温控聚乙二醇两相体系中纳米钌、铑、钯催化选择性加氢及氢氨甲基化反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以聚乙二醇(PEG)为稳定剂,通过RuCl3·3H2O、RhCl3·3H2O、Na2PdCl4·xH2O的氢气还原法分别制得PEG稳定的Ru、Rh、Pd纳米催化剂。该催化剂与甲苯、正庚烷组成温控PEG两相催化体系具有“高温混溶,室温分相”的特性。即室温时,体系为两相,含有纳米催化剂的PEG相位于下层,上层为有机溶剂相;当升温至体系的混溶温度后,体系由两相变为均相;反应结束后,降至室温,体系又重新变为两相,通过简单分相即可将催化剂与产物分离并实现催化剂的循环使用。本文探索将上述含Ru、Rh、Pd纳米催化剂的温控PEG两相催化体系用于α,β-不饱和醛、酮、炔烃和喹啉的选择性加氢反应以及烯烃的氢氨甲基化反应中,催化剂均显示了较高的催化活性、选择性和良好的循环使用效果。具体研究结果如下:
     将PEG4000稳定的Pd纳米催化剂用于α,β-不饱和醛、酮的选择性加氢反应中。在优化的反应条件下:t=7h,T=120℃,PH2=4MPa,肉桂醛/Pd=1000(摩尔比值),肉桂醛转化率为99%,产物氢化肉桂醛的选择性为98%。催化剂可循环使用8次,催化活性基本保持不变,转化数TON值为8,642。
     首次将Ru纳米催化剂用于炔烃的选择性加氢反应。以PEG2000稳定的Ru纳米催化剂催化丙炔酸甲酯的选择性加氢反应为例,在优化的反应条件下:t=10h,T=100℃, PH2=2.0MPa,丙炔酸甲酯/Ru=1000(摩尔比值),丙炔酸甲酯的转化率和产物丙烯酸甲酯的选择性分别为92%和97%。催化剂可循环使用10次,催化活性基本保持不变,转化数TON值为9,717。
     将PEG4000稳定的Rh纳米催化剂用于喹啉的选择性加氢反应中。在优化的反应条件下:t=3h,T=100℃,PH2=3MPa,喹啉/Rh=1000(摩尔比值),喹啉的转化率为97%,产物1,2,3,4-四氢喹啉的选择性高于99%。催化剂可循环使用10次,催化活性基本保持不变,转化数TON值为10,592。
     将PEG4000稳定的铑纳米催化剂用于烯烃的氢氨甲基化反应中。以1-辛烯与二正丙胺的氢氨甲基化反应为例,在优化的反应条件下:t=4h,T=120℃,P=6MPa(CO/H2=1:1),1-辛烯/Rh=1000(摩尔比值),1-辛烯的转化率和产物胺的选择性分别为99%和90%。催化剂循环使用20次,催化活性基本保持不变,转化数TON值达19,080,是目前文献中报道的最高值。
Soluble Ru, Rh and Pd nanoparticles were prepared by hydrogen reduction of the corresponding RuCl3·3H2O, RhCl3·3H2O or Na2PdCl4·xH2O in the presence of poly(ethylene glycol)(PEG). The thermoregulated PEG biphasic system composed of PEG-stabilized Ru, Rh or Pd nanoparticles and a mixture of toluene and n-heptane possesses the thermoregulated phase-transition property, that is, at room temperature, the lower PEG phase containing Ru, Rh or Pd nanoparticles was immiscible with the upper organic phase consisting of toluene and n-heptane. Interestingly, when the temperature was elevated gradually to the miscibility temperature of the system, the biphasic system merged into a single phase. Finally, by decreasing the temperature to room temperature again, the system recovered to the biphasic form. The product and the catalyst were collected easily from the organic and PEG phase, respectively. The recovered catalyst can be reused without further purification or activation. This methodology opens up a new avenue for recovery and recycling of soluble transition-metal nanoparticle catalysts, especially for noble transition-metal nanoparticle catalysts. In this dissertation, PEG-stabilized Ru, Rh or Pd nanoparticles were employed as catalysts for the selective hydrogenation of α,β-unsaturated aldehydes or ketones, alkynes and quinoline. Moreover, PEG-stabilized Rh nanoparticles were also investigated in the hydro-aminomethylation of olefins. The results were as follows:
     PEG4000-stabilized Pd nanoparticles were used as catalysts for the selective hydro-genation of α,β-unsaturated aldehydes or ketones. Under the optimized reaction conditions:t=7h, T=120℃, PH2=4MPa, cinnamaldehyde/Pd=1000(molar ratio), the conversion of cinnamaldehyde and the selectivity of hydrocinnamaldehyde were99%and98%, respectively. The catalyst could be reused for eight times without evident loss in activity or selectivity. The value of turnover number (TON) was8,642.
     Ru nanoparticles were used as catalysts for the selective hydrogenation of alkynes for the first time. For the PEG2000-stabilized Ru nanoparticle catalyzed selective hydrogenation of methyl propiolate, under the optimized reaction conditions:t=10h, T=100℃, PH2=2.0MPa, methyl propiolate/Ru=1000(molar ratio), the conversion of methyl propiolate and the selectivity of methyl acrylate were92%and97%, respectively. The catalyst could be reused for ten times without evident loss in activity or selectivity. The value of TON reached9,717.
     PEG4000-stabilized Rh nanoparticles were used as catalysts for quinoline. Under the optimized reaction conditions:t=3h, T=100℃, PH2=3MPa, quinoline/Rh=1000(molar ratio), the conversion of quinoline and the selectivity of1,2,3,4-tetrahydroquinoline were97%and99%, respectively. The catalyst could be reused for ten times without evident loss in activity or selectivity. The value of TON was10,592.
     Furthermore, PEG4000-stabilized Rh nanoparticles were employed as catalysts for the hydroaminomethylation of olefins. Under the optimized reaction conditions:t=4h, T=120℃, P=6MPa (CO/H2=1:1),1-octene/Rh=1000(molar ratio), the conversion of1-octene and the selectivity of amines were99%and90%, respectively. The catalyst could be reused for twenty times without evident loss in activity or selectivity. The value of TON was up to19,080, the highest TON reported so far in literatures.
引文
[1]Zahmakiran M., Ozkar S. Metal nanoparticles in liquid phase catalysis; from recent advances to future goals [J]. Nanoscale,2011,3:3462-3481.
