岛群海域环境下淤泥质海床泥沙运动规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岛群海域环境下的淤泥质海床泥沙运动因受到复杂边界的影响泥沙运动研究的复杂性,目前针对岛屿链不断变化引起的泥沙运动和海床冲淤变化研究尚不多见;有关顺岸式港池淤积计算方法尚不明确。本文以崎岖列岛和洋山港工程为背景,通过遥感影像资料、现场实测水、沙资料分析、潮流数学模型试验、泥沙基本特性及平衡含沙量水槽试验、理论分析等综合研究手段,得到研究背景(岛群)环境下水流运动、岛群内水域海床演变、顺岸挖深港池泥沙淤积计算方法。主要结论研究如下:
     (1)岛群内水域水流形态及改变岛群边界的影响:自然状态下,崎岖列岛岛屿较多,岸线复杂,岛群内分流、汇流、环流现象明显;潮流是岛群内水域泥沙掀扬与输移的主要动力。人工改变岛群边界(封堵部分岛群链间的潮流通道),将导致岛群链内不同汉道的进出潮量分配发生变化。当岛群边界变化不大时岛群内的总进出潮量基本不变,但进出潮量将重新分配,当岛群边界变化较大时,岛群内的总进出潮量将发生变化(减小)。计算5种边界形态,岛群内主通道水域流速变化情况,从总体上而言,随着陆域边界的变化(即汉道的封堵),岛群内流速的变化呈现出“局部变化”—“变化扩展”—“变化趋于平稳”—“变化进一步增大”的不连续过程;当岛群链边界改变到一定程度后,岛群内水域流速变化较大,对后期工程开发不利。
     (2)岛群内水域泥沙基本物理特性:悬沙粒平均中值粒径dso为0.008mm,为细粉砂-极细粉砂类型;海床沉积物主要以粘土质粉砂(YT)为主,平均中值粒径D50=0.030mm;多年底质中值粒径总体变化不大。底床泥沙容重为1.34t/m3时,水流作用下的起动摩阻流速为2.07cm/s,起动时平均流速为54cm/s;沉降速度受水流流速、含沙量、盐度等因素的综合影响:水流速度越大,沉降速度越小;沉速随含沙量的增大先增大后减小,在同一水流和初始含沙量条件下,沉降速度随沉降量的增大而减小;研究海域平均沉降速度0.005cm/s左右。
     (3)悬沙含沙量时间、空间分布特性及其分类:含沙量在时间上分布的不均匀性,主要是受潮位、流速等动力因素的影响导致的。含沙量在空间上(短期)分布与流速和背景含沙量有关。在潮流涨落潮的一个周期时段内,流速、流向在不断变化。垂线含沙量分布分为“下抛物型——沉降型”和“上抛物型——起悬型”两类含沙量,基于现场观测资料分别拟合给出了“沉降型”和“起悬型”含沙量计算公式,给出了含沙量影响系数(ap)。
     (4)基于分类含沙量,提出了淤泥质海床冲淤判别指标;考虑进出岛群链内水域各潮流通道的流量分配和基于含沙量垂向分布分类方法,建立了适用于岛群海域环境下淤泥质海床冲淤演变预测的便捷计算方法
     (5)在分析顺岸式港池内水流特征的基础上,建立顺岸式港池内的流量平衡方程和和水体运动方程,然后基于水流连续条件将顺岸式挖深港池的内流速变化归结为“水流归槽指数n”的变化,给出了固定相对挖深条件下,以港池长宽比L/B为参数的n计算公式;,进而基于平衡含沙量理论,建立了考虑“水流归槽指数n”和“平衡含沙量指数m”的顺岸式港池泥沙淤积预报公式。
In China, due to reasons such as siltation available deepwater coastline has developed at the estuary and coast. There are many difficulties to transform the old harbors in our country at present. But the deep development of islands shoreline has a great potential for exploitation. Therefore the development to deep-water port coastline of archipelago waters will not only effectively relieve the contradiction between waterway transport demand and the port status but also be huge potential. Due to hydrological characteristics and landscape characteristics of archipelago waters are complex. Many problems need to be solved to the movement mechanism. So the study of dynamic characteristics, sediment problem of archipelago waters has great economic value, far-reaching scientific significance and widespread application prospect.
     According to the remote sensing data, field data, the laboratory experiment, mathematical model and theoretical analysis, the hydrodynamic force and sediment condition of archipelago waters are analyzed roundly, and the sea-bed nature, sediment transport form and sediment mechanism of archipelago waters are analyzed in detail. Based on the concept of equilibrium sediment concentration, the siltation index and forecasting mode of muddy seabed evolution is put forward. The prediction formula for siltation of marginal quay dock is established in the muddy seabed. The results show:
     (1) The tidal currents of the study archipelago waters belong to informal half-day shallow sea tidal current. Tidal current is reversing current. The tidal current velocity is very strong. Under the natural state, because the island is more, shoreline is complex, there are shunt, confluence and circulation obviously; the wave is weak within islands waters due to the action of islands shield; tidal current is the main dynamic force to sediment lift and transport; the tidal current strength determines the change of seabed sediment to a certain extent.
     (2) In archipelago waters, blocking branches plays an important role to the adjustment of water flow and smooth flow; as change of land boundary (that is, blocking branches), change of flow velocity show a discontinuous process of "part change-change extension-smooth and steady change-change enlargement"; the influence degree on main section tidal volume is increased gradually. After the land border reaches a certain form, tide power change tends to steady, if we continue to change the boundary shape, tide impulses to the adverse direction.
     (3) In archipelago waters, suspended sediment concentration is high. The seabed evolution is aroused by suspended sediment transport. In archipelago waters, sediment erosion and deposition of muddy seabed are mainly related to local sediment suspension, transport and sedimentation except the background sediment concentration. Suspended sediment concentration distribution in space and time are inhomogeneity prominently. Because, on the one hand, the sediment transport and diffusion of background sediment environment effects sediment concentration distribution, on the other hand, the "channel effect" between islands impacts sediment concentration distribution. In the waters, suspended sediment concentration shows two types--suspension pattern and settlement pattern.
     (4) Terrain adjustment (scouring or silting) are quickly by influence of land boundary changes within the waters. As the land boundary fixed, water stability and smooth, the terrain changes tend to be relatively balanced. Combination of seabed properties, sediment movement form etc., based on the sediment deposition mechanism and the relationship between actual sediment concentration and equilibrium sediment concentration, the seabed scouring or silting indicator is put forward in the islands sea areas. Further the model of seabed evolution is established. The model is validated based on physical model, mathematical model results. Taking the Yangshan Deep-wate port sea area as an example, the seabed evolution is forecasted using the the muddy seabed evolution model.
     (5) Improved of the methods to the index n value in the current continuous laws to the alongshore basin flow; in the basin, velocity and basin aspect ratio have good relationship under n value different conditions, which affect flow velocity and depositing change. The sedimentation prediction formula is established to the alongshore basin. The formula contains the n value. Taking the Yangshan Deep-wate port sea area as an example, the silting thickness is calculated to the first and second harbor basin waters using the prediction formula. This result is in good agreement with the measurement data. The error is about10%.
引文
[1].田淳,刘少华.声学多普勒测流原理及其应用[M].郑州:黄河水利出版社,2003.
    [2].汪亚平,高抒,李坤业.用ADCP进行走航式悬沙浓度测量的初步研究[J],海洋与湖沼,1999,30(6):758-763.
    [3].程鹏,高抒.用ADCP测量悬沙浓度的可行性分析与现场标定[J],海洋与湖沼,2001,32(2):168-176.
    [4].薛元忠,许卫东.光学后向散射浊度仪简介及应用研究[J].海洋工程,2001,19(2),79-84.
    [5].薛元忠,何青,王元叶.OBS浊度计测量泥沙浓度的方法与实践研究[J].泥沙研究,2004(4):56-60.
    [6].李九发,何青,徐海根.长江口浮泥形成机理及变化过程[J].海洋与湖沼,2001,32(3):302-310.
    [7].时钟.长江口底部边界层细颗粒泥沙过程[J].海洋科学,2000.24(4):56.
    [8].时钟.河口海岸底部边界层和细颗粒泥沙过程[J].海洋科学,2000,24(11):27-34.
    [9].徐俊杰,何青,王元叶.底边界层水沙观测系统和应用[J].海洋工程,2009,27(1),55-61.
    [10].杨俊辉ADCP、OBS在底部泥沙运动观测中的应用探讨[J].港工技术,2009,46(188),90-93.
    [11].牛桂芝,裴文斌.三爪砣测量适航水深技术分析与对策[J].水道港口,2006,27(4):266-268.
    [12].谢春秋,叶建林.适航水深在连云港港口的初步[J].港工技术,2009,46(3),11-13.
