城市生活垃圾堆肥复合菌剂的前期开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前如何提高城市生活垃圾堆肥处理的技术水平、提高处理效率、改善产品质量,一直是相关科研人员所重点关注的。开发高效堆肥复合菌剂,从根本上优化堆肥过程更是大家研究的热点。由于堆肥中难降解的木质纤维素类物质一直是制约堆肥快速腐熟的关键因素,所以在已有的关于堆肥复合菌剂的报道中,都不约而同地使用了纤维素和木质素降解菌。但是在已有的这些报道中,对复合菌剂中纤维素和木质素降解菌的选择都具有比较明显的主观性,缺乏详细的菌株之间关系的研究,所得到的结果有一定的偶然性,适用性有限。本文的思路是以从堆肥中分离的纤维素和木质素降解菌为基础,在对其产酶过程和条件有了深入了解后,进行两类菌的初步混合培养,寻找高效的纤维素和木质素降解菌组合。为以后在此基础上复合菌剂的开发提供基础。
     首先从堆肥本身出发,进行了堆肥物料中纤维素降解菌的分离和筛选,通过纤维素琼脂平板的分离,刚果红琼脂平板和实际降解效果实验的筛选,最终得到了四株效果较好的纤维素降解菌,其中尤其以X菌株在纤维素酶的产生和对稻草的降解上效果最优。
     其次,选择这株菌进行了培养条件埘其产酶过程的研究。研究结果表明液料比在整个发酵过程中对产酶影响最大,温度在发酵初期影响较大,初始pH和接种量的影响均不显著。总体看来,培养温度、初始pH值、液料比和接种量分别为30℃、4、7和5%是比较合适的。通过对不同碳源对产酶影响的考察,发现添加适量的麦芽糖和纤维二糖对产酶是有利的,纤维二糖主要是可以促进CMC酶的分泌。通过对不同氮源对产酶影响的考察,发现该菌株对氮源有很大的选择性,适量的酵母膏和(NH_4)_2SO_4作为氮源是合适的。在物料中添加0.1%的吐温80也被证明是对产酶有利的。
     最后,在上述研究的基础上,结合购买的菌株,挑选了纤维素降解菌6株和木质素降解菌8株进行了初步的混合培养实验。在葡萄糖牛肉膏蛋白胨的基础琼脂上对其两两混合培养并观察它们的菌落生长形态,最后得到的在一起能较好共存的菌株对有以下9对:S+10、AF93251+2、AF93251+10、X+3、X+10、AF93252+2、AF93252+5、P+5、P+10。
     选取其中的三对(AF93251+2、AF93252+5、X+10)进行了固态发酵试验,通过测定发酵过程中的半纤维素酶、纤维素酶、漆酶和木素过氧化物酶活考察了它们在混合培养时的产酶情况。实验结论表明AF93252+5这个组合通过混合培养在纤维素酶和半纤维素酶的产生上有
    
    城市生活垃圾堆肥复合菌剂的前期开发研究
    较明显的改善,虽然在木质素降解酶系上无明显优势,但仍是一个可取
    的,并能进一步进行研究的菌株组合。而其他两个组合的混合培养并没
    有体现出优势。
     通过上述试验发现,纤维素降解菌和木质素降解菌虽然大部分都是真
    菌,但是它们中并不是任何两株就可以通过简单混合来获得较好的降解
    和产酶效果的,菌株与菌株之间仍然存在着很多我们还不是很清楚的相
    互制约、竞争和促进的关系。在复合菌剂的制备中,要想获得最好的效
    果,就必须对’所用菌株之间的各种可能关系进行深入研究。
In recent years, developing new technology, increasing efficiency and improving the quality of product were the key points of the research on municipal solid waste composting. Developing the high efficient complex microbial community was the hot point in this area especially. In the recent reports about efficient complex microbial community, the cellulose decomposing microbe and lignin decomposing microbe were used widely. It was often objective that selecting the cellulose and lignin decomposing microbe was, being lack of studying on the relationship between these microbes. So it was often accidentally to get proper results, and the applicability of there results were limited. In this paper, the propose was to separate and screen cellulose decomposing microbe from the composting process, study the process of cellulase production in solid state fermentation, carry out the primary study on mixed culture in order to find proper combination of these special microbes to decompose the cellulose or lignin.
    First, four high efficient cellulose decomposing microbes were screened from the composting process by the separating by cellulose agar and the screening by cellulose-congo red agar and solid state fermentation. The microbe named X was the best one in cellulase production and cellulose decomposing.
    Then, in order to see the process of cellulase production and the culture conditions, the effects of different conditions on cellulase activity in cellulase production by the microbe named X were studied by solid state fermentation. The liquid-solid ratio is the most greatly influencing factor during the whole process of the solid state fermentation. In the initial stage of the fermentation, the temperature can affect the cellulase production relatively greatly because it can affect the growth of the microorganisms. The effects of initial pH and the number of inoculum were not significant. Considering the whole process of the fermentation, the temperature, initial pH, liquid-solid ratio and the number of inoculum
    
    
    
    were suggested to be 30C, 4, 7 and 5%, respectively. By investigation on the effects of different carbon sources on the cellulase production, adding the proper amount of maltose and cellobiose was proved to be useful for cellulase production. The primary function of cellobiose is stimulating the endoglucanase production. The differences of effects of defferent nitrogen sources are great. Some nitrogen sources are hard to be utilized by the microorganism. The yeast extract and (NH4)2SO4 are proper nitrogen sources for this microorganism. Adding the 0.1% of surfactant of Tween 80 was proved to be be useful for cellulase production.
    At last, basing above results, the mixed culture of six cellulose decomposing microbes and eight lignin decomposing microbes were studied. Nine couples of microbes were selected by their modalities on the basic agar, named S + 10, AF93251+2, AF 93251 + 10 , X+3 , X+10, AF93252+2, AF93252+5, P+5, P+10.
    The cellulase, xylanase, laccase and lignin peroxidase activities of three couples named AF93251+2, AF93252+5, X+10 were studied by mixed culture in solid state fermentation. The results, indicated that the couple named AF93252 + 5 was the best one in cellulase and xylanase production by mixed culture. This couple could be taken further study although it wasn't the best in laccase and lignin peroxidase production.
    From above results, it was obvious that the better effects on decomposing and enzyme production could not be acquired by mixing cellulose and lignin decomposing microbes randomly, although these microbes were all fungi. Many interactions such as competition and symbiosis between these microbes were unknown to us. So, it was necessary to study these interactions to make high efficient complex microbial community for municipal solid waste composting.
引文
[1] Finstein, M. S. et al. Monitoring and evaluating composting process performance. Journal Water Pollution Control Fedention.1986, 58 (4): 723-278
    [2] 陈世和,张所明.城市垃圾堆肥原理与工艺.上海:复旦大学出版社,1990,9-15
    [3] Special Report. Sludge composting trends and opportunities. Water and Waste Treatment, 1995, 38 (11):44-47
    [4] Furhacker M, Haberl R. Composting of sewage sludge in a rotating essel. Water Science Technology, 1995,32(11): 121-125
    [5] Goldstein N. Struteville R. Biosolids composting makes healthy proges. