EDTA-Na_2脱钙模拟椎体骨质疏松体外模型的建立及其临床意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:
     EDTA-Na2脱钙模拟椎体骨质疏松体外模型的选择
     研究背景:随着人口寿命的延长及老龄化社会的到来,老年人骨质疏松发病率较高,骨质疏松严重影响老年人的生活质量,其最严重的并发症就是骨质疏松性骨折,一旦患者经历了第一次骨质疏松性骨折,继发性骨折的危险明显加大。该病的防治已经成为一个迫切需要解决的问题,那么对骨质疏松的研究也在逐步深入,骨质疏松的模型也广泛应用。正确选择和制备一个理想的骨质疏松实验动物的模型,是开展骨质疏松研究工作的基础。目前建立骨质疏松模型常用的方法分绝经后骨质疏松模型和局部骨质丢失模型,具体包括去势、药物(激素,维甲酸,羟基脲,同型半胱氨酸)、废用、失重、甲状旁腺切除术、增龄、低钙、转基因、基因敲除、酒精、放射、细胞等模型,但是常规建立模型的方法耗时较多,无法提供在初期大量使用动物模型进行设计修改和测试的要求,同时在动物的购买、饲养、药物、手术费用投入较大,而且动物的数量有限,差异性,重复性差。快速有效的建立模型将为骨质疏松症的深入研究提供帮助。EDTA脱钙方法是一种比较合适的方法,能够制备出满足骨质疏松实验的大量动物模型。相较于活体动物模型其优点:(1)快速、简便、费用低;(2)可靠性好;(3)通过调整脱钙的时间,还可以调控模型的骨质疏松程度。而试验动物的选择也是关键,目前常用的有灵长类、啮齿目动物、兔形目、食肉目、偶蹄目等,绵羊在形态计量学方面,做为脊柱动物模型与人类相比均具有良好的相似性和可比性。短期内制备脱钙骨质疏松体外模型国内张智海等曾有描述,其用椎弓根钻孔EDTA-Na2脱钙的方法达到骨质疏松的目的,但没有阐明骨密度随时间的变化及椎弓根钻孔对椎体骨密度的影响,本试验正是研究经椎弓根钻孔并EDTA-Na2脱钙的绵羊椎骨体外骨质疏松模型、脱钙时间与骨密度的变化及椎弓根钻孔对骨密度变化的影响。此种快速制备骨质疏松模型的方法可以为骨质疏松症的科研及防治节省宝贵时间。
     目的:观察利用EDTA-Na2脱钙后椎体骨密度的变化,以及打孔对椎体骨密度的影响,探讨一种制作骨质疏松模型的方法。
     方法:取70个新鲜绵羊腰1椎体,随机分成10小组,每组7个标本,1-5组全部经椎弓根打孔,记A大组,6-10组不行椎弓根打孔,记为B大组,然后把标本侵入0.4916mmol/L的EDTA-Na2脱钙液体中,分别在0(未浸)、3、6、9、12天分别取出A大组与B大组各一小组行骨密度测试及每组取一个标本大体剖开。观察脱钙时间与A.B两组骨密度变化及两组间的差异。
     结果:A.B两组随着脱钙时间的延长,大体观察可见各组标本骨小梁逐渐变细、间隙增宽,骨密度检测结果显示逐渐减低的趋势,并且各组脱钙前后骨密度变化均有明显的差异性。A与B大组间在骨密度的变化无明显的差异(P>0.05)。
     结论:采用0.4916mmol/L EDTA-Na2脱钙12天可模拟轻、中、重度骨质疏松,经椎弓根打孔对骨密度变化没有影响,但钻孔可能对制造易压缩的骨质疏松骨折模型有实际意义。
     第二部分:
     EDTA-Na2脱钙模拟椎体骨质疏松体外模型的建立
     研究背景:越来越多的人口患有骨质疏松疾病,由骨质疏松导致的脊柱压缩性骨折已严重危害老人的健康和严重影响老人的生活质量,加重了社会和家庭的负担。随着对骨质疏松研究的不断深入,骨质疏松模型的应用越来越广泛,并且骨质疏松性骨折手术器械的试制及药品的研制,都需要在大量、可重复的动物模型上进行试验。而建立骨质疏松的动物模型受到诸多限制,并且骨质疏松的活体动物模型,常用来研究骨质疏松的病理生理机制及治疗,所以目前迫切需要一种可短期内制作的体外骨质疏松模型的方法。我们正是建立这种经EDTA-Na2脱钙的绵羊椎骨体外骨质疏松模型,并且是可以改变骨密度和骨强度的大量、可重复的骨质疏松椎骨体外模型,而且标本在脱钙程度与脱钙时间上都能得到较好的控制。
     骨质疏松症是以骨强度降低导致骨折危险性增加的一种骨骼疾病,骨密度和骨质量的好坏反应了骨强度的高低。临床用来检测骨质疏松的方法有骨代谢生化标志物检测、骨矿密度(BMD)测量、定量超声测定、骨强度分析、常规X线检查、磁共振成像检查、放射性核素骨显像等。目前,骨质疏松的诊断主要是依赖骨形态学测量和骨矿物密度(BMD)值的测定。而根据现有的条件,多种方法联合应用是必不可少的。本实验对体外骨质疏松模型同时进行了骨灰化测定。
     目的:利用乙二胺四乙酸二钠盐(EDTA-Na2)体外脱钙后的椎体模拟椎体骨质疏松,对椎体骨质疏松模型进行DR、DEXA、Micro-CT、骨灰化等检测,观察短期制造骨质疏松模型的结果,探讨一种短期制造骨质疏松性椎体压缩骨折模型的方法。
     方法:取84个新鲜绵羊胸腰椎3联体,随机分成7组,记为A. B.C. D.E.F.G每组12个标本,中间椎体钻孔后,在室温下将椎体浸入0.4916mmol/L的EDTA-Na2脱钙液体中,分别在0(未浸)、3、6、9、12天每组各取一个标本测骨密度,其中每组在脱钙0、9天行X拍片(n=7)后大体剖开观察,中间椎体Micro-CT检查(n=7)及骨灰化测定(n=7)。
     结果:随着脱钙时间的延长,大体观察可见各组标本骨小梁逐渐变细、间隙增宽,骨密度检测结果显示逐渐减低的趋势,并且各组脱钙前后骨密度变化均有明显的差异性。Micro-CT检测脱钙9天椎体的骨小梁表观密度、骨体积分数、骨小梁厚度、骨小梁数量、骨小梁分离度、结构模型指数、各向异性的程度、欧拉数、骨小梁连结密度均有明显的变化(p<0.05),骨灰化测定脱钙0、9天骨矿物质含量有明显的变化(p<0.05)。
     结论;采用0.4916mmol/L EDTA-Na2脱钙9-12天可模拟中、重度骨质疏松性椎体压缩骨折,是一种快速、可行、重复性高的方法。
     第三部分:
     骨质疏松体外模型的生物力学试验及临床意义
     研究背景:1885年,Pommer最早提出“骨质疏松”这一名词,意思是骨质减少,可见布满空隙的骨骼,1990年在丹麦举行的第三届骨质疏松大会上明确提出其定义,之后在1993年的第四届大会上得到完善,并为世界各国所公认,2001年,美国国家卫生学院(NIH)提出,骨质疏松症是以骨强度降低导致骨折危险性增加的一种骨骼疾病,骨密度和骨质量的好坏反应了骨强度的高低。
     1987年,法国学者Galibert和Deramond根据外科手术填塞骨水泥的经验采用经皮穿刺椎体后注射骨水泥治疗血管瘤,此可谓将经皮椎体成形术运用于临床的最初报道。1990年,Galibert和Deramond进一步提出该技术可扩大应用于骨质疏松性椎体骨折,这标志着椎体成形术的突破性进展。此后该技术在脊柱外科领域得到了广泛的应用和发展。
     目的:探讨骨质疏松及椎体成形术后绵羊胸腰段三联椎体的生物力学特性变化,为临床试验提供依据。
     方法:取0.4916mmol/L的EDTA-Na2脱钙液体中的A. B. C. D. E. F. G组绵羊胸腰椎三联体每组6个,共42个,分别在第0(未浸)、3、6、12天每组各取一个标本,而在第9天每组取两个标本,以供试验使用。测量每个椎体的高度,计算压缩50%所需形变量。以最大压力为压缩强度,将各标本上下椎体卡在压缩模具上,然后置于生物力学实验机上,以5mm/min的加载速率进行垂直加载,直到标本屈服为止,测出最大抗压力。记录载荷和形变(高度)的变化,得到载荷-形变曲线,以最大载荷为压缩强度,以载荷-形变曲线的斜率为压缩刚度。在压缩过程中不断用注射器向标本上注射0.9%氯化钠溶液,保持椎体湿润。
     取第9天压缩标本行椎体成形术,分为PMMA组和活性骨水泥组,每组各7个标本,在C形臂X线机监视下,模拟临床球囊扩张椎体后凸成形术操作。用3.5mm钻头作椎弓根钻孔,直至椎体前中1/3交界处,置入导针后沿导针放入一根套管针,沿套管放入可扩张球形气囊,然后向气囊内充气扩张。球囊扩张及复位满意后将其复原后撤出。调配骨水泥,PMMA组使用zimmer骨水泥,活性骨水泥组使用CPC/PMMA复合组成的生物活性骨水泥。将调配好的骨水泥装入注射器中,在团状期将骨水泥经工作套管推入椎体内空腔。根据球囊扩张体积确定骨水泥注射量。各椎体拍摄正侧位X线片,测量各椎体高度、压缩刚度及压缩强度(方法同前)。
     观察随脱钙时间延长BMD与椎体压缩强度和刚度的变化,以及三者之间的关系,椎体成形前后椎体压缩强度和刚度的变化。
     结果:随着脱钙时间的延长,各组的BMD、椎体压缩强度和刚度逐渐降低,存在显著性差异(P<0.005);椎体成形术后各组的椎体压缩强度明显高于术前(P<0.05);PMMA组的椎体压缩刚度与术前无统计学意义(P>0.05),活性骨水泥组的刚度高于术前组和PMMA组(P<0.01)。
     椎体BMD与椎体压缩强度存在着明显的正相关关系(γ=0.976,P<0.01)。BMD的大小直接影响椎体承载能力的大小。椎体刚度反映椎体在轴向载荷下,抵抗变形能力的大小,与BMD亦成正相关关系(γ=0.922,P<0.01)
     结论:1.BMD可以反映椎体骨质疏松的程度及椎体的生物力学性能,为临床上预防骨质疏松性骨折提供帮助。
     2.活性骨水泥在椎体成形术后可以恢复椎体的生物力学强度,可达到正常椎体的生理需求。
     3. EDTA快速脱钙制备骨质疏松模型法可以为生物力学及临床研究提供基础。
PartⅠ:
     The selection of a model to simulate vertebral osteoporosis in vitro EDTA-Na2 by demineralization
     Background As the aging society comes with life prolongation of the population, the osteoporosis attacked in elderly group becomes higher,which seriously harms the life quality of old people, and its most serious complications is osteoporotic fractures. once the patients get the fracture, the possibility of its recidivation is obviously high. It is urgent that the prevention of the disease has to be solved, thus the research of osteoporosis is carrying out, and there is a wide range of application of the model of osteoporosis. The correct choice and preparation an ideal osteoporosis model of experimental animals in research work is the basis of osteoporosis. Establish the osteoporotic model at present commonly used methods points postmenopausal osteoporosis model and local bone loss model,and specific include gonadectomy, drugs which include hormone, retinoic acid, hydrea and HCY, disuse, agravity, Parathyroid resection, increasing age,, low calcium, transgenic, gene knock-out,alcohol,radiation, cell model and etc. But those mentioned methods above cost a lot of time, can not satisfy the demand of design, adjustment and test in animal model in the initial stage, and at the same time, the cost taken in the pruchasing, feeding of animals, also the input of the drugs and operation is large, and the number of animals is limited, which has low otherness and repeatability. To build model for osteoporosis quickly and effectively offers a help in lucubrating the disease. EDTA decalcification method is an approach that satisfies the demand of a large number of animal models for osteoporosis experiment. Compare to the living body model, the model manufactured by EDTA method is:(1) Rapid, simple, low in the cost; (2) High reliability; (3) Via adjusting the demineralization time, can control the extent of osteoporosis of the model. Meanwhile it's also a key for the choice of experimental animals,and now the primates, the rodent mesh animals, lagomorpha, carnivorous mesh, cloven hooves, etc are commonly