ3 for angiogenesis[J]. Science, 1994, 264(5158):569~571.
    [46] Liaw L, Skinner MP, Raines EW, et al.The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role ofανβ3 in smooth muscle cell migration to osteopontin in vitro[J]. J Clin Invest, 1995, 95(2):713~724.
    [47] Singh B, Rawlings N, Kaur A. Expression of integrinανβ3 in pig, dog and cattle[J]. Histol histopathol, 2001,16(4):1037~1046.
    [48] Berryman S, Clark S, Monaghan P, et al. Early events in integrinανβ6-mediated cell entry of foot-and-mouth disease virus[J]. J Virol, 2005, 79(13):8519~8534.
    [49] Hynes RO. Integrins: bidirectional, allosteric signaling machines[J]. Cell, 2002, 110(6):673~ 687.
    [50] Miller LC, Blakemore W, Sheppard D, et al. Role of the cytoplasmic domain of theβ-subunit of integrinαvβ6 in infection by foot-and-mouth disease virus[J]. J Virol, 2001, 75(9):4158~4164.
    [51] Brown JK, McAleese SM, Thornton EM, et al. Integrin-αvβ6, a putative receptor for foot-and- mouth disease virus, is constitutively expressed in ruminant airways[J]. J Histochem Cytochem, 2006, 54(7):807~816.
    [52] Huang X, Wu J, Spong S, et al. The integrinαvβ6 is critical for keratinocyte migration on both its known ligand, fibronectin, and on vitronectin[J]. J Cell Sci, 1998, 111(Pt 15):2189-2195.
    [53] Duque H, Baxt B. Foot-and-mouth disease virus receptors: comparison of bovineανintegrin utilization by type A and O viruses[J]. J Virol, 2003, 77(4):2500~2511.
    [54] Jackson T, King AM, Stuart DI, et al. Structure and receptor binding[J]. Virus Res, 2003, 91(1): 33~46.
    [55] Koistinen P, Heino J. The selective regulation ofανβ1 integrin expression is based on the hierarchical formation ofαν-containing heterodimers[J]. J Biol Chem, 2002, 277(27):24835~ 24841.
    [56] Cambier S, Mu DZ, O’Connell D, et al. A role for the integrinανβ8 in the negative regulation of epithelial cell growth[J]. Cancer Res, 2000 ,60(3):7084~7093.
    [57] Ledin J, Staatz W, Li JP, et al. Heparan sulfate structure in mice with genetically modified heparan sulfate production[J]. J Biol Chem, 2004, 279(41):42723~42741.
    [58] Kreuger J, Spillmann D, Li JP, et al. Interactions between heparan sulfate and proteins: the concept of specificity[J]. J Cell Biol, 2006, 174(3):323~327.
    [59] Jackson T, Ellard FM, Ghazaleh RA, et al. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate[J]. J Virol, 1996, 70(8):5282~5287.
    [60] Baranowski E, Ruiz-Jarabo CM, Sevilla N, et al. Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility inaphthovirus receptor usage. J Virol, 2000, 74(4):1641~1647.
    [61] Fry EE, Lea SM, Jackson T, et al. The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex[J]. EMBO J, 1999, 18 (3):543~554.
    [62] Baxt B, Mason PW. Foot-and-mouth disease virus undergoes restricted replication in macro- phage cell cultures following Fc receptor-mediated adsorption[J]. Virology, 1995, 207(2):503~ 509.
    [63] Mason PW, Baxt B, Brown F, et al. Antibody-complexed foot-and-mouth disease virus, but not poliovirus, can infect normally insusceptible cells via the Fc receptor[J]. Virology, 1993, 192(2): 568~577.
    [64] Mason PW, Rieder E, Baxt B. RGD sequence of foot-and mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody dependent enhancement pathway[J]. Proc Natl Acad Sci USA, 1994, 91(5):1932~1936.
    [65] Rieder E, Berinstein A, Baxt B, et al. Propagation of an attenuated virus by design: engineeringa novel receptor for a noninfectious foot-and-mouth disease virus[J]. Proc Natl Acad Sci USA, 1996, 93(19):10428~10433.
    [66] Zhao QZ, Pacheco JM, Mason PW. Evaluation of genetically engineered derivatives of a Chinese strain of foot-and-mouth disease virus reveals a novel cell-binding site which functions in cell culture and in Animals[J]. J Virol, 2003, 77(5):3269~3280.
    [67] Carrillo C, Tulman ER, Delhon G, et al. Comparative genomics of foot-and-mouth disease virus[J]. J Virol, 2005, 79(10):6487~6504.
    [68] Xiong JP, Stehle T, Goodman SL, et al. New insights into the structural basis of integrin activation[J]. Blood, 2003, 102 (4):1155~1159.
    [69]马群风,江红,刘锟,等.兔抗MDA 27/IL 224多克隆抗体的制备和特异性鉴定[J].细胞与分子免疫学杂志, 2006, 22(3):380~381.
    [70]独军政,常惠芸,高闪电,等.双峰驼口蹄疫病毒受体β6亚基基因的分子特征[J].中国生物工程杂志, 2007, 27(8):63~68.
    [71]独军政,常惠芸,丛国正,等.牛口蹄疫病毒受体β6亚基的基因克隆和分子特征[J].中国兽医学报, 2008, 28(4):363~367.
    [72]高闪电,独军政,常惠芸,等.口蹄疫病毒受体猪源整联蛋白αvβ6的分子特征[J].浙江农业科学, 2007, 19(5):596~600.
    [73]高闪电,独军政,常惠芸,等.口蹄疫病毒受体猪源β6亚基基因的克隆和分子特征[J].生物工程学报, 2007, 23(5):924~929.
    [74] F.M.奥斯伯, R.布伦特, R.E.金斯顿,等.精编分子生物学实验指南[M].科学出版社, 2008:235~269.
    [75]刘曼华,陶潜,郑艳莉,等. Survivin、ER在子宫内膜癌组织中表达的研究及相关性分析[J].实用癌症杂志, 2008, 23(1):34~37.
    [76]廖立新,王竞鹏,潘登,等.增生性瘢迹组织中刺激性G蛋白免疫组化分析[J].实用临床医学, 2008, 9(1):13~15.
    [77]路菊,孙玮,陈德英,等.免疫荧光双重染色的激光共聚焦显微镜样品制备及观察[J].免疫学杂志, 2007, 23(3):344~350.
    [78]张沥,张玲霞,陶梅,等.免疫荧光及激光共聚焦检测萎缩性胃炎大鼠胃黏膜组织细胞Bcl-2及cox-2蛋白表达[J].中国临床康复志, 2006, 10(46):112~114.
    [79] Thomas VJ, Travis TW, Nathan A, et al. The connection between metal ion affinity and ligand affinity in integrin I domains[J]. Biocimica et Biophysica Acta, 2007, 1774(9):1148~1155.
    [80] Brown CC, Piccone ME, Mason PW, et al. Pathogenesis of wild-type and leaderless foot-and- mouth disease virus in cattle[J]. J Virol, 1996, 70(8):5638~5641.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700