    [2]Yan N., Zhang J., Tong Y., Yao S., et al. Solubility adjustable nanoparticles stabilized by a novel PVP based family:synthesis, characterization and catalytic properties [J]. Chem. Commun.,2009,4423-4425.
    [3]Binks B. P., Rodrigues J. A. Inversion of emulsions stabilized solely by ionizable nanoparticles [J]. Angew. Chem. Int. Ed.,2005,44:441-444.
    [4]Moreno-Manas M., Pleixats R., Villarroya S. Fluorous phase soluble palladium nanoparticles as reco-verable catalysts for Suzuki cross-coupling and Heck reactions[J]. Organomet.,2001,20:4524-4528.
    [5]Chechik V., Crooks R. M. Dendrimer-encapsulated Pd nanoparticles as fluorous phase-soluble catalysts [J]. J. Am. Chem. Soc.,2000,122:1243-1244.
    [6]Scott R. W. J., Wilson O. M., Crooks R. M. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles[J]. J. Phys. Chem. B,2005,109:692-704.
    [7]Scholten J. D., Leal B. C., Dupont J. Transition metal nanoparticle catalysis in ionic liquids [J]. ACS Catal.,2012,2:184-200.
    [8]Scariot M., Silva D. O., Scholten J. D., et al. Cobalt nanocubes in ionic liquids:synthesis and properties [J]. Angew. Chem. Int. Ed.,2008,47:9075-9078.
    [9]Mu X., Meng J., Li Z., et al. Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: long lifetime nanocluster catalysts for benzene hydrogenation[J]. J. Am. Chem. Soc.,2005,127:9694-9695.
    [10]Huang J., Jiang T., Han B., et al. Hydrogenation of olefins using ligand-stabilized palladium nanopart-icles in an ionic liquid[J]. Chem. Commun.,2003,1654-1655.
    [11]Li K. X., Wang Y. H., Jiang J. Y., et al. Thermoregulated phase-transfer rhodium nanoparticle catalyst for hydrogenation in an aqueous/organic biphasic system [J]. Catal. Commun.,2010,11:542-546.
    [12]Zeng Y., Wang Y. H., Jiang J. Y., et al. Rh nanoparticle catalyzed hydrogenation of olefins in thermoregulated ionic liquid and organic biphase system [J]. Catal. Commun.,2012,19:70-73.
    [13]Sun Z., Wang Y. H., Niu M. M., et al. Poly(ethylene glycol)-stabilized Rh nanoparticles as efficient and recyclable Catalysts for hydroformylation of olefins [J]. Catal. Commun.,2012,27:78-82.
    [14]Bergbreiter D. E., Tian J., Hongfa C. Using Soluble Polymer Supports To Facilitate Homogeneous Catalysis [J]. Chem. Rev.,2009,109:530-582.
    [15]Huang T. S., Wang Y. H., Jiang J. Y., et al. PEG-stabilized palladium nanoparticles:An efficient and recyclable catalyst for the selective hydrogenation of 1,5-cyclooctadiene in thermoregulated PEG biphase system[J]. Chin. Chem. Lett.,2008,19:102-104.
    [16]Feldheim D. L., Foss Jr C. A. Metal Nanoparticles. Synthesis Characterization and App-ications [M]// Marcel Dekker, New York,2002:1-2.
    [17]Reziq R. A., Wang D., Post M., et al. Platinum nanoparticles supportedon ionic liquid-modified mag-netic nanoparticles:selective hydrogenation catalysts [J]. Adv. Synth. Catal.,2007,349:2145-2150.
    [18]Aiken Ⅲ J. D., Finke R. G. Nanocluster formation synthetic, kinetic, and mechanistic studies. the Detection of, and then methods to avoid, hydrogen mass-transfer limitations in the Synthesis of polyoxoanion- and tetrabutylammonium-stabilized, near-monodies perse 40±6 A Rh (0) nanoclusters [J]. J. Am. Chem. Soc.,1998,120:9545-9554.
    [19]Reetz M. T., Lohmer G. Propylene carbonate stabilized nanostructured palladium clusters as catalysts in Heck reactions [J]. Chem. Commun.,1996,1921-1922.
    [20]Pan C., Pelzer K., Philippot K., et al. Ligand-stabilized ruthenium nanoparticles:synthesis, organiza-tion, and dynamics [J]. J. Am. Chem. Soc.,2001,123:7584-7593.
    [21]Vollmer C., Janiak C. Naked metal nanoparticles from metal carbonyls in ionic liquids:Easy synthesis and stabilization [J]. Coord. Chem. Rev.,2011,255:2039-2057.
    [22]Reetz M. T., Helbig W. Size-selective synthesis of nanostructured transition metal clusters[J]. J. Am. Chem. Soc.,1994,116:7401-7402.
    [23]Pachon L. D., Rothenberg G. Transition-metal nanoparticles:synthesis, stability and the leaching issue [J]. Appl. Organometal. Chem.,2008,22:288-299.
    [24]Imanishi A., Tamura M., Kuwabata S. Formation of Au nanoparticles in an ionic liquid by electron beam irradiation[J]. Chem. Commun.,2009,13:1775-1777.
    [25]Bradley J. S., Hill E. W., Behal S., et al. Preparation and characterization of organosols of monodi-spersed nanoscale palladium particle size effects in the binding geometry of adsorbed carbon mono-xide [J]. Chem. Mater.,1992,4:1234-1239.
    [26]易怀强.温控PEG两相体系中铑纳米催化剂催化苯乙烯及取代苯乙烯的氢甲酰化反应[D].大连:大连理工大学硕士论文,2012年.
    [27]Lewis L. N. Chemical catalysis by colloids and clusters [J]. Chem. Rev.,1993,93:2693-2730.
    [28]曾艳.以含聚醚链季铵盐型离子液体为稳定剂的过渡金属纳米催化剂的制备及应用[D].大连:大连理工大学硕士论文,2012年.
    [29]徐贻成,王艳华,曾艳,等.温控相分离纳米Rh催化1,5-环辛二烯选择性加氢反应[J].催化学报,2012,33:1871-1876.
    [30]Puschmann F. F., Grutzmacher H., de Bruin B. Rhodium(O) metalloradicals in binuclear C-H activa-tion [J]. J. Am. Chem. Soc,2010,132:73-75.