used. Sheep As the spine animal models are good comparability and comparability compared with humans in morphometric aspects. There was a description of the manufacture of the osteoporosis model in vitro by decalcification in short terms from Zhang Zhihai's group, that with its method to get osteoporosis by punching hole on pedicle of vertebral arch with EDTA-Na2 decalcification, but it is not clarified the BMD changing along time and the influence of punching hole on pedicle of vertebral arch to centrum's BMD. in this research, the aim is to study the osteoporosis model of sheep vertebrae by punching hole on pedicle of vertebral arch and EDTA-Na2 demineralization in vitro,and to investigate the time of decalcification versus the change of BMD, and the changes of BMD via punching hole on pedicle of vertebral arch. Thanks to this method that it can rapidly manufacture the model of osteoporosis, which saves valuable time for the development of prevention and treatment of osteoporosis.
     Objective Develope a osteoporosis model by observing the change of the bone mineral density in vertebrae with the demineralization that occurred via the Ethylene Diamine Tetraacetic Acid disodium salt (EDTA-Na2) process and the the influence of the bone mineral density in vertebrae in which two hole made.
     Method 70 fresh first lumbar vertebrae of sheep were randomly divided into 10 groups, each group 7 specimens, each vertebrae was made two holes in Vertebral pedicle by a dill with 3mm in Diameter in 1-5 group marked A big group,and 6-10 group without pedicle hole marked B big group,then all the specimens were dropped into 0.4916mmol/L of EDTA-Na2 demineralized liquid, a group was removed respectively in the day 0,3,6,9,12 in both A and B.after bone mineral density were tested a sample was cut open in each group. Observation relationship between the change of bone mineral density and the decalcified time in A.B group and that bwteen A and B in bone mineral density.
     Results A.B the gross observation showed trabecular bone of specimens of each group thinnering, the gap widening, bone mineral density test showed the trend of gradual reduction, and each group had significant difference in bone mineral density before and after decalcification. the change in bone mineral density in A and B group were no significant differente (P> 0.05).
     Conclusion Vertebraes decalcified for 12 days by the EDTA-Na2 of 0.4916mmol/L EDTA-Na2 was to simulate the light, moderate and severe osteoporosis in degree and that the holes drilled in Vertebral pedicle did not affect the change of bone mineral density,but drilling holes may be have practical sense of creating the compressed fracture model of osteoporosis.
     Part II:
     Development of the model to simulate vertebral osteoporosis in vitro by EDTA-Na2 demineralization
     Background More and more people suffer from osteoporosis disease,and the vertebral compressibility fracture already serious harm the old man's health and seriously affect the old man's life quality,meanwhile increase social and family burden. With the deepening of the research for osteoporosis, the osteoporotic models are used more and more widely,and the research of surgical instrument test and drug development for osteoporotic fractures both need a large number and repeatable animal model to experiment. While the establishment of osteoporotic animal model is affected by many restrictions, and the living osteoporotic animal model are used to study the pathophysiology of osteoporosis and treatment. There is an urgent need to a method of short-term producted osteoporotic model in vitro.It is our aim to found this osteoporosis model of sheep vertebrae by EDTA-Na2 demineralization in vitro,which can change BMD and bone strength and can be a large number and repeatable animal model.And for the specimens in demineralization extent and the time on the demineralization we can get better control.
     Osteoporosis is a bone disease that increase fracture risk caused by bone strength reduce. And the stand or fall of BMD and bone quality level determine the bone strength. Clinical used to detect osteoporosis methods include bone metabolism biochemical markers detection,BMD,quantitative ultrasound, bone strength analysis, conventional X-ray, magnetic resonance imaging, radionuclide bone scintigraphy,etc. At present, the diagnosis of Osteoporosis mainly rely on morphometric aspects and BMD. On the basis of the conditions now having got, it is necessary to unify the multiple methodes. In this experiment, it also processes the bone ash determination.
     Objective To mimic vertebral osteoporosis in vitro by demineralization EDTA-Na2, process image test like DR,DEXA and Micro-CT,and bone ashes detection on the vertebral osteoporosis model, observe the result of the model that manufactured in short term, and then discuss a kind of method that can manufacture the osteoporotic vertebral compression fracture model in short period.
     Method Take 84 fresh sheep thoracic and lumbar vertebraes 3 concatemers and randomly divide to 7 groups, and marked as A.B.C.D.E.F.G,12 samples in each group, drill a hole in the vertebraes body, at room temperature immerse the samples into 0.4916mmol/L EDTA-Na2 demineralized liquid, separately withdraw samples from 0 (not immersed),3,6,9 and 12 perday for BMD. For the demineralised groups after 0,9days, take X rays (n=7), and then divide for general observation (n= 7),and the intermediate vertebras make Micro-CT examination (n=7) and ashes of measurement (n=7).
     Results With the decalcification, general observation shows that bone trabecula of each group became thinner and the gap between bone trabecula became wider gradually,the bone mineral density test show a trend that reduced, and the difference of BMD measurement bwteen pre-and post-demineraling process were statistically significant. After demineraling for 9 days Micro-CT detection showed that vBMD, BVF, Tb.Th, Tb.N, Tb.Sp, SMI, DA, Eu.N, Conn.Dn were significantly different compared to pre-demineraling (p<0.05). After Ashes of determination demineralization, at 0,9 day (days), the BMC apparently changed (p<0.05).