    [13].邳志.适航水深在天津港强淤现象中的应用[J].港工技术,2003(3):4-5.
    [14].裴文斌,牛桂芝.走航式适航水深测量误差来源及准确度检测[J].水道港口,2004,25(2):112-114.
    [15].沈小明,裴文斌.适航水深测量技术介绍与探讨[J].水道港口,2003,24(2):94-96.
    [16].牛桂芝,沈小明SILAS适航水深测量测试研究[J].海洋测绘,2003,23(5):24-27.
    [17]. Du Boys P. Le Rhone et les rivieres a lit affouillable [J]. Annales des Ponts et Chaussees, Series 5, 1879,18:141-195.
    [18]. Schmidt, W., Der Massenaustausch in Freier Luft und Vermandte Erscheinungen[J]. Problem der Kosmischen Physik, Vol.7, Hamburg,1925.
    [19]. Shields A. Anwendung der aenlichkeitsmechanik und der turbulenzxforschung auf die geschiebebewegung [J]. Mitteilungen der Preussischen Versuchsanstalt fuer Wasserbau und Schiffbaum, Berlin,1936.
    [20]. Einstein, H. A., The bed load function for sediment transportation in open channel flows[M]. U. S. Dept. Agri., Tech. Bull.1026.1950.
    [21].VA.范诺尼主编,泥沙工程[M].水利出版社,1981.
    [22].钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    [23]. Bagnold, R.A., Sand movement by waves, some small scale experiments with sand of very low density[J].Inst.Civil Eng.,1947(27):447-469.
    [24]. Bagnold, R. A. And Inman, D. L., Beach and Near shore Process[J]. In the Sea,1963(3):507-553
    [25]. Kalkanis, G., Transportation of Bed material due to Wave Action [J]. Coastal Engineering Research, 1964(2):38.
    [26].Bijker, E.W., The increase of bed shear in a current due to wave motion[M]. Proc.10th Conf Coastal Eng., ASCE,1966,1,746-765.
    [27].Grant, W.D. and Madsen, O.S., Combines wave and current interaction with a rough bottom [J].Geo. Physical Researeh,1979,84(c4):1997-1808.
    [28].Tanaka, H. and Shuto, N., Friction coefficient of a wave-current coexistent system [J].Coastal Engineering,1981,24,105-128.
    [29].Tanaka, H. and Shuto, N., Friction law sand flow region under wave and current motion [J]. Hydraulic Research,1984,22(4):245-261.
    [30].练继建.波浪、水流与淤泥质底床的相互作用[D].天津大学博士学位论文,1993.
    [31].吴永胜,练继建,张庆河,秦崇仁.波浪水流作用下的紊动边界层数值分析[J].水利学报,1999(9)10-15.
    [32]. Quck, M.C., Sediment Transport by waves and currents [J]. Civil.Engineering,1983,10(1).
    [33].窦国仁,董凤舞.潮流和波浪的挟沙能力[J].科学通报,1995,40(5).
    [34].曹祖德,王桂芬.波浪掀沙、潮流输沙的数值模拟[J].海洋学报,1993,15(1):107-118.
    [35].窦希萍,李提来,窦国仁.长江口全沙数学模型研究[J].水利水运科学研究,1999(2).
    [36].辛文杰.潮流、波浪综合作用下河口二维悬沙数学模型[J].海洋工程,1997,15(1):30-47.
    [37].朱志夏,韩其为,丁平兴.海岸悬沙运移数学模型[J].海洋学报,2002,24(1):102-107.
    [38]. Van den Eynde Dries. Modelling of the sediment transport at the Belgian coast[C]. International Conference on Environmental Problems in Coastal Regions, Wessex Institute of Technology Computation Mechanics Inc,1998:427-436.
    [39].李蓓,唐士芳.河口海区开挖航道后三维潮流盐度泥沙数值模拟[J].水道港口,2000,04:36-41.
    [40].白玉川,顾元楼,蒋昌波.潮流波浪共同输沙及海床冲淤演变的理论体系及数学模拟[J].海洋与湖沼,2000,31(2):186-196.
    [41]. Antunes Do Carmo J. S, Seabra-Santos F.J. Near-shore sediment dynamics computation under the combined effects of waves and currents[J]. Advances in Engineering Software,2002,33 (1):37-48.
    [42].中华人民共和国交通部.海港水文规范JTJ213-98[S],1998.