    [31]Amiens C., Caro D., Chaudret B. Selective synthesis, characterization, and spectroscopic studies on a novel class of reduced platinum and palladium particles stabilized by carbonyl and phosphine ligands [J]. J. Am. Chem. Soc.,1993,115:11638-11639.
    [32]Gomez S., Erades L., Philippot K., et al. Platinum colloids stabilized by bifunctional ligands:self-organization and connection to gold [J]. Chem. Commun.,2001,1474-1475.
    [33]Axet M. R., Castillon S., Claver C., et al. Chiral diphosphite-modified rhodium(O) nanoparticles:catal-yst reservoir for styrene hydroformylation [J]. Eur. J. Inorg. Chem.,2008,3460-3466.
    [34]Strimbu L., Liu J., Kaifer A. E. Cyclodextrin-capped palladium nanoparticles as catalysts for the Suzuki reaction [J]. Langmuir,2003,19:483-485.
    [35]Ozkar S., Finke R. J. Nanocluster formation and stabilization fundamental studies:ranking commonly employed anionic stabilizers via the development, then application, of five comparative criteria [J]. J. Am. Chem. Soc.,2002,124:5796-5810.
    [36]刁香菊,于明,钱良友,等.溶剂稳定的钯纳米颗粒的控制合成[J].化学与生物工程,2010,27:13-15.
    [37]Horvath I. T., Rabai J. Facile. Catalyst separation without water:fluorous biphase hydroformylation of olefins[J]. Science,1994,266:72-75.
    [38]Niu Y., Crooks R. M. Dendrimer-encapsulated metal nanoparticles and their applications to catalysis [J]. C. R. Chimie,2003,6:1049-1059.
    [39]Scheuermann G. M., Thomann R., Mulhaupt R.. Catalysts based upon organoclay with tunable polar-ity and dispersion behavior:new catalysts for hydrogenation, C-C coupling reactions and fluorous biphase catalysis[J]. Catal. Lett.,2009,132:355-362.
    [40]Zhao M., Crooks R. M. Homogeneous hydrogenation catalysis with monodysperse, dendrimer-encap-sulated Pd and Pt nanoparticles [J]. Angew. Chem. Int. Ed.,1999,38:364-366.
    [41]Niu Y., Yeung L., Crooks R. M. Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles [J]. J. Am. Chem. Soc.,2001,123:6840-6846.
    [42]Crooks R. M., Zhao M., Sun L., et al. Dendrimer-encapsulated metal nanoparticles:synthesis, charac-terization, and applications to catalysis [J]. Acc. Chem. Res.,2001,34:181-190.
    [43]Borsla A., Wilhelm A. M., Delmas H. Hydrogenation of olefins in aqueous phase, catalyzed by polymer-protected rhodium colloids:kinetic study [J]. Catal. Today,2001,66:389-395.
    [44]Ooe M., Murata M., Mizugaki T., et al. Dendritic nanoreactors encapsulating Pd particles for substrate-specific hydrogenation of olefins[J]. Nano Lett.,2002,2:999-1002.
    [45]Kidambi S., Dai J., Li J., et al. Selective hydrogenation by Pd nanoparticles embedded in polyelec-trolyte multilayers [J]. J. Am. Chem. Soc.,2004,126:2658-2659.
    [46]Mevellec V., Roucoux A., Ramirez E., et al. Surfactant-stabilized aqueous iridium(O) colloidal suspen-sion:an efficient reusable catalyst for hydrogenation of arenes in biphasic media[J]. Adv. Synth. Catal.,2004,346:72-76.
    [47]Schulz J., Roucoux A., Patin H. Stabilized rhodium (0) nanoparticles:A reusable hydrogenation cata-lyst for arene derivatives in a biphasic water-liquid system [J]. Chem. Eur. J.,2000,6:618-624.
    [48]Lu F., Liu J., Xu J. Fast aqueous/organic hydrogenation of arenes, olefins and carbonyl compounds by poly(N-vinylpyrrolidone)-Ru as amphiphilic microreactor system [J]. Adv. Synth. Catal.,2006,348: 857-861.
    [49]Lu F., Liu J., Xu J. Synthesis of PVP-Ru amphiphilic microreactors with Ru nanocatalysts and their application in the fast hydrogenation of unsaturated compounds in aqueous media [J]. J. Mol. Catal. A: Chem.,2007,271:6-13.
    [50]Nowicki A., Zhang Y., Leger B., et al. Supramolecular shuttle and protecttive agent:a multiple role of methylated cyclodextrins in the chemoselective hydrogenation of benzene derivatives with ruthenium nanoparticles [J]. Chem. Commun.,2006,296-298.
    [51]Vasylyev M. V., Maayan G., Hovav Y., et al. Palladium nanoparticles stabilized by alkylated polyeth-yleneimine as aqueous biphasic catalysts for the chemoselective stereocontrolled hydrogenation of alkenes[J]. Org. Lett.,2006,8:5445-5448.
    [52]Li D., Dunlap J. R., Zhao B.. Thermosensitive water-dispersible hairy particle-supported Pd nanoparti-cles for catalysis of hydrogenation in an aqueous/organic biphasic system [J]. Langmuir,2008,24: 5911-5918.
    [53]Wang Y., Wei G., Wen F., et al. Synthesis of gold nanoparticles stabilized with poly(N-isopropylacr-ylamide)-co-poly(4-vinyl pyridine) colloid and their application in responsive catalysis [J]. J. Mol. Catal. A:Chem.,2008,280:1-6.
    [54]Uozumi Y., Yamada Y. M. A. Development of an amphiphilic resindispersion of nano-palladium and nanoplatinum catalysts:design, preparation, and their use in green organic transformations [J]. The Chem. Reco.,2009,9:51-65.
    [55]Liu R., Wu C., Wang Q., et al. Selective hydrogenation of citral catalyzed with palladium nanoparticl-es in CO2-in-water emulsion[J]. Green Chem.,2009,11:979-985.
    [56]Callis N. M., Thiery E., Bras J. L., et al. Palladium nanoparticles-catalyzed chemoselective hydrogena-tions, a recyclable system in water [J]. Tetra. Lett.,2007,48:8128-8131.
    [57]Biondi I., Laurenczy G., Dyson P. J. Synthesis of gold nanoparticle catalysts based on a new water-soluble ionic polymer [J]. Inorg. Chem.,2011,50:8038-8045.