     Conclusion The vertebraes decalcified for 9-12 days to simulate osteoporotic vertebral compression fractures is a fast, feasible and reproducible method.
     PartⅢ:
     The biomechanical experiment of osteoporosis model in vitro and its clinical significancee
     Background In 1885, Pommer suggested that the word of osteoporosis, which describes the reducing of sclerotin, voided bones, and it is defined by the 3rd of osteoporosis meeting held in denmark in 1990, and then it is completed in the 4th meeting in 1993, and confirmed by every country in the world, in 2001, NIH suggested that the osteoporosis is a kind of bone diesease that results in fracture by bone strength reducing, the BMD and bone mass reflect the bone strength.
     In 1987, Galibert and Deramond from Franch adopted the treatment for hemangioma by inject bone cement after skin puncture the centrum according to the experience of filling bone cement in surgical operation, this is the first case of application in clinical. In 1990, they further suggested that this technique can be applied in osteoporosis centrum fracture (OCF), which is a milestone of Vertebroplasty. And this technique is widely applied and developed in the field.
     Objective Probe into sheep thoracic and lumbar vertebraes biomechanical characteristics change after Vertebroplasty and osteoporosis, provide evidence for clinical experiment.
     Method Take 6 of each group (A.B.C.D.E.F.G) of sheep thoracic and lumbar vertebraes in 0.4916mmol/L EDTA-Na2 decalcification liquid in total of 42, a sample is with drawed from day 0 (not immersed),3,6,12,and two samples from day 9 for experimental use. Measure the height and weight of the centrum of each group in the front, rear, left, right direction, calculate the average out by the measuring tool of vernier caliper, accurated to 0.02mm.The compressive strength is the maximum pressure, that compresses the upper and down centrums of samples on the mould, and then put into the biomechanic apparatus, process vertical load in the rate of 5mm/min, when the sample is submited, measure the max-compressive resistance.Record the strength and shape-change (height) 10times/min, draw the curve of strength vs shape-change, find out the initial compressive strength and stiffness. Set the maximum pressure as the compressive strength, take the gradient of the curve of Strength vs Shape-change as the compressive stiffness.During the compression inject the 0.9% sodium chloride solution continuously on the sample, keep the sample moist.
     Take vertebroplasty for ninth day compressive sample, divided into PMMA group and bioactive bone cement group,7 specimens in each group; imitate the clinical operation of PKP under c-arm X-ray machine monitoring.Drill hole on pedicle of vertebral arch by 3.5mm drill, into 1/3 of the centrum, after placing the guidepin, insert a trocar along the guidepin, along the trocar, place in an expandable spherical gasbag, and then aerate the gasbag. After the balloon expansion and reset satisfaction after recovering the withdrawal. Mix the bone cement, PMMA Group using the zimmer bone cement, and bioactive bone cement group with CPC/PMMA composite consisting of bioactive bone cement. Put bone cement into the injector, taking injection to the cavity of the centrum during the bone cement is in round state according to the volume of the gasbag. Shooting a side X-ray image of each centrum, measure the height, compressive stiffness and compressive strength (same method as having said).
     Analysis the BMD, compressive strength and stiffness with correlation analysis by statistical software SPSS 17.0, Vertebral molding before and after of the vertebral compression strength and stiffness, comparison with single factor analysis of variance (ANOVA), the level of significance in P<0.05.
     Results The centrums are in total of 42 in this experiment, as the decalcification time the BMD, vertebral compression strength and stiffness of each group reduce gradually, differ from each other obviously(P<0.005), that the groups after the vertebroplasty are higher than before in the compressive strength(P<0.05); The PMMA group were not significantly different compared to vertebral molding before in vertebral compression stiffness(P>0.05);The active bone cement group are higher than before and PMMA group in vertebral compression stiffness, that (P<0.01).
     The BMD of the centrum and the compressive strength of the centrum are obvious in relationship of positive correlation (y= 0.976, P<0.01).The magnitude of BMD direct influences the Vertebral bearing capacity. The stiffness of the centrum means the deformability resistance of the centrum under the axial load, is in relationship of positive correlation (y=0.922, P<0.01).
     Conclusion The first, BMD can reflect the level of osteoporosis, predict the fracture, and in an extent that could show the sclerotin situation of the centrum, offering help in clinical treatment and early diagnosis.The second, Bioactive bone cement in vertebroplasty surgery can restore the biomechanical strength of vertebral body, that can be achieved by the normal physiological needs of vertebral.The end, Rapid Preparation of EDTA decalcification method for osteoporosis model provide the basis for Biomechanical and clinical studies.
引文
[1]王云钊,曹来宾主编.骨放射学诊断[M].北京:北京医科大学出版社,1994.
    [2]刘锡仪,刘浩宇。大鼠脑源性骨质疏松动物模型[J].中国骨质疏松杂志,2008年3月第14卷第3期:143-147。
    [3]雷涛,张秀珍,贺铭,等。实验性骨质疏松症大鼠模型的制备[J].同济大学学报(医学版),2001,22(3):12-13。
    [4]章晓霜,高顺生,屈菊兰等。不同强度运动与雌激素联合作用对去卵巢大鼠腰椎超微结构影响的扫描电镜观察[J].中国运动医学杂志,2003,22(2):156-158。
    [5]杨茂伟,王占友,屠冠军等。骨质疏松大鼠椎间盘的超微结构研究[J].中国医科大学学报,2004,33(2):107-109。
    [6]程立明,丁铭,李子荣,王冉东。羊骨质疏松模型在人类骨科研究中的作用[J].中国骨质疏松杂志,2008年6月第14卷第6期:441-447。
    [7]刘浩宇,刘锡仪。新生期大鼠注射谷氨酸钠后导致骨质疏松[J].中国骨质疏松杂志,2000,6(4):10-12。
    [8]Hu YJ, Guo SP, Li XH, et al. The effect s of rh-GH and est rogen on mandible and femur in ovariect omized rats bone dense and maximumload. Chin J Osteoporos,2007,13(2),91-95.
    [9]Yongmei W, Shigeki N, Takeshi S, et al. Insulin-like Growth Factor-1 Is Essential for Embryonic Bone Development. Endocrinology,2006, 4753-4761.
    [10]张月峰,韩景献。骨质疏松动物模型研究进展[J].动物医学进展,2005,26(3):8-11。
    [11]洪志勇,刘爱平。制作骨质疏松症大鼠模型的甲状旁腺切除法[J].上海实验动物科学,1996 16(2):85-86。
    [12]黄洪,田成功。睾酮与雄性大鼠骨质疏松关系的实验研究[J].中华内分泌代谢杂志,1999,15(5):3042307。
    [13]裴育。睾丸切除大鼠骨质疏松动物模型的研究及应用[J].国外医学内分泌 学分册,2002,22(4):224-226。
    [14]宫琳,周延民,李春艳,王林,张玉凤,杨炎忠。快速建立兔骨质疏松症动物模型的方法[J].吉林大学学报(医学版),2008年9月第34卷第5期:903-906。
    [15]冯冲,刘月桂,张灵菊,高子范。高转换型骨质疏松模型的生化特点[J].中国骨质疏松杂志,1997年6月第3卷第2期:24-27。
    [16]庞莹。针刺对快速老化模型小鼠SAMP6相关元素和骨计量学影响的实验研究[M].天津:天津中医学院,2003:36。
    [17]陈旭,骨质疏松动物模型的研究进展(综述)[J].中国城乡企业卫生,2009/04。
    [18]Turner RT, Evans GL, Zhang M, et al. Eff ect s of parathyroid hormon eon bone format ion in a rat model for chroin c alcohol abuse, alcoholism. Clinical Experiment al Research,2001,25,667-671.
    [19]李杰,王义生,李月白,等。酒精对骨髓基质细胞增殖及分化的影响[J].中国骨质疏松杂志,2004,10(1):52-53。
    [20]齐振熙,王明千。酒精性骨质疏松症的动物模型研究[J].中国骨伤2005年12月第18卷(卷终)第12期:735-736。
    [21]张智海,沈建雄,吴志宏,吕维加,邱贵兴。快速制备骨疏松性椎体压缩性骨折的动物模型研究[J].中国骨质疏松杂志,2005,11(1):19-21
    [22]杨彬奎,雷伟,王军,李运明,小牛椎体骨质疏松模型的快速建立[J].第四军医大学学报,2008/12。
    [23]NIH Osteoporosis prevention, diagnosis and therapy. NIH consensus statements 2000; 17:1-45
    [24]Jerome CP, Turner CH, Lees CJ. Decreased bone mass and strength in ovariectomized cynomolgus monkeys (Macaca fascicularis). Calcif Tissue Int 1997,60 (3):265-270.
    [25]Gilles JA, Carnes DL, Dallas MR, et al. Oral bone loss is increased in ovariectomized rats. J Endodon,1997,23 (7):419-422.