    [43]. Postma H. Transport and accumulation of suspended matter in the Dutch Wadden Sea.[J]. Netherlands Journal of Sea Research,1961(1):148-190.
    [44]. Wells J.T., Adams C. E., Park Y. A., et al. Morphology, sedimentology and tidal channel processes on a high-tide-range mudflat, west coast of South Korea[J]. Marine geology,1990(95):111-130.
    [45]. Wells J.T., Coleman J. M. Periodic mudflat progradation, northeastern coast of South America:a hypothesis[J]. Journal of Sedimentary Petrology,1981(951):1069-1075.
    [46]. Coles S. L. The effects of elevated temperature on reef coral planula settlement as related to power station entrainment[J]. Proc.5th Coral Reef Congr.,1985(4):171-176.
    [47].陈吉余,王宝灿.渤海湾淤泥质海岸(海河口-黄河口)的塑造过程[C].中国海岸发育过程和演变规律[A].上海:上海科学技术出版社,1961.1-6.
    [48].陈德昌,金镠,唐寅德,等.连云港地区淤泥质海岸近岸带水体含沙量的横向分布[J].海洋与湖沼,1989,6:544-553.
    [49].邵虚生,严钦尚.上海潮坪沉积[J].地理学报,1982,37(3):241-249.
    [50].范代读,李从先,陈美发,等.长江三角洲泥质潮坪间断的定量分析[J].海洋地质与第四纪地质,2001,21(4):1-6.
    [51].范代读,李从先,邓兵,等.潮汐周期在潮坪沉积中的记录[J].同济大学学报,2002,30(3):281-285.
    [52].杨世伦.长江三角洲潮滩季节性冲淤循环的多因子分析[J].地理学报,1997,52(2):123-129.
    [53].李炎,谢钦春,等.杭州湾南岸潮滩的Pb210分布及其沉积学意义[J].东海海洋,1993,11(1):34-43.
    [54].樊社军,虞志英.淤泥质岸滩侵蚀堆积动力机制及剖面模式—以连云港地区淤泥质海岸为例Ⅰ[J].海洋学报,1997,19(3):67-76.
    [55].樊社军,虞志英.淤泥质岸滩侵蚀堆积动力机制及剖面模式—以连云港地区淤泥质海岸为例Ⅱ[J].海洋学报,199,19(3):77-84.
    [56].金锣,虞志英,陈德昌.淤泥质海岸浅滩人工挖槽回淤率计算方法的探讨[J].泥沙研究,1985,2:12-19.
    [57].刘家驹,张镜湖.淤泥质海岸航道、港池淤积计算方法及其推广应用[J].水利水运工程学报,1993(4):301-320.
    [58].周起舞.峡道地区的水流特征及其对大型船舶的作用[C].北仑港论文集,1984.
    [59].周起舞.淤泥质峡道地区深水港的泊稳与淤积[C].杭州:杭州大学出版社,1995.
    [60].邱建立.舟山野鸭山港湾的平衡水下地形分析[J].海洋通报,1995,3:41-50.
    [61].邱建立.港湾淤泥质海岸的岸线变化数值模拟和平衡岸弧分析[J].海洋与湖沼,1991,22(4):41-50.
    [62].蒋国俊,陈吉余,王宗涛.舟山群岛峡道底部高程及其冲刷对浙闽沿海泥沙供给的影响[J].海洋地质与第四纪地质,1997,17(2):29-38.
    [63].蒋国俊.峡道效应研究—以舟山群岛地区峡道为例[D].华东师范大学,1996.
    [64].蒋国俊,陈吉余,姚炎明.舟山群岛峡道潮滩动力沉积特性[J].海洋学报,1998,20(2):139-146.
    [65].陈沈良.崎岖列岛海区的水文泥沙及其峡道效应[J].海洋学报,2000,3:123-131.
    [66].陈沈良.崎岖列岛海区百年冲淤特征及其原因[J].海洋通报,2000b,19(3):123-131.
    [67].阎新兴.上海洋山港区的自然条件及泥沙来源分析[J].水道港口,2000(3):17-22.
    [68].徐元.高含沙量岛屿海域冲刷槽的成因及其建港意义[J].海洋工程,2001,19(1):88-93.
    [69].李玉中,陈沈良.洋山港海域余流分离和会聚现象研究[J].水利学报,2003,5:24-34.
    [70].矫吉珍,肖成猷.多岛屿、汊道复杂地形海区流场影响的数值模拟研究[J].海洋通报,2002,21(2):1-10.