    [58]Mertens P. G. N., Cuypers F., Vandezande P., et al. Ag0 and Co0 nanocolloids as recyclable quasi-homogeneous metal catalysts for the hydrogenation of α,β-unsaturated aldehydes to allylic alcohol fragrances [J]. Appl. Catal. A:Gen.,2007,325:130-139.
    [59]Yu W., Wang Y., Liu H., et al. Preparation and characterization of polymer-protected Pt/Co bimetallic colloids and their catalytic properties in the selective hydrogenation of cinnamaldehyde [J]. J. Mol. Catal. A:Chem.,1996,112:105-113.
    [60]Sanchez-Delgado R. A., Machalaba N., Ng-a-qui N. Hydrogenation of quinoline by ruthenium nanoparticles immobilized on poly(4-vinylpyridine) [J]. Catal. Commun.,2007,8:2115-2118.
    [61]Fang M., Machalaba N., Sanchez-Delgado R. A.. Hydrogenation of arenes and N-heteroaromatic com-pounds over ruthenium nanoparticles on poly(4-vinyl- pyridine):a versatile catalyst operating by a substrate-dependent dual site mechanism [J]. Dalton Trans.,2011,40:10621-10632.
    [62]Spitaleri A., Pertici P., Scalera N., et al. Supported ruthenium nanoparticles on polyorganophosphaz-enes:preparation, structural and catalytic studies [J]. Inorg. Chim. Acta,2003,352:61-71.
    [63]Mao H., Liao X., Shi B.. Amphiphilic tannin-stabilized Rh nanopartciles:A highly active and reusable catalyst in biphasic aqueous-organic system [J]. Catal. Commun.,2011,16:210-214.
    [64]Mevellec V., Roucoux A. Nanoheterogeneous catalytic hydrogenation of N-, O- or S- heteroaromatic compounds by re-usable aqueous colloidal suspensions of rhodium(O) [J]. Inorg. Chim. Acta,2004, 357:3099-3103.
    [65]Okamoto K., Akiyama R., Yoshida H., et al. Formation of nanoarchitectures including subnanometer palladium clusters and their use as highly active catalysts [J]. J. Am. Chem. Soc.,2005,127:2125-2135.
    [66]Mao H., Chen C., Liao X., et al. Catalytic hydrogenation of quinoline over recycleable palladium nan-oparticles supported on tannin grafted collagen fibers [J]. J. Mol. Cata. A:Chem.,2011,341:51-56.
    [67]Guy K. A., Shapley J. R. H-D exchange between N-heterocyclic compounds and D2O with a Pd/PVP colloid catalyst [J]. Organomet.2009,28:4020-4027.
    [68]Zhao Y., Zhao Y., Feng H., et al. Synthesis of nickel phosphide nanoparticles in a eutectic mixture for hydrotreating reactions [J]. J. Mater. Chem.,2011,21:8137-8145.
    [69]Bergounhou C., Blandy C., Choukroun R., et al. Catalytic evidence of the core/shell structure of bime-tallic Pd/Rh colloids[J]. New J. Chem.,2007,31:218-223.
    [70]Sun Y., Fu H., Zhang D., et al. Complete hydrogenation of quinoline over hydroxyapatite supported ruthenium catalyst [J]. Cata. Commun.,2010,12:188-192.
    [71]Li Y., Hong X. M., Collard D. M., et al. Suzuki cross-coupling reactions catalyzed by palladium nano-particles in aqueous solution[J]. Org. Lett.,2000,2:2385-2388.
    [72]Narayanan R., El-Sayed M. A. Effect of catalysis on the stability of metallic nanoparticles:Suzuki reaction catalyzed by PVP-palladium nanoparticles[J]. J. Am. Chem. Soc.,2003,125:8340-8347.
    [73]Narayanan R., El-Sayed M. A. Effect of colloidal catalysis on the nanoparticle size distribution: dendrimer-Pd vs PVP-Pd nanoparticles catalyzing the Suzuki coupling reaction[J]. J. Phys. Chem. B, 2004,108:8572-8580.
    [74]Tuchbreiter L., Mecking S. Hydroformylation with dendritic-polymer-stabilized rhodium colloids as catalyst precursors [J]. Macromol. Chem. Phys.,2007,208:1688-1693.
    [75]Kim J. Y., Park J. H., Jung O., et al. Heterogenized catalysts containing cobalt-rhodium heterobi-metallic nanoparticles for olefin hydroformylation [J]. Catal. Lett.,2009,128:483-486.
    [76]Cai Z., Wang H., Xiao C., et al. Hydroformylation of 1-hexene over ultrafine cobalt nanoparticle catalysts [J]. J. Mol. Catal. A:Chem.,2010,330:94-98.
    [77]Xu R., Xie T., Zhao Y., et al. Quasi-homogeneous catalytic hydrogenation over monody- sperse nickel and cobalt nanoparticles[J]. Nanotechnology,2007,18:055602,1-5.
    [78]Kim S., Son S. U., Lee S. S., et al. Colloidal cobalt nanoparticles:a highly active and reusable Pauson-Khand catalyst [J]. Chem. Commun.,2001,2212-2213.
    [79]Son S. U., Lee S. I., Chung Y. K., et al. The first intramolecular Pauson-Khand reaction in water using aqueous colloidal cobalt nanoparticles as catalysts [J]. Org. Lett.,2002,4:277-279.
    [80]Son S. U., Park K. H., Chung Y. K. Cobalt nanoparticles on charcoal:A versatile catalyst in the Pauson-Khand reaction, hydrogenation, and the reductive Pauson-Khand reaction [J]. Org. Lett.,2002, 4:3983-3986.
    [81]Son S. U., Park K. H., Chung Y. K. Sequential actions of cobalt nanoparticles and palladium (II) catalysts:three-step one-pot synthesis of fenestranes from an enyne and an alkyne diester [J]. J. Am. Chem. Soc.,2002,124:6838-6839.
    [82]Park K. H., Son S. U., Chung Y. K. Sequential actions of palladium and cobalt nanoparticles immo-bilized on silica:one-pot synthesis of bicyclic enones by catalytic allylic alkylation and Pauson-Khand reaction [J]. Org. Lett.,2002,4:4361-4363.
    [83]Park K. H., Jung L. G., Chung Y. K. A Pauson-Khand-Type reaction between alkynes and olefinic aldehydes catalyzed by rhodium/cobalt heterobimetallic nanoparticles:an olefinic aldehyde as an olefin and CO source[J]. Org. Lett.,2004,6:1183-1186.