    [26]Yamazaki M, Shirota T, Tokugawa Y, et al. Bone reactions to titanium screw implants in ovariectomized animals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod,1999,87 (4):411-418.
    [27]刘康,季晖,李绍平等.三种大鼠骨质疏松模型的比较研究.中国骨质疏松杂志,1998:4(4):13-18.
    [28]Mori H, Manabe M, Kurachi Y, et al. Osseointegration of dental implants in rabbit bone with low mineral density. J Oral Maxillofac Surg,1997,55 (4):357-362.
    [29]Southard TE, Southard KA, Krizan KE, et al. Mandibular bone density and fractal dimension in rabbits with induced osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2000,89 (2):244-249.
    [30]Akkas N, Yeni YN, Turan B, et al. Effect of medication on biomechanical properties of rabbit bones:Heparin induced osteoporisis. Clin-Rheumatol,1997,16 (6):585-595.
    [31]Southard KA, Southard TE. Detection of simulated osteoporosis in dog alveolar bone with the use of digital subtraction. Oral Surg Oral Med Oral Pathol,1994,77:412-418.
    [32]Fukuda S,Lida H. Effects of orchidectomy on bone metabolism in beagle dogs. J Vet Med Sci,2000,62 (1):69-73.
    [33]Shen V, Dempster DW, Birchman R, et al. Lack of changes in histomorphometric, bone mass, and biochemical parameters in ovariohysterectomized dogs.Bone,1992,13 (4):311-316.
    [34]Mosekilde L.Weisbrode SE, Safron JA, et al. Calcium restrictedovariectomized sinclair S-1 minipigs:an animal model ofosteopenia and trabecular plate perforation.Bone,1993,14 (3):379-382.
    [35]田 勇,王 阳,夏长丽,等。鹿、羊和人腰椎形态计量学关联性分析[J].吉林大学学报(医学版),2010/01。
    [36]Atilla Akbay·Gokhan Bozkurtt·Ozgurokhan Bozkur Ⅱgaz·Selcuk Palaoglu·Nejat Akalan·Edward C. Benzel A demineralized calf vertebra model as an alternative to classic osteoporotic vertebra models for pedicle screw pullout studies Eur spine J(2008) 17:468-473.
    [37]Kumar N, Kukreti S, Ishaque M, etal. Anatomy of deerspine and its comparison to the human spine [J]. An at Record,2000,260:189-203.
    [38]罗卓荆,胡蕴玉,王茜.H2O2浸渍对牛松质骨力学特性的影响[J]. Chin J Orthop,1997,17(11):714—717.
    [39]Faibish D, Ott SM, Boskey AL Mineral changes in osteoporosis:a review. Clin orthop Relat Relat Res 2006 443:28-38.
    [40]Turner AS Animal models of osteoporosis-necessity and limitations. Eur Cell Mater 2001,22(1):66-81.
    [1]《生命时报》2008-03-05
    [2]Erben RG, Eberle J, Stahr k, et al. Androgen deficiency induces high turnover osteopenia in aged male rats:a sequential histomorphometric study. J Bone Miner Res,2000,15:1085-1098
    [3]张智海,沈建雄,吴志宏,吕维加,邱贵兴。快速制备骨疏松性椎体压缩性骨折的动物模型研究[J].中国骨质疏松杂志,2005,11(1):19-21
    [4]Nayak S, Olkin I, Liu H, Grabe M, Gould MK, Allen IE, Owens DK, Bravata DM (2006) Meta-analysis:accuracy of quantitative ultrasound for identifying patients with osteoporosis. Ann Intern Med 2006; 144(11):832-841
    [5]文天林,孙天胜,王 玲骨质疏松症的临床表现及诊断[J].人民军医,2010,53(9):664-665
    [6]刘忠厚主编.骨质疏松学[M].北京:科学出版社,1998.355-356.
    [7]华锦明,董启榕,沈忆新,成茂华.绝经后脊柱骨质疏松症的临床研究[J].中华临床医师杂志(电子版),2009,3(5):797-803
    [8]余卫.骨密度的测量及骨质疏松的诊断[J]. Chine Conternporary Medicine,2001,7(6):76-82
    [9]李一波,沈宁江,陈文清,陈建.QCT检查在诊断、治疗骨质疏松中的应用[J].<<海南医学>>,2010,21(17):124-127
    [10]武乐斌,刘学静,刘永红.多层螺旋CT用于评价老年性骨质疏松腰椎骨质结构改变[J].中国医学科学院学报,2006,28(1):101-104
    [11]李专.直接数字化(DR)X线摄影在糖尿病骨病诊断中的价值[J].医学临床研究,2006,23(3):441-442
    [12]张晨升.直接数字化摄影应用体会[J].医用放射技术杂志,2004,21(8):744-745
    [13]朱力波.骨质疏松症的影像学诊断进展[J].中国矫形外科杂志,1999,6(7):547
    [14]刘忠厚主编.骨质疏松学[M].北京:科学出版社,1999.363,361.
    [15]林宜生,郭玉.100例脊椎普遍性骨质疏松的影像诊断分析[J].颈腰痛杂志,2005,26(3):186-188
    [16]GREENFIELD MA, Gurrent status of physical measurement of the skeleton[J].Med Phys,1992,19(6):1349
    [17]0'KEFFE D.Morphometry[J].Radiol Clin North Am,1991,129(1):165.
    [18]ITO M, HAYASHIK, YAMADA M, et al. Vertabral measurements for assessment of osteooporoses[J].BJT,1994,67 (800):759
    [19]GRAMPP S, JERGAS M,GLUER CC,et al. Radiologic diagnosis of Osteoporosis:current methods and perspectives[J]. Radiol Clin North Am,1993,31 (5):1133
    [20]Ross PD, Wasnich RD, Vogel JM. Detection of prefracture spinal osteoporosis using bone mineral absorptiometry. J Bone Min Res 1988:3:1-11
    [21]Burger H, Van Daele PLA, Algra D, et al. The associat ion between age and bone mineral density inmen andwomen aged 55 years and over: the rotterdam study. Bone Miner,1994,25:1
    [22]蔡跃增,李景学,田小丽,雷新玮,吴胜勇.老年人骨矿含量分布的研究[J].临床放射学杂志,2004,23(3):229-231
    [23]Alhava E. Bone denslty measurements. Calcif Tissue Int 1991;49: 21-23
    [24]No authors listed Prevention and management of osteoporos is. World Health Organ Tech Rep Ser 2003:921:1-164
    [25]Link TM, Majumdar S. Ost eoporosis imaging. Radiol Clin North Am,2003, 41:813-839
    [26]NIH Consensus Development Panel on Osteoporosis Prevent ion, Diagnosis, and T herapy. Ost eoporosis prevention, diagnosis, and therapy. JAMA,2001,285:785-795
    [27]Seeman E. The stuctural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin North Am,2003,32(1):25-38
    [28]尚伟,余卫,徐苓,林强,田均平.北京老年男性骨质疏松性椎体初发骨折与再发骨折相关性分析[J].2005,85(2):84-87
    [29]余卫等.绝经后妇女腰椎骨密度测量的研究[J].中国医学计算机成像杂志,1997,3(2):114-116
    [30]Gonzalez RE, Velasco VJ, Arnay DLRM, et al. Double-energy X-ray absorptiometry in the diagnosis of osteopenia in ancient skelet al remains. Am J Phys Anthropol,2002,118:134-145
    [31]杨小明等.双能X线骨密度仪在15cm水深中测量骨密度的准确性[J].中国临床康复,2004,8(15):2894-2895
    [32]肖建德.实用骨质疏松学[M].北京:科学出版社,2004.
    [33]Nguyen TV, Pocock N, Eisman JA. Interpretation of bone mineraldensity measurement and its change [J]. J Clin Densitom,2000,3(2):107-119.
    [34]范宏斌等.腰椎DXA测量结果评判[J].第四军医大学学报,2002,23(2):173-176
    [35]刘忠厚主编.骨质疏松学[M].北京:科学出版社,1998.370-371
    [36]朱力波.骨质疏松症的影像学诊断进展[J].中国矫形外科杂志,1999,6(7):547.
    [37]薛 延,李瑾,张海文,等.北京市区707例跟骨定量超声测定结果的分析[J].中国骨质疏松杂志,2000,6(1):56-57.