    [71].李孟国,王正林.瓯江口潮流数值模拟[J].长江科学院报,2002,19(2):19-22.
    [72].吴明阳,冯玉林,阎新兴.上海洋山港区定床泥沙模型试验研究[J].海洋学报,2003,25(2):67-74.
    [73].曹祖德,肖辉.潮流作用下淤泥质海床冲淤演变预测及应用[J].水道港口,2009(1):1-8.
    [74].肖辉,赵洪波,曹祖德.平衡含沙量、平衡水深与海床冲淤计算[J].中国港湾建设,2009(5):17-20.
    [75].章宏伟.高含沙量岛屿海域工程建设的潮动力沉积影响研究[J].中国海洋平台,2006,21(4):28-32.
    [76].徐元,周元元.岛屿海域泥沙沉积机理及其工程应用--以杭州湾湾口北部洋山海域为例[J].港湾技术,2000(2):11-18.
    [77].刘蔡胤.上海洋山港港区海域潮流泥沙数值模拟及水下地形变化特征分析[D].大连理工大学,2008.
    [78].俞航.崎岖列岛海域近底层水沙特征、冲淤演变及其对洋山港工程的响应[D].上海:华东师范大学,2008.
    [79]. ZUO Shu-hua, ZHANG Ning-chuan, LI Bei, ZHANG Zheng, ZHU Zhi-xia. Numerical simulation of tidal current and erosion and sedimentation in the Yangshan deep-water harbor of Shanghai[J]. International Journal of Sediment Research,2009,24(3):287-298.
    [80]. CHEN Bin, WANG Kai. Suspended sediment transport in the offshore near Yangtze Estuary[J]. Journal of Hydrodynamics,2008,20(3):373-381.
    [81]. Amromin E, Kovinskaya S. Numerical simulation of sediment transport in harbors [J]. Ocean Engineering,2003,30(15):1869-1885.
    [82]. Antsyferov SM, Akivis TM. A model of the transport of the sediments suspended by a tidal flow in the coastal zone of the sea[J]. Oceanology,2002,42(4):478-486.
    [83]. Shmakova MV, Kondrat'ev AN. A Mathematical Model of Water and Sediment Flow in Open River Channels[J]. Russian Meteorology and Hydrology,2008,33(6):394-399.
    [84].中国水利学会泥沙专业委员会,泥沙手册,北京:中国环境科学出版社,1992.
    [85].张磊.近海顺岸桩基码头水流变化及泥沙淤积计算研究[D].南京:水利科学研究院,2005.
    [86].张金善.外高桥顺岸桩基码头泥沙回淤及分析[J].水利水运工程学报,2004(3):53-57.
    [87]. Winterwerp J C. Reducing harbor siltation. I:Methodology [J]. Journal of Waterway, Port, Coastal and Ocean Engineering,2005,131(6):258.
    [88].曹祖德,肖辉.淤泥质海岸外航道淤积计算[J].水运工程,2008(7):127-131.
    [89]. DHI. MIKE 21 Flow Model (MIKE 21 HD) -Hydrodynamic Module Scientific Documentation[P], 2009.
    [90].交通运输部天津水运工程科学研究所.“八五”国家重点科技攻关项目研究—珠江口伶仃洋航道整治技术研究[R],1994.
    [91].陈吉余.长江口动力过程和地貌演变[M].上海:上海科学技术出版社,1989.
    [92].恽才兴.长江河口近期演变基本规律[M].北京:海洋出版社,2004.
    [93].陈吉余.21世纪的长江河口初探[M].北京:海洋出版社,2009.
    [94].交通运输部天津水运工程科学研究所.上海国际航运中心洋山深水港区海域近期地形冲淤演变[R].2007年12月.
    [95].交通运输部天津水运工程科学研究所.上海国际航运中心洋山深水港区规划水域水文泥沙测验分析报告(2007年4-5月)[R],2007年6月.
    [96].唐士芳,李蓓.桩群阻力影响下的潮流数值模拟研究[J].中国港湾建设,2001(5).
    [97].唐士芳.二维潮流数值水槽的桩群数值模拟[J].中国港湾建设,2002(3).
    [98].唐士芳.桩和桩群的水流阻力及其在潮流数值模拟中的研究[D].大连理工大学博士论文,2002.
    [99].曹祖德,王运洪.水动力泥沙数值模拟[M].天津大学出版社,1994.