    [84]Park K. H., Chung Y. K. Immobilized Co/Rh heterobimetallic nanoparticle-catalyzed Pauson-Khand-Type reaction [J]. Adv. Synth. Catal.,2005,347:854-866.
    [85]Park J. H., Kim E., Kim H. M., et al. Cobalt/rhodium heterobimetallic nanoparticle-catalyzed carbony-lative [2+2+1] cycloaddition of allenes and bisallenes to Pauson-Khand-type reaction products [J]. Chem. Commun.,2008,2388-2390.
    [86]Park K. H., Jung L. G., Kim S. Y., et at. Immobilized cobalt/rhodium heterobimetallic nanoparticle-catalyzed silylcarbocylization and carbonylative silylcarbocyclization of 1,6-enynes [J]. Org. Lett., 2003,5:4967-4970.
    [87]Park K. H., Son S. U., Chung Y. K.. Immobilized heterobimetallic Ru/Co nanoparticle-catalyzed Pauson-Khand-type reactions in the presence of pyridylmethyl formate [J]. Chem. Commun.,2003, 1898-1899.
    [88]Park J. H., Kim E., Chung Y. K.. Heterobimetallic cobalt/rhodium nanoparticle-catalyzed carbonyl-ative cycloaddition of 2-alkynylanilines to oxindoles [J]. Org. Lett.,2008,10:4719-4721.
    [89]Brennecke J. F., Maginn E. J. Ionic liquids:innovative fluids for chemical processing [J]. AIChE. J., 2001,47:2384-2389.
    [90]Zhou L., Qi X., Jiang X., et al. Organophilic worm-like ruthenium nanoparticles catalysts by the modification of CTAB on montmorillonite supports [J]. J. Colloid Interface Sci.,2013,392:201-205.
    [91]Kume Y., Qiao K., Tomida D., et al. Selective hydrogenation of cinnamaldehyde catalyzed by pallad-ium nanoparticles immobilized on ionic liquids modified-silicagel [J]. Catal. Commun.,2008,9:369-375.
    [92]Hu Y., Yang H., Zhang Y., et al. The functionalized ionic liquid-stabilized palladium nanoparticles catalyzed selective hydrogenation in ionic liquid [J], Catal. Commun.,2009,10:1903-1907
    [93]Banerjee A., Theron R., Scott R. W. J. Highly stable noble-metal nanoparticles in tetraalkylphospho-nium ionic liquids for in situ catalysis [J]. ChemSusChem,2012,5:109-116.
    [94]Dupont J., Fonseca G. S., Umpierre A. P., et al. Transition-Metal nanoparticles in imidazolium ionic liquids:recyclable catalysts for biphasic hydrogenation reactions [J]. J. Am. Chem. Soc.,2002,124: 4228-4229.
    [95]Prechtl M. H. G., Scariot M., Scholten J. D., et al. Nanoscale Ru(0) particles:arene hydrogenation catalysts in imidazolium ionic liquids [J]. Inorg. Chem.,2008,47:8995-9001.
    [96]Venkatesan R., Prechtl M. H. G., Scholten J. D., et al. Palladium nanoparticle catalysts in ionic liquids: synthesis, characterization and selective partial hydrogenation of alkynes to Z-alkenes [J]. J. Mater. Chem.,2011,21:3030-3036.
    [97]Zhao C., Wang H., Yan N., et al. Ionic-liquid-like copolymer stabilized nano-catalysts in ionic liquids: Ⅱ. rhodium-catalyzed hydrogenation of arenes [J]. J. Catal.,2007,250:33-40.
    [98]Leger B., Nowicki A. D., Bourbigou H., et al. Rhodium nanocatalysts stabilized by various bipyridine ligands in nonaqueous ionic liquids:influence of the bipyridine coordination modes in arene catalytic hydrogenation [J]. Inorg. Chem.,2008,47:9090-9096.
    [99]Jutz F., Andanson J. M., Baiker A.. A green pathway for hydrogenations on ionic liquid-stabilized nanoparticles [J]. J. Catal.,2009,268:356-366.
    [100]Redel E., Kramer J., Thomann R., et al. Synthesis of Co, Rh and Ir nanoparticles from metal carbon-yls in ionic liquids and their use as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohex-ene [J]. J. Organomet. Chem.,2009,694:1069-1075.
    [101]Vollmer C., Redel E., Abu-Shandi K., et al. Microwave irradiation for the facile synthesis of tran-sition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal-carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene [J]. Chem. Eur. J.,2010,16:3849-3858.
    [102]Salas G., Campbell P. S., Santini C. C., et al. Ligand effect on the catalytic activity of ruthenium nanoparticles in ionic liquids [J]. Dalton Trans.,2012,41:13919-13926.
    [103]Luska K. L., Moores A. Ruthenium nanoparticle catalysts stabilized in phosphornium and imidazo-lium ionic liquids:dependence of catalyst stability and activity on the ionicity of the ionic liquid [J]. Green Chem.,2012,14:1736-1742.
    [104]Hagiwara H., Nakamura T., Hoshi T., et al. Palladium-supported ionic liquid catalyst (Pd-SH-SILC) immobilized on mercaptopropyl silica gel as a chemoselective, reusable and heterogeneous catalyst for catalytic hydrogenation[J]. Green Chem.,2011,13:1133-1137.
    [105]Morrissey S., Beadham I., Gathergood N.. Selective hydrogenation of trans-cinnamaldehyde and hydrogenolysis-free hydrogenation of benzyl cinnamate in imidazolium ILs[J]. Green Chem.,2009, 11:466-474.
    [106]Miao S., Liu Z., Han B., et al. Ru nanoparticles immobilized on montmorillonite by ionic liquids:A highly efficient heterogeneous catalyst for the hydrogenation of benzene[J]. Angew. Chem. Int. Ed., 2006,45:266-269.
    [107]Astruc D., Lu F., Aranzaes J. R.. Nanoparticles as recyclable catalysts:the frontier between homoge-neous and heterogeneous catalysis [J]. Angew. Chem. Int. Ed.,2005,44:7852-7872.
    [108]Parvulescu V. I., Hardacre C.. Catalysis in ionic liquids[J]. Chem. Rev.,2007,107:2615-2665.