    [38]石琴.骨质疏松症的影像学诊断方法[J].2001,10(2):85-88
    [39]Nuti R, Martini G, Gennari A. Total body, spine, ande femur dual X-ray absorptiometry in spinal osteoporosis.Calcif Tissue Int,1993,53: 388-393
    [40]Karisson M, Gardsell P, Johnell 0. Bone mineral normative data in Malmo Sweden. Acta Orthop Scand,1993,64:168-172
    [41]Pei WL, Julie NB, Graham DO, et al. Bone mineral density of total body, spine, and femoral neck in children and young adults:a cross-sectional and longitudinal study. J Bone Miner Res,1994,9: 1451-1457
    [42]Genant H, Engelke k, Fuerst T, et al.Noninasive assessment of bone mineral and structure:state of the art. J Bone Miner Res 1996; 11 (6): 707-30
    [43]Takada Metal. Radiology,1997;202(3):759-763
    [44]Mitlak Betal. J Bone Min Res,1994;9(1):119-126
    [45]Slevanen Hetal. J Bone Min Res,1994;9(4):473-477
    [46]蒋宝国等.双源CT双能扫描测量骨密度的实验研究[J].中国临床医学影像杂志,2010,21(6):405-408
    [47]冯坤.骨质疏松的诊断与DEXA骨密度测量技术[J]. 中医正骨,1999,11(10):57-60
    [48]虞进波等.上海市女性骨量变化与骨质疏松检出率[J].中国骨质疏松杂志,2008,14(4):258-262
    [49]Wu XP, Liao EY, Zhang H, et al. Det ermination of age-specific bone mineral density and comparison of diagnosis and prevalence of primary ost eoporosis in Chinese women based on both Chinese and World Health Organization criteria. J Bone Miner Metab,2004,22(4): 382-391.
    [50]Greenspan SL, Mait land-Ramsey L, Myers E. Classif ication of ost eoporosis in the elderly is dependent on site-specific analysis. Cal cif Tissue Int,1996,58(6):409 414.
    [51]Engelke K, Gluer CC, Genant HK. Factors influencing short term precision of dual X ray bone absorptiometry (DXA) of spine and femur:Calcif Tissue Int,1995,56:19
    [52]蔡跃增等.老年人骨矿含量分布的研究[J]. 临床放射学杂志,2004,23(3):229-231
    [53]董必能等.抗癫痫药对成人骨密度的影响[J].2003,31(9):36-38
    [54]Nelson HD, Helfand M, Woolf SH, Allan JD Screening for postmenopausal osteoporosis:areview of the evidence for the US Preventive Services Task Force. Ann Intern Med 2002; 137(6):529-541 Summary for patients in:Ann Inter Med 17 September 2002; 137 (6):159
    [55]范宏斌等.腰椎DXA测量结果评判[J].第四军医大学学报,2002,23(2)173-176
    [56]赵文俐等.数字X线机骨密度测量的实验和临床应用[J].中国骨质疏松杂志,2008,14(1):44-46
    [57]阮祥燕等.骨质疏松诊断技术的新进展[J]. 当代医学,2001,7(1):18-21
    [58]Jamsa T, Koivukangas A, Kippo K, et al. Comparison of radiographic and pQCT analyses of healing rat tibial fractures. Calcif Tissue Int, 2000,66:288-291
    [59]Braillon PM. Quantitative computed tomography precision and accuracy for long-term fo llow-up of bone m ineral dens ity measurements:a five year in vitroassessment[J]. JC lin Dens itom, 2002,5(3):259-266.
    [60]Hahn M, Vogel M, Pompesivs Kempa M, et al. Trabecular bone pattern factor:a new parameter for simple quantification of bone micro architecture. Bone,1992,13:327-340.
    [61]Chappard D, Basle MF, Legrand E, et al. Trabecular bone microarc-hitecture [J].Morphologie,2008,92:162-170.
    [62]Rubin CD. Emerging concepts in osteoporosis and bone strength [J].Curr Med Res Opin,2005,21:1049-1056.
    [63]Pogoda P, Priemel M, Rueger JM, et al. Bone remodel ing:new aspects of a key process that controls skeletal maintenance and repair [J].Osteoporos Int,2005,16:S18-24.
    [64]郭郡浩,赵智明,姚茹冰,等.女性腰椎侧位与后前位骨密度的相关性研究[J].实用临床医药杂志,2009,13(1):47-51.
    [65]Craw ford RP, Cann CE, Keaveny TM, et al. Finite element models predict in vin vertebral body compressive strength better than quantitative computed tomography[J]. Bone,2003,33(4):744-750.
    [66]汤晓斌,陈达,常树全,等.CT值推导人体组织化学组成两分法的理论函数模型验证[J].原子能科学技术,2006,28(1):357-360.
    [67]Cortet B, Colin D, Dubois P, et al. Methods for quantitative analysis of trabecular bone structure [J]. Rev Rhum Engl ED,1995,62: 781-793.
    [68]Genant HK, Jiang Y. Advanced imaging assessment of bone quality [J]. Ann N YAcad Sci,2006,1068:410-428.
    [69]Kazakia GJ, Majumdar S. New imaging technologies in the diagnosis of osteoporosis[J]. Rev Endocr Metab Disord,2006,7:67-74.
    [70]Al Haffar I, Padilla F, Nefussi R, et al. Experimental evaluation of bone quality measuring speed of sound in cadaver mandibles[J] Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2006,102:782 791.
    [71]Burghardt AJ, Wang Y, Elalieh H, et al. Evaluation of fetal bone structure and mineralization in OGF-1 deficient mice using synchrotron radiation microtomography and Fourier transform infrared spectroscopy [J]. Bone,2007,40:160-168.
    [72]Hakulinen MA, Day JS, Toyras J, et al. Ultrasonic characterization of human trabecular bone microstructure [J]. Phys Med Biol,2006,51: 1633-1648.
    [73]Geneser F,19861Text BooKof HistologylMunKsgaard Lea and Febiger, Philadelphia, P122~30
    [74]Feldkamp LA, Goldstein SA, Parfitt AM, et al. The direct examination of three-dimensional bone architecture in vitro by computed tomography[J]. J Bone Miner Res,1989,4:3-11.
    [75]Engelke K, Graeff W, Meiss L, et al. High spatial resolution imaging of bone mineral using computed microtomography. Comparison with microradiography and undecalcified histologic sections[J]. Invest Radiol,1993,28:341-349.
    [76]Arlot ME, Jiang Y, Genant HK, et al. Histomorphometric and micro-CT analysis of bone biopsies from postmenopausal osteoporotic women treated with strontium ranelate[J]. J Bone Miner Res,2008,23:215-222.
    [77]Hordon LD, Itoda M, Shore PA, et al. Preservation of thoracic spine microarchitecture by alendronate:comparison of histology and micro-CT [J]. Bone,2006,38:444-449.
    [78]Liu SP, Liao EY, Chen J, et al. Effects of methylprednisolone on bonemineral density and microarchitecture of trabecular bones in rats with administration time and assessed by micro-computed tomography [J].Acta Radiol,2009,50:93-100.
    [79]Akhter MP, Lappe JM, Davies KM, et al. Transmenopausal changes in the trabecular bone structure [J]. Bone,2007,41:111-116.
    [80]Jiang Y, Zhao J, Liao EY, et al. Application of micro-CT assessment of 3D bone microstructure in preclinical and clinical studies [J]. J Bone Miner Metab,2005,23:122-131.
    [81]Tang SY, Vashishth D. A non-invasive in vitro technique for the three-dimensional quantification of microdamage in trabecular bone [J]. Bone,2007,40:1259-1264.
    [82]Barou 0, Valentin D,Vico L, et al. High-resolution three-dimensional micro-computed tomography detects bone loss and changes intrabecular architecture early:comparison with DEXA and bone histomorphometry in a rat model of disuse osteoporosis [J] InvestRadiol,2002,37:40-46.
    [83]Liu XS, Sajda P, Saha PK, et al. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone [J].J Bone Miner Res,2008,23:223-235.
    [84]Mulder L, Koolstra JH, de Jonge HW, et al. Architecture and miner-alization of developing cortical and trabecular bone of the mandible [J]. Anat Embryol (Berl),2006,211:71-78.
    [85]Mittra E, Rubin C, Qin YX. Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone [J]. J Biomech,2005,38:1229-1237.
    [86]Yang J, Pham SM, Crabbe DL. High-resolution micro-CT evaluation of mid-to long-term effects of estrogen deficiency on rat trabecular bone [J]. Acad Radiol,2003,10:1153-1158.
    [87]Chappard D, Josselin N, Rouge Maillart C, et al. Bone microarchitecture in males with corticosteroid-induced osteoporosis [J]. Osteoporosis Int,2007,18:487-494.
    [88]Muller R. Long-term prediction of three-dimensional bone architecture in simulations of pre-, peri-and post-menopausal microstructural bone remodeling[J]. Osteoporosis Int,2005,16:25 35.
    [89]David V, Laroche N, Boudignon B, et al. Noninvasive in vivo monitoring of bone architecture alterations in hindlimb-unloaded female rats using novel three-dimensional microcomputed tomography[J]. J Bone Miner Res,2003,18:1622-1631.
    [90]Genant HK, Delmas PD, Chen P, et al. Severity of vertebral fracture reflects deterioration of bone microarchitecture [J]. Osteoporosis Int,2007,18:69-76.
    [91]Gong H, Zhang M, Qin L, et al. Regional variations in microstructural properties of vertebral trabeculae with structural groups [J].Spine,2006,31:24-32.