    [100]. CAO Zu-de, WANG Gui-fen. Numerical simulation of sediment lifted by waves and transported by tidal currents[J].. Acta Oceanologica Sinica,1994,13(3):433-443.
    [101]. Wang Shang-yi. Calculation of Longshore Sediment Transport Rate[C]. International Conference of Coastal Change 95, Bordomer, France,1995, p1012-1017.
    [102]. Longuet-Higgins, M. S. and R. W. Stewart, Deep-sea research [J].1964,11(4):527-561.
    [103]. Jon. M. Hubertz. Modeling of nearshore wave driven currents[C]. Proceeding of the 19th International Conference on Coastal Engineering,1984, p2208-2219.
    [104]. 交通运输部天津水运工程科学研究所.岛群海域泥沙淤积机理和淤积预测研究[R].2009年11月.
    [105]. 罗肇森.波流共同作用下的近底泥沙输移及航道骤淤预报[J].泥沙研究,2004(6):1-9.
    [106]. 曹祖德,李蓓,孔令双.波流共同作用下的水体挟沙力[J].水道港口,2001,22(4):151-155.
    [107]. 交通运输部天津水运工程科学研究所.上海国际航运中心洋山深水港区西港区方案潮流泥沙及海床变形数值模拟研究报告[R].2006年11月.
    [108]. 交通运输部天津水运工程科学研究所.上海国际航运中心洋山深水港区西港区规划方案潮流泥沙物理模型试验研究报告[R].2007年1月.
    [109]. 曹祖德,孔令双.淤泥质海岸开敞航道的回淤计算[J].水道港口,2004,25(2):59-63.
    [110]. 交通运输部天津水运工程科学研究所.上海国际航运中心洋山深水港区主通道海域常年含沙量监测分析报告[R].2008年12月.
    [111]. 陈才俊.围滩造田与淤泥质潮滩的发育.海洋通报.1990(9):3.
    [112]. 陈才俊.江苏淤涨型淤泥质潮滩的剖而发育.海洋与湖沼.1991,22(4):360-367.
    [113]. 左书华,李蓓,杨华.洋山港海域通道内地形冲淤变化特征.水道港口,2009,30(1):14-19.
    [114]. 左书华,张宁川,李蓓,杨华.洋山深水港海域悬沙浓度时空变化及其动力原因.华东师范大学学报(自然科学版),2009(3):72-82.
    [115]. 左书华,张宁川,李蓓,杨华.上海洋山深水港区海域悬沙分布特征及运动规律分析.海洋通报,2009,28(3):62-69.
    [116]. ZUO Shu-Hua, Li Bei, Zhang Zheng. Numerical Simulation about Tidal Currents Field in Offshore area with Many Islands and Tidal Channels, Singapore,2009 APAC会议, pp186-192.
    [117]. 左书华,李蓓,张征,杨华.多岛屿、多汉道环境下大型深水港建设中的水沙问题研究.水运工程,2009(3):70-75.
    [118]. 杨华,许家帅,侯志强.洋山港海区悬浮泥沙运动遥感分析[J].水道港口,2003(9):10-15.
    [119]. 左书华,李蓓,杨华.洋山港海域通道内地形冲淤变化特征[J].水道港口,2009,30(1):14-19.
    [120]. 肖辉,曹祖德,赵群,等.波流作用下粘性淤泥的起动试验研究[J].泥沙研究,2009(3):15-20.
    [121]. 冯学英.环形水槽机理与应用研究[J].水道港口,1998(4):15-20.
    [122]. 赵洪波,肖辉,曹祖德等.顺岸式码头港池的水流特点及淤积计算[J].中国港湾建设,2010(10):25-30.
    [123]. 时伟荣.长江口浑浊带含沙量的潮流变化及其成因分析[J].地理学报,1993,48(5):412-420.
    [124]. NieholSon, J.O, ConnorB.A.. Cohesive sediment transport model. Journal of Hydraulic engineering,1986,112:621-639.
    [125]. 李瑞杰,丰青,郑俊.近岸海域流速与含沙量垂线分布分析.海洋通报,2012,31(6):607-612.
    [126]. 孙青,陈士荫.前进波作用下沙纹床面的净输沙方向与净输沙强度[J].海洋通报,1997,31(6):607-612.
    [127]. 严冰,张庆河.波浪作用下悬沙浓度垂线分布的研究[J].泥沙研究,2006(5):13-17.
    [128]. 肖辉,曹祖德.波、流作用下粘性淤泥的起动试验研究[J].泥沙研究,2009(3):10-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700