    [109]Yan N., Xiao C. X., Kou Y. Transition metal nanoparticle catalysis in green solvents [J]. Coord. Chem. Rev.,2010,254:1179-1218.
    [110]Welton T. Room-temperature ionic liquids. solvents for synthesis and catalysis[J]. Chem. Rev.,1999, 99:2071-2083.
    [111]J Hallett. P., Welton T. Room-temperature ionic liquids. solvents for synthesis and catalysis.2 [J]. Chem. Rev.,2011,111:3508-3576.
    [112]Calo V., Nacci A., Monopoli A., et al. Pd nanoparticles as efficient catalysts for Suzuki and Stille coupling reactions of aryl halides in ionic liquids[J]. J. Org. Chem.,2005,70:6040-6044.
    [113]Gholap A. R., Venkatesan K., Pasricha R., et al. Copper- and ligand-free Sonogashira reaction catalyzed by Pd(0) nanoparticles at ambient conditions under ultra-sound irradiation [J]. J. Org. Chem.,2005,70:4869-4872.
    [114]Bruss A. J., Gelesky M. A., Machado G., et al. Rh(0) nanoparticles as catalyst precu-rsors for the solventless hydroformylation of olefins[J]. J. Mol. Catal. A:Chem.,2006,252:212-218.
    [115]Geldbach T. J., Zhao, Castillo D. N. C., et al. Biphasic hydrosilylation in ionic liquids:a process set for industrial implementation[J]. J. Am. Chem. Soc.,2006,128:9773-9780.
    [116]Jin Z., Zheng X., Fell B. Therrnoregulated phase-transfer ligands and catalysis. I. Synthesis of novel polyether-substituted triphenylphosphines and application of their rhodium complexes in two-phase hydroformylation[J]. J. Mol. Catal. A:Chem.,1997,116:55-58.
    [117]Jiang J., Wang Y., Liu C., et al. Thermoregulated phase-transfer ligands and catalysis VII. Cloud point of nonionic surface-active phosphine ligands and their thermoregulated phase transfer property [J]. J. Mol. Catal. A:Chem.,1999,147:131-136.
    [118]Chen R., Liu X., Jin Z.. Thermoregulated phase-transfer ligands and catalysis. Part Ⅵ. Two-phase hydroformylation of styrene catalyzed by the thermoregulated phase-transfer catalyst OPGPP/Rh [J]. J. Organomet. Chem.,1998,571:201-204.
    [119]Zheng X., Jiang J., Liu X., et al. Thermoregulated phase-transfer ligands and catalysis.Ⅲ. Aqueous/ organic two-phase hydroformylation of higher olefins by thermoregulated phase-transfer catalysis [J]. Catal. Today.1998,44:175-182.
    [120]Chen R. F., Jiang J. Y., Wang Y. H., et al. Thermoregulated phase-transfer ligands and catalysis Ⅷ. Two-phase hydroformylation of 4-isobutylstyrene catalyzed by thermoregulated phase-transfer cata-lyst OPGPP/Rh [J]. J. Mol. Catal. A:Chem.,1999,149:113-117.
    [121]Jiang J., Wang Y., Liu C., et al. Thermoregulated phase-transfer ligands and catalysis ⅩⅣ. Synthesis of N, N-dipolyoxyethylene-substituted-4-(diphenylphosphino) benzene- esulfonamide (PEO-DPPSA) and the catalytic activity of its rhodium complex in hydro- formylation of 1-decene [J]. J. Mol. Catal. A:Chem.,2001,171:85-89.
    [122]Liu C., Jiang J., Wang Y., et al. Thermoregulated phase-transfer ligands and catalysis ⅩⅧ:synth-esis of N, N-dipolyoxyethylene-substituted-2-(diphenylphosphino)-phenylamine (PEO-DPPPA) and the catalytic activity of its rhodium complex in the aqueous-organic biphasic hydroformylation of 1-decene[J]. J. Mol. Catal. A:Chem.,2003,198:23-27.
    [123]Wen F., BSnnemann H., Jiang J., et al. Evidence of colloidal rhodium formation during the biphasic hydroformylation of 1-octene with thermoregulated phase-transfer phosphine rhodium (Ⅰ) catalyst [J]. Appl. Organometal. Chem.,2005,19:81-89.
    [124]Wang Y., Jiang J., Miao Q., et al. Thermoregulated phase transfer ligands and catalysis Part ⅩⅢ. Use of nonionic water-soluble phosphine ligands to effect homogeneous catalyst separation and recycling [J]. Catal. Today,2002,74:85-90.
    [125]Tan B., Jiang J., Wang Y., et al. Thermoregulated ionic liquids and their application for the hydrofor-mylation of 1-dodecene catalyzed by Rh/TPPTS complex [J]. Appl. Organomet. Chem.,2008,22: 620-623.
    [126]Ji Z. J., Jiang J. Y., Wang Y. H.. A novel thermoregulated phosphine ligand used for the Rh-cata-lyzed hydroformylation of mixed C11-12 olefins in aqueous/organic biphasic system [J]. Chin. Chem. Lett.,2010,21:515-518.
    [127]Jiang J., Mei J., Wang Y., et al. Thermoregulated phase-transfer ligands and catalysis XV. CO sele-ctive reduction of nitroarenes catalyzed by Ru3(CO)9 (PEO-DPPSA)3 in two-phasic system [J]. Appl. Catal. A:Gen.,2002,224:21-25.
    [128]Wang Y., Jiang J., Jin Z. Thermoregulated liquid/liquid biphasic catalysis and its application [J]. Catal. Surv. Asia,2004,8:119-126.
    [129]Liu N., Liu C., Jin Z. Green synthesis of fluorinated biaryl derivatives via thermoregulated ligand/ palladium-catalyzed Suzuki reaction [J]. J. Organomet. Chem.,2011,696:2641-2647.
    [130]Liu N., Liu C., Xu Q., et al. Thermoregulated copper-free Sonogashira coupling in water [J]. Eur. J. Org. Chem.,2011,4422-4428.
    [131]李考学,王艳华,蒋景阳,等.温控相转移纳米铑催化高碳烯烃氢甲酰化反应[J].催化学报,2010,31:1191-1194.
    [132]Li K., Wang Y., Xu Y., et al. Thermoregulated phase-transfer rhodium nanoparticle catalyst for hydroaminomethylation of olefins[J]. Catal. Commun.,2013,34:73-77.