    [92]Compston J. Bone quality:what is it and how is it measured [J] Arq Bras Endocrinol Metabol,2006,50:579-585.
    [93]Felsenberg D, Boonen S. The bone quality framework:deternubabts if bone strength and their interrelatioships, and implications for osteoporosis management [J]. Clin Ther,2005,27:1-11.
    [94]Dalle Carbonare L, Giannini S. Bone microarchitecture as an important dererminant of bone strength [J]. J Endocrinol Invest,2004,27:99-105.
    [95]Hernandez CJ, Keaveny TM. A biomechanical perspective on bone quality[J]. Bone,2006,39:1173-1181.
    [96]彭江,汪爱媛,孙明学等,Micro-CT在松质骨结构研究中的应用[J].中国矫形外科杂志,2005,13:859-861
    [97]Wilensky A, Gabet Y, Yumoto H, et al.Three-dimensional quantification of alveolar bone loss in porphyromonas gingivalis-infected mice using micro-computed tomography[J]. J Periodontol, 2005,76:1282-12861
    [98]Bevill G, Easley SK, Keaveny TMlSide-artifact errors in yield strength and elastic modulus for human trabecular bone and their dependence on bone volume fraction and anatomic site [J]. J Biomech, 2007,40:3381-3388.
    [99]郑高利等.骨质疏松大鼠胫骨元素含量变化及相关性研究[J].浙江大学学报(医学版),2002,31(3):185-188
    [100]Yamazaki I, Yamaguchi H. Charict eristics of an ovariect omized osteopenic rat Model [J]. Bone. Min. Res,1989,4(1):13-23.
    [101]张旭辉,裴国献原发性骨质疏松症诊断技术的临床应用评价[J]中国临床康复,2003,7(1):75
    [102]郑高利等.葛根异黄酮抑制去卵巢大鼠胫骨骨矿和微量元素丢失[J].中国现代应用药学杂志,2002,19(4):257-259
    [103]Stendig L G, Tepper R, L eich ter I, et al. T rabecular bone density in a two year contro lled trial of peroral magnesium in osteoporosis [J]. J M agnes Res,1993,6 (20):156-161.
    [104]鲍善芬,李珍,丛涛等.镁的不同摄入水平对生长期大鼠钙、磷、镁代谢及骨骼的影响.营养学报2000,22(2):119.
    [105]Stendig L G, Tepper R, Leichter I. Trabecular bone density in a two year controlled trial of peroral magnesium in osteoporosis. J.Magnes. Res.1993; 6 (20:156.
    [106]Rude RK, Kirchen ME, Gruber HE. et al. Magnesium deficiency induced osteoporosis in the rat:uncoupling of bone formation and bone resorption. J Magnes Res 1999; 12 (4):257.
    [107]Peretz A, Papadopoulos T, Willems D. et al. Zinc supplementation increases bone alkaline phosphatase in healthy men. J Trace Elem Med Biol 2001;15 (223):175.
    [108]Yamaguch iM and M atsui T. Zinc enhancement of 172 beta-estradiol' s anabolic effect in osteoblastic MC3T32E cells [J]. Calcif T issue Int,1997,60 (6):527-532
    [109]HerzbergM, Lusky A, Blonder J, et al. The effect of estrogen rep lacement therapy on zinc in serum and urine [J]. Obstet Gyneco 1, 1996,87 (6):1035-1040.
    [110]QIN Lin-lin, BAO An-de, MA Hai-bo, et al(秦林林,包安德,马海波,等).Influence oftrace element Zn, Cu and Mn on the skeleton of ado lescent rats [J]. Studies of Trace Elements and Health(微量元素与健康研究),1999,16 (2):7-9. (in Ch inese)
    [111]Rico H, Roca2Botran C, Hernandez ER, et al. The effect of supplemental copper on osteopenia induced by ovariectomy in rats. Menopause 2000;7 (6):413.
    [112]WU Xiao-tiao, DA I Ke-rong, Q IU Shi-jing, et al(吴小涛,戴克绒,裘世静,等).A comparative study of ino rganic substances and trace elements in the cancellous part of femoral head between old and young people [J]. Jiangsu Medical Journal(江苏医药),2000,26(2):105-107. (in Chinese)
    [113]LIU Chuan yong, Tang Guo ji(刘传勇,唐国骥).The relationsh ip of trace element levels in serum and BMD in the old patients with osteoporosis [J]. ShandongM edical Journal(山东医药),2000,40(14):38. (in Ch inese)
    [114]Allen MJ, Myer BJ, Millett PJ, Rushton N. The effects of particulate cobalt, chromium and cobalt-chromium alloy on human osteoblast-like cells in vitro. J Bone Joint Surg Br.1998;80(5):933.
    [115]Mori S. Contribution of bone quality to fracture risk. Clin Calcium,2004,14(10):1 503-1 508.
    [116]Mawatari T, Miura H, Kawano T. Bone quantity and quality to its mechanical integrity. Clin Calcium,2004,14(4):555-560.
    [117]蒋建军,杨定焯.骨质量与骨密度影像学检查及评价[J].医师进修杂志,2005,28(5)6-9,
    [118]李凤权等.中药健骨灵对骨质疏松症造模动物的骨量影响[J].中医药学报,2005,33(3):41
    [1]曹建中,何三香,吕继善,老年骨内科学,第一版,北京:人民卫生出版社,1996.
    [2]Anon. Consensus development conference:diagnosis, prophylaxis, and treatment of osteoporosis.Am J Med,1993,94:646-650.
    [3]郭世绂,罗先正,邱贵兴,骨质疏松基础与临床,第一版,天津:天津科学技术出版社,2001.
    [4]Galibert P, Deramond H, Rosat P, et al. Primary note on the treatment of vertebral angioma by Percutaneous acrylic vertebroplasty [J]. Neurochirurgie,1987,33:166-168.
    [5]Galibert P, Deramond H. Percutaneous acrylic vertebroplasty as a tretment of vertebral angioma as well as painful and debilitating diseases [J]. Chirurgie (French),1990,116:326-334.
    [6]Cotten A, Boutry N, Cortet B, et al. Percutaneous vertebroplasty: state of the art. Radiographics,1998,18 (2) 3:11-320.
    [7]Dufresne A C, Brunet E, Sola-Martinez MT, et al. Percutaneous vertebroplasty of the cervico-thoracic junction using an anterior route. Technique and results. Report of nine cases. J Neuroradiol, 1998,25(2):123-128.
    [8]Weill A, Chiras J, Simon JM, et al. Spinal metastases:in dications for and results of percut aneous injecti on of acrylic surgicalce-ment. Radiology,1996,199(1):241-247.
    [9]Jensen ME, Evans AJ, Mathis JM, et al. Percutaneous polymethylmetha-crylate vertebroplasty in the treatment of osteopor oticvertebral body compression fractures:technical aspects. AJNR,1997,18(10): 1897-1904.
    [10]Lieberman I. H, Dudeney S. Initial outcome and efficacy of "kyphoplasty" in the treatment of painful osteoporotic vertbral compression fracture. Spine 2001,26(14):1631-1638.
    [11]Garfin SR, Yuan HA, Reiley MA, et al. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine,2001,26 (14):1511-1515.
    [12]Michael Lewiecki E. Vertebroplasty and kyphoplasty in 2001, J Clinical Densitometry,2001,4(3):185-187.
    [13]Linville DA, Vertebroplasty and Kyphoplasty. Southern Medical Journal; 2002,95(6):583-587.
    [14]Phillips FM, Pfeifer BA, Lieberman IH, et al. Minimally invasive treatments of osteoporotic vertebral compression fractures: vertebroplasty and kyphoplasty. Instr Course Lect 2003,52: 559-567.
    [15]Ventura KA, Szigeti E. New advances in treat ing osteoporotic compression fractures. Medsurg Nurs 2002,11:251-255.
    [16]Lin JT, Lane JM, Nonmedical management of osteoporosis. Curr Opin Rheumatol 2002,14:441-446.
    [17]Kim DH, Silber JS, Albert TJ, Ost coporotic vertebral compression fractures. Instr Course Lcet 2003,52:541-550.
    [18]Berlemann U, Heini PF, Percutaneous cementing techniques in treatment of osteoportic spinal sintering Unfallchirurg 2002, 105:2-8.
    [19]戴海,曾心一。经皮椎体成形术的研究进展[J]。中国医药导报,2008年9月第5卷第27期:19-20。
    [20]Deng Zh-L, Ke Zh-Y, Chen F, et al. Preliminary clinical practice on percutaneous kyphoplasty with Sky bone expander system. Chinese Journal of spine and spinal cord,2005,15 (3):162-165 (in Chinese)
    [21]Lam S, Khoo LT. A novel percutaneous system for bone graft delivery and containment for elevation and stabilization of vertebral compression fractures. Neurosurg Focus,2005,18 (3):e10.
    [22]Vallejo R, Benyamin R, Floyd B, et al. Percutaneous cement injection into a created cavity for the treatment of vertebral body fracture. Clin J Pain,2006,22:182-189.
    [23]张智海,沈建雄,张兰发等。记忆合金椎体撑开器的设计与实验研究,脊柱外科杂志,2003,2(1):76-79。
    [24]Eriksson SAV, Isberg B0, Lindgren JU. Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography. Calcif Tissue Int.1989,44:243-250.
    [25]Lothar T. Labor and diagnose [M]. Frankfurt:TH-Books,2000.
    [26]Belkoff SM, Mathis JM, Erbe EM, et al. Biomechanical evaluation of a new bone cement for use in vertebroplasty[J]. Spine,2000,25: 1061-1064.
    [27]段文利,北京协和医院院报[J],2004年第22期。
    [28]Cunin G, Boissonnet H, Petite H, et al. Experimental vertebroplasty using osteoconductive granular material. Spine 2000; 25 (9):1070-6.
    [29]Melton LJ 3rd. Epidemiology of spinal osteoporosis. Spine 1997; 22(24 Suppl):2S-11S.
    [30]Abrahamson SJ, Khan F. Brief osteoporosis education in an inpatientrehabilitation setting improves knowledge of osteoporosis in elderly patientswith low-trauma fractures. Int J Rehabil Res 2006; 29(1):61-64.
    [31]Lane J. Osteoporosis:a global assessment. Orthopedics 2006; 29(2):101.
    [32]吴胜勇,张美超,李景学等。骨质疏松老年妇女有限元模型的建立[J].中国临床解剖学杂志,2004,22(6):661-3。
    [33]周晓荣,余丽君。骨质疏松病人生活质量研究进展[J].护理研究,2008年6月第22卷第6期:1510-1511。
    [34]任丽梅,骨质疏松症成为流行病(专家漫谈),市场报,2001年12月21日第五版。
    [35]Mosekilde L, Danielsen CC. The effects of aging and ovariectomy on the vertebral bone mass and biomechanical properties of mature rats. Bone,1993,14:1-6.
    [36]黎小坚,Frost HM,朱绍舜等。基础骨生物学新观[J].中国骨质疏松杂志,2001,7(3):253-261.
    [37]Turner CH, Burr DB. Basic biomechanical measurements of bone:a tutorial. Bone,1993,14:595-608.
    [38]Ashman RB, Corin JD, Turner CH. Elastic properties of cancellous bone:measurement by an ultrasonic technique. J Biomech,1987, 20:979-986.
    [39]Reilly DT, Burstein AH, Frankel VH. The elastic modulus for bone. J Biomech,1974,7:271-275.
    [40]Harrigan TP, Jasty M, Mann RW. et al. Limitations of the continuum assumption in cancellous bone. J Biomech,1988,21:269-275.
    [41]Keller TS, Spengler DM, Carter DR. Geometric, elastic, and structural properties of maturing rat femora. J Orthop Rep,1986,4:57-67.
    [42]Turner CH Akhter MP, Heaney RP. The effects of fuoridated water on bone strength. J Orthop Res,1992,10:581-587.
    [43]Martin RB, Burr DB. Non2invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. J Biomech,1984,17:195-201.
    [44]Yoshikawa T, Turner CH, Markwartd P, et al. Cross-sectional moment of inetria of the femoral neck measured using DEXA. J Bone Miner Res,1992,7 (Suppl 1):S135.
    [45]Gere JM, Timoshenko S. Mechanics of materials. Boston: PWS-Kent,1984.
    [46]Odgaard A, Hvid I, Linde F. Compressive axial strain distributions in cancellous bone specimens. J Biomech,1989,22:829-835.
    [47]Mosekilde Li, Mosekilde Le, Danielsen CC. Biomechanical competence of vertebral trabecular bone in relation to ash density and ace in normalindividuals. Bone,1987,8:79-85.
    [48]Turner CH, Eich M. Ultrasonic velocity as a predictor of strength in bovine cancellous bone. Calcif Tissue Int,1991,49:116-119.
    [49]Roark RJ, Young WC. Formulas for stress and strain New York: McGrawHill,1975.
    [50]Tuner CH and Burr DB. Basic biomechanical measurements of bone:A tutorial. Bone,1993,14:595.
    [51]Wang C. Applied elasticity. New York:McGraw-Hill,1953.
    [52]Martin RB. Measuring the moment of inertia of innegular cross sections. Rev Sci Instr,1975,46:838-839.
    [53]Forwood MR, Parker AW. Effects of exercise on bone growth:mechanical and physical properties studied in the rat. Clin Biomech,1987,2:185-190.
    [54]Park HC, Lakes RS. Cosserat micromechanics of human bone:strain redistribution by a hydration sensitive constituent. J Biomech 1986,19:385-397.
    [55]Tarnopol'skii, Lu M, Kincis T. Static test methods for composites. New York:Van Nostrand Reinhold,1985.
    [56]Whitney JM, Stansbarger DL, Howell HB. Analysis of rail shear test-applications and limitations. J Composite Water,1971,5:24-34.
    [57]Losipescu N. New accurate procedure for single shear testing of metals. J Mater,1967,2:537-566.
    [58]Walrath DE, Adams DF. The Losipescu shear test as applied to composite materials. Exp Mech,1983,23:105-110.
    [59]崔伟,刘成林。基础骨生物力学。中国骨质疏松杂志1997年11月第3卷第4期:82-85。
    [60]Lakes RS, Saba S. Cement line motion in bone. Science,1979,204: 501-503.
    [61]Carter DR, Caller WC. A cumulative damage model for bone fracture. J Orthop Res,1985,3:84-90.
    [62]Carter DR. Hayes WC. Copmact bone fatigue damage:a microscopic exannination.Clut Orthop,1977,127:265-274.
    [63]Forwood MR, Parker AW. Microdamage in response to repetitive torsional loading in the rat tibia. Clacif Tissue Int,1989,45: 47-53.
    [64]Schaffler MB, Radin EL, Burr DB. Long2term fatigue behavior of compact bone at low strain magnitude and rate. Bone,1990,11: 321-326.
    [65]Caler WE, Carter DR. Bone creep fatigue damage accumulation. J Biomech,1989,22:625-635.
    [66]Zimmerman MC, Meunier A, Kaz JL, et al. The evaluation of cortical bone remodeling with a new ultrasonic technique. IEEE Trans Biamed Eng,1990,37:431-441.
    [67]Antich PP, Anderson JA, Ashman RB, et al. Measurement of mechanical properties of bone material in vitro by ultrasound reflection:Methodology and comparison with ultrasonic transmission. J Bone Miner Res,1991,417-426.
    [68]Briggs A. Acoustic microscopy. New York:Oxford University Press,1992.
    [69]徐文华,马勇,李云,李国勇,戴闽,宗世璋,雷刚刚。椎体骨密度与椎体生物力学的关系[J]。江西医学院学报2005年第45卷第5期:21-23。
    [70]Bohr H, Schaadt 0. Bone mineral content of the femoral neck and shaft: relation between cortical and trabecular bone[J]. Calcified Tissue International,1985,37 (4):340-344.
    [71]Nazarian A, Stauber M, Zurakowski D, et al. The interaction of microstructure and volume fraction in p redicting failure in cancellous bone[J]. Bone,2006,39:1196-1202.
    [72]Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body comp ressive strength better than quantitative computed tomography [J]. Bone,2003,33:744-50.
    [73]Crawford RP, Keaveny TM. Relationship between axial and bending behaviors of the human thoracolumbar vertebra [J]. Spine,2004,29: 2248-55.
    [74]顾冬云,陈亚珠。骨质疏松性骨力学性能的预测[J].医用生物力学,第24卷,第1期,2009年2月:70-73。
    [75]宁飞鹏,陈博来,林定坤.经皮椎体成形术及经皮椎体后凸成形术中骨水泥渗漏原因探讨[J].广东医学,2008,29(1):166.
    [76]Lewis G. Injectable bone cements for use in vertebrop lasty and kyphoplasty:state-of-the-art review [J]. J Biomed Mater Res B Appl Biomater,2006,76 (2):456-468.
    [77]吕俊杰,王伟。经皮椎体后凸成形术填充材料研究进展[J]。辽宁医学院学报。2008年8月,29(4)364-367。
    [78]Belkoff SM, Mathis JM, Jasper LE, et al. The biomechanics of bertebroplasty:the effect of cement volume on mechanical behavior [J]. Spine,2001,26(14):1537-1541.
    [79]Kaufmann TJ, Jensen ME, Schweichert PA, et al. Age of fracture and clinical outcomes of percutaneous vertebroplsty [J]. AJNR,2001,22: 1807-1812.
    [80]Ledlie JT, Renfro MlBalloon kyphop lasty:one-year outcomes in vertebral body height restoration, chronic pain, and activity levels [J]. J Neurosurg,2003,98 (1 Suppl):36-42.