    [133]Chen Z., Wang Y., Jiang J., et al. Novel aqueous/organic biphasic system for thermoregulated phase-transfer catalysis with rhodium nanoparticles [J]. Chin. J. Catal.,2011,32:1133-1137.
    [134]曾艳,王艳华,徐贻成,等.温控离子液体/有机两相体系中纳米Rh催化烯烃氢甲酰化反应[J].Chin. J. Catal.,2012,33:402-406.
    [135]Zeng Y., Wang Y., Xu Y., et al. Pd nanoparticles in the thermoregulated ionic liquid and organic bi-phasic system:an efficient and recyclable catalyst for Heck reaction [J]. Catal. Lett.,2012,143:200-205.
    [136]Xu Y., Wang Y., Zeng Y., et al. A novel thermoregulated ionic liquid and organic biphasic system with Rh nanoparticles for olefin hydroformylation [J]. Catal. Lett.,2012,142:914-919.
    [137]黄天松.温控PEG两相体系中过渡金属纳米催化剂的制备与应用[D].大连:大连理工大学硕士论文,2008年.
    [138]孙政.以PEG为稳定剂的纳米铑催化剂在烯烃氢甲酰化反应中的应用[D].大连:大连理工大学硕士论文,2010年.
    [139]Knecht M. R., Pacardo D. B. Employing high-resolution materials characterization to understand the effects of Pd nanoparticle structure on their activity as catalysts for olefin hydrogenation[J]. Anal. Bioanal. Chem.,2010,397:1137-1155.
    [140]Castro K. A. D., Seungchan O., Yun J., et al. Colloidal palladium nanoparticles with in situ H2:Redu-cing system for αβ-unsaturated carbonyl compounds [J]. Synth. Commun.,2009,39:3509-3520.
    [141]Kumar V. K. R., Gopidas K. R. Palladium nanoparticle-cored Gl-dendrimer stabilized by carbon-Pd bonds:synthesis, characterization and use as chemoselective, room temperature hydrogenation catalyst[J]. Tetra. Lett.,2011,52:3102-3105.
    [142]Zhu Y., Qian H., Drake B. A., et al. Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of a, α,β-unsaturated ketones and aldehydes [J]. Angew. Chem. Int. Ed.,2010, 49:1295-1298.
    [143]Mertens P. G. N., Vandezande P., Ye X., et al. Recyclable Au0, Ag0 and Au0-Ag0 nano- colloids for the chemoselective hydrogenation of α,β-unsaturated aldehydes and ketones to allylic alcohols [J]. Appl. Catal. A:Gen.,2009,355:176-183.
    [144]Takahashi Y., Yukita W., Chatterjee M., et al. Preparation of highly dispersed gold nanoparticles inside the porous support assisted by amphiphilic vinyl maleate copoly-mer [J]. React. Fun. Poly., 2008,68:1476-1482.
    [145]Tu W., Liu H., Liew K. Y. Preparation and Catalytic Properties of Amphiphilic Copolymer-stab-ilized Platinum Metals Colloids[J]. J. Colloid Interface Sci.,2000,229 (2):453-461.
    [146]Spee M. P. R., Boersma J., Meijer M. D., et al. Selective liquid-phase semi-hydrogenation of func-tionalized acetylenes and propargylic alcohols with silica-supported bimetallic palladium-copper catalysts[J]. J. Org. Chem.,2001,66:1647-1656.
    [147]Luo F., Pan C., Wang W., et al. Palladium-catalyzed reduction of alkynes employing HSiEt3:stereo-selective synthesis of trans- and cis-alkenes [J]. Tetra.,2010,66:1399-1403.
    [148]Zhao Y., Liu Q., Li J., et al. Highly selective semihydrogenation of phenylalkynes to (Z)-styrenes using hantzsch ester 1,4-dihydropyridine catalyzed by Pd/C[J]. Synlett.,2010,12:1870-1872.
    [149]Li J., Hua R., Liu T. Highly chemo- and stereoselective palladium-catalyzed transfer semihydro-genation of internal alkynes affording cis-alkenes [J]. J. Org. Chem.,2010,75:2966-2970.
    [150]Shen R., Chen T., Zhao Y., et al. Facile regio- and stereo selective hydrometalation of alkynes with a combination of carboxylic acids and group 10 transition metal complexes:selective hydrogenation of alkynes with formic acid [J]. J. Am. Chem. Soc.,2011,133:17037-17044.
    [151]Hauwert P., Maestri G., Sprengers J. W., et al. Transfer semihydrogenation of alkynes catalyzed by a zero-valent palladium N-heterocyclic carbene complex [J]. Angew. Chem. Int. Ed.,2008,47:3223-3226.
    [152]Burch R. R., Shusterman A. J., Muetterties E. L., et al. Coordinately unsaturated clusters. A novel catalytic reaction[J]. J. Am. Chem. Soc.,1983,105:3546-3556.
    [153]Tour J. M., Pendalwar S. L., Kafka C. M., et al. Dispersion of Rh/Cu in a sol-gel matrix. Highly chemo-and stereoselective catalyst for the reduction of alkynes to Z-alkenes [J]. J. Org. Chem.,1992, 57:4786-4787.
    [154]Djukic J. P., Parkhomenko K., Hijazi A., et al. μ-Chlorido, μ-hydroxobridged dicarbonyl ruthenacy-cles:synthesis, structure and catalytic properties in hydrogen atom transfer [J]. Dalton Trans.,2009, 2695-2711.
    [155]Li J., Hua R. Stereodivergent ruthenium-catalyzed transfer semihydrogenation of diaryl alkynes [J] Chem. Eur. J.,2011,17:8462-8465.
    [156]Belger C., Neisius N. M., Plietker B. A selective Ru-catalyzed semireduction of alkynes to Zolefins under transfer-hydrogenation conditions [J]. Chem. Eur. J.,2010,16:12214-12220.
    [157]P Frediani., Giannelli C., Salvini A., et al. Ruthenium complexes with 1,1'-biisoquinoline as ligands. Synthesis and hydrogenation activity [J]. J. Organomet. Chem.,2003,667:197-208.
    [158]Barrios-Francisco R., Garcia J. J. Stereoselective hydrogenation of aromatic alkynes using water, tri-ethylsilane, or methanol, mediated and catalyzed by Ni(0) complexes [J]. Inorg. Chem.,2009,48: 386-393.