    [81]Lieberman IH, Dudeney S, Reinhardt MK, et al. Initial out-come and efficacy of "kyphoplasty" in the treatment of painful osteoporotic vertebral comp ression fractures [J]. Spine,2001,26 (14):1631-1638.
    [82]Arzier JS, Evans AJ, Cahill DW. Increased pedicle screw pullout strength with vertebrop lasty augmentation in osteoporotic spines [J]. J Neurosurg,2002,96 (3):309-312.
    [83]Togawa D, Bauer TW, Lieberman IH, et al. Histologic evaluation of human vertebral bodies after vertebral augmentation with polymethyl methacrylate [J]. Spine,2009,28:1521-1527.
    [84]Belkoff SM, Molloy S. Temperature measurement during polymerization of polymethylmethacylate cement used for vertebroplsty [J]. Spine, 2003,28:1555-1559.
    [85]Wilkes RA, Mackinnon JG, Thomas WG. Neurological deterioration after cement injection into a vertebral body[J]. J Bone Joint Surg Br,1994,76(1):155.
    [86]Berlemann U, Ferguson SJ, Nolte LP, et al. Adjacent vertebral failure after vertebroplasty. A biomechanical investigation [J]. J Bone Joint Surg Br,2002,84(5):748-752.
    [87]Baroud G, Nemes J, Heini P, et al. Load shift of the intervertebral disc after a vertebroplasty:a finite-element study [J].Eur Spine J,2003,12(4):421-426.
    [88]Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis [J]. Spine,2003,28(10):991-996.
    [89]Lin EP, Ekholm S, Hiwatashi A, et al. Vertebroplasty:cement leakage into the disc increases the risk of new fracture of adjacent vertebral body[J]. Am J Neuroradiol,2004,25(2):175-180.
    [90]徐晖,李健,程立明.椎体成形术后相邻椎体终板应力变化的有限元分析[J].中国临床解剖学杂志,2005,23(3):307-309,312.
    [91]Lim TH, Brebach GT, Renner SM, et al. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty [J]. Spine,2002,27:1297-1322.
    [92]Takemasa R, Yamamoto H, Tani T, et al. Kyphoplasty using bioactive calcium phosphate cement for osteoporotic vertebral fractures [C].In:71th Annual Meeting of Anerican Academy of Orthopedic Surgeons, California:San Francisco,2004.
    [93]Perry A, Mahar A, Massie J, et allBiomechanical evaluation of kyphop lastywith calcium sulfate cement in a cadaveric osteoporotic vertebral comp ression fracture model [J]. Spine J,2005,5(5): 489-493.
    [94]Turner TM, Urban RM, Gitelis S, et allResorp tion evaluation of a large bolus of calcium sulfate in a canine medullary defect [J] Orthopedics,2003,26 (5 Supp 1):577-579.
    [95]Rohmiller MT, Schwalm D, Glattes RC, et al. Evaluation ofcalcium sulfate paste for augmentation of lumbar pedicle screw pullout strength [J]. Sp ine J,2002,2 (4):255-260.
    [96]Stubbs D, Deakin M, Chapman-Sheath P, et al. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defectmodel [J]. Biomaterials,2004,25 (20):5037-5044.
    [97]Thalgott JS, Fritts K, Giuffre JM, et al. Anterior interbody fusion of the cervical spine with coralline hydroxyapatite. Spine 1999,24: 1295-9.
    [98]Thalgott JS, Fritts K, Giuffre JM, et al. The use of coralline hydroxyapatite for interbody spinal fusions. Spine:State Art Rev 1997,11:325-40.
    [99]朱雪松。椎体成形术及椎体后凸成形术灌注剂[J]。国外医学(生物医学工程分册)。2005,6,28(3):175-178。
    [100]Lamghari M, Berland S, Laurent A, et al. Bone reactions to nacre injected percutaneously into the vertebrae of sheep[J]. Biomater-ials,2001,22:555-562.
    [101]Senaha Y, Nakamura T, Tamura J, et al. Intercalary replacement of canine femora using a new bioactive bone cement [J]. J Bone Joint Surg Br,1996,78(1):26-31.
    [102]Seeherman HJ, Bouxsein M, Kim H, et al. Recombinant human bone morphogenetic protein-2 delivered in an injectable calcium phosphate paste accelerates osteotomy-site healing in a nonhuman p rimate model [J]. J Bone Joint Surg Am,2004,86-A (9):1961-1972.
    [103]Mathis JM, Barr JD, Belkoff SM, et al. Percutaneous vertebroplasty: a developing standard of care for vertebral compression fractures. AJNR AmJ Neuroradiol,2001,22:373-381.
    [104]Mendez JA, Fernandez M, Gonzalez-Corchon A, et al. Injectable selfcuring bioactive acrylic-glass composites charged with specific anti-inflammatory/analgesic agent. Biomaterials,2004, 25 (12):2381-2392.
    [105]Seok BK, Young JK, Taek LY, et al. The characteristics of a gydroxypitate-chitosan-PMMA bone cement [J]. Biomaterials,2004, 25:5715-5723.
    [106]Franck H, Boszczyk BM, Bierschneider M, et al. Interdisciplinary approach to balloon kyphoplasty in the treatment of osteoporotic vertebral compression fractures [J]. Eur Spine J,2003,12:S163-S167.
    [107]徐宝山,胡永成,唐天驷,等.经皮椎体成形术在脊柱溶骨性肿瘤中的应用[J].中华骨科杂志,2004,24:95-99.
    [108]何仕诚,牛焕章,邓钢,等.经皮椎体成形术和后凸成形术并发症的对比分析[J].介入放射学杂志,2005,14,3:317-320.
    [109]Zheng Zh-M, Kuang GM, Dong Zh-Y, et al. Percutaneous vertebral augmentation with the Vessel-X bone void filling container system: A preliminary clinical trial. Chin J Min Inv Surg,2007,7 (2):143-145(in Chinese)
    1. Mellonig, James T. DDS, MS, Bone Allografts in Periodontal Therapy. Clin Orthop Relat R.1996; 324:116-125
    2. Gestrelius S, Lyngstadaas SP, Hammarstrom L, Emdogain-periodontal regeneration based on biomimicry. Clin Oral Invest.2000; 4:120-125
    3. Sculean A, Donos N, Brecx M, Karring T, Reich E, Healing of fenestration-type defects following treatment with guided tissue regeneration or enamel matrix proteins An experimental study in monkeys. Clin Oral Invest.2000; 4:50-56
    4. Sun WB, Chu CL, Wang J, Zhao HT, Comparison of periodontal ligament cells responses to dense and nanophase hydroxyapatite. J Mater Sci: Mater Med.2007; 18:677-683
    5. Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL, Gunsolley JC, the efficacy of bone replacement grafts in the treatment of periodontal osseous defects. Ann periodontol.2003; 8:227-65
    6. Daculsi G, Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials. 1998; 19:1473—1478
    7. Ellinger RF, Nery EB, Lynch KL, Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics:a case report. J Period Res Dent.1986; 6:22-33
    8. Shi H, Ma J, Zhao N, Chen YX, Liao YM, Periodontal regeneration in experimentally-induced alveolar bone dehiscence by an improved porous biphasic calcium phosphate ceramic in beagle dogs. J Mater Sci:Mater Med.2008; 19:3515-3524
    9. Caton JG, Greenstein GG, Factors related to periodontal regeneration. Periodontol 2000.1993; 1:9-15
    10. Ducheyne P, Qiu Q, Bioactive ceramics:the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999; 20:2287-2303
    1 KotzR, DominkusM, ZettlT, etal. Advances in bone tumor treatmentin 30 years with respect to survival and limb salvage. A single in stitution experience. Int Orthop,2002,26(4):197-202.
    2 Ham SJ, Koopsh S, Vander Craa F WT, et al. Historical, current and future aspects of osteosarcoma treatment. Eur J Surg Oncol, 1998,24 (6):584-600
    3 Hornicek FJ, Mnaymneh W, Lackman RD, et al. Limb salvage with osteoarticular allografts after resection of proximal tibia bone tumors. Clin Orthop,1998; 352:179-186
    4 Shimose S, Sugita T, Kubo T, etal, Reconstructed patellar tendon length after proximal tibia prosthetic replacement. Clin Orthop Relat Res. 2005 Oct;439:176-80.
    5 Oddy MJ, Pendegrass CJ, Goodship AE, etal, Extensor mechanism reconstruction after proximal tibial replacement. J Bone Joint Surg Br. 2005 Jun;87(6):873-8.
    6 Skaliczki G, Antal I, Kiss J, etal, Functional outcome and life quality after endoprosthetic reconstruction following malignant tumours around the knee. Int Orthop.2005 Jun;29(3):174-8.
    7 Abbound JA, Patel RV, Donthineni Rao R, etal, Proximal tibial segmental prosthetic replacement without the use of muscle flaps. Clin Orthop Relat Res.2003 Sep;(414):189-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700