    [159]Balu A. M., Duckett S. B., Luque R..Para-hydrogen induced polarisation effects in liquid phase hydrogenations catalysed by supported metal nanoparticles [J]. Dalton Trans.,2009,5074-5076.
    [160]Navarro J., Sagi M., Sola E., et al. Unusual 1-alkyne dimerization/hydrogenation sequences catalyzed by [Ir(H)2(NCCH3)3(P-i-Pr3)]BF4:evidence for homogeneous-like mechanism in imidazo-lium salts [J]. Adv. Synth. Catal.,2003,345:280-288.
    [161]Gobetto R., Milone L., Reineri F., et al. Mechanistic studies of the hydrogenation of alkynes with Os3(CO)10(μ-H)2 Using para-Hydrogen as a probe [J]. Organomet.,2002,21:1919-1924.
    [162]Sanchez-Delgado R. A., Andriollo A., Gonzalez E., et al. The chemistry and catalytic properties of ruthenium and osmium complexes. Part 1. Homogeneous catalysis of organic reactions by bromo-(carbonyl)hydridotris(triphenyIphosphine) osmium (ⅱ) [J]. J. Chem. Soc., Dalton Trans.,1985, 1859-1863.
    [163]Pierre H. S. L., Arnold J., Toste F. D. Z-Selective semihydrogenation of alkynes catalyzed by a cationic vanadium bisimido complex [J]. Angew. Chem. Int. Ed.,2011,50:3900-3903.
    [164]Haberberger M., Irran E., Enthaler S. Synthesis, characterization and catalytic application of iron complexes modified by monodentate phosphane ligands [J]. Eur. J. Inorg. Chem.,2011,2797-2802.
    [165]Gianetti T. L., Tomson N. C., Arnold J., et al. Z-Selective, catalytic internal alkyne semihydrogen ation under H2/CO mixtures by a niobium(Ⅲ) imido complex [J]. J. Am. Chem. Soc.,2011,133: 14904-14907.
    [166]Mizugaki T., Murata M., Fukubayashi S., et al. PAMAM dendron-stabilised palladium nanoparticles: effect of generation and peripheral groups on particle size and hydrogenation activity[J]. Chem. Commun.,2008,241-243.
    [167]Hori J., Murata K., Sugai T., et al. Highly active and selective semihydrogenation of alkynes with the palladium nanoparticles-tetrabutylammonium borohydride catalyst system [J]. Adv. Synth. Catal., 2009,351:3143-3149.
    [168]Chan C. W. A., Xie Y., Cailuo N., et al. New environmentally friendly catalysts containing Pd-inters-titial carbon made from Pd-glucose precursors for ultraselective hydrogenations in the liquid phase [J]. Chem. Commun.,2011,47:7971-7973.
    [169]Coq B., Ferrat G., Figueras F. Conversion of chlorobenzene over palladium and rhodium catalysts of widely varying dispersion[J]. J. Catal.,1986,101(2):434-445.
    [170]Hamers B., Bauerlein P. S., Muller C., et al. Hydroaminomethylation of n-alkenes in a biphasic ionic liquid system[J]. Adv. Synth. Catal.,2008,350:332-342.
    [171]Reppe W., Vetter H. Carbonylization. VI. Syntheses with hydrides of metal carbonyls[J]. Liebigs Ann. Chem.,1953,582:133-161.
    [172]Ahmed M., Seayad A. M., Jackstell R., et al. Highly selective synthesis of enamines from olefins [J]. Angew. Chem. Int. Ed.,2003,42:5615-5619.
    [173]Subhani M. A., Muller K. S., Eilbracht P. Chiral polyamino alcohols via hydroaminomethylation:a new class of polyamines for dendritic cores and ligand precursors [J]. Adv. Synth. Catal.,2009,351: 2113-2123.
    [174]Hartwig J. F. Raising the bar for the "perfect reaction" [J]. Science,2002,297:1653-1654.
    [175]Seayad A., Ahmed M., Klein H., et al. Internal olefins to linear amines[J]. Science,2002,297:1676-1678.
    [176]Zimmermann B., Herwig J., Beller M. The first efficient hydroaminomethylation with ammonia:with dual metal catalysts and two-phase catalysis to primary amines [J]. Angew. Chem. Int. Ed.,1999,38: 2372-2375.
    [177]Vieira T. O., Alper H. Rhodium(I)-catalyzed hydroaminomethylation of 2-isopropenylanilines as a novel route to 1,2,3,4-tetrahydroquinolines [J]. Chem. Commun.,2007,2710-2711.
    [178]Vieira T. O., Alper H. An efficient three-component one-pot approach to the synthesis of 2,3,4,5-tetrahydro-1H-2-benzazepines by means of rhodium-catalyzed hydroaminomethylation [J]. Org. Lett., 2008,10:485-487.
    [179]Okuro K., Alper H. Ionic diamine rhodium complex catalyzed hydroaminomethylation of 2-allyla-nilines [J]. Tetra. Lett.,2010,51:4959-4961.
    [180]Wittmann K., Wisniewski W., Mynott R., et al. Supercritical carbon dioxide as solvent and tempo-rary protecting group for rhodium-catalyzed hydroaminomethylation [J]. Chem. Eur. J.,2001,7: 4584-4589.
    [181]Behr A., Roll R. Hydroaminomethylation in thermomorphic solvent systems [J]. J. Mol. Catal. A: Chem.,2005,239:180-184.
    [182]Wang Y., Luo M., Lin Q., et al. Efficient biphasic hydroaminomethylation of long chain olefins in ionic liquids[J]. Green Chem.,2006,8:545-548.
    [183]Wang Y., Chen J., Luo M., et al. Highly regioselective hydroaminomethylation of long chain alkenes catalyzed by Rh-BISBIS in a two-phase system [J]. Catal. Commun.,2006,7:979-981.
    [184]Wang Y., Luo M., Li Y., et al. The catalytic hydroaminomethylation of long chain alkenes with dimethylamine in aqueous-organic two-phase system [J]. Appl. Catal. A:Gen.,2004,272:151-155.
    [185]Wang Y., Zhang C., Luo M., et al. Hydroaminomethylation of high alkenes with dual-metal catalysts in aqueous/organic biphasic system [J]. Arkivoc,2008,165-174.
    [186]徐贻成.具有温控相分离功能的铑纳米催化剂及其应用[D].大连:大连理工大学博士论文,2013年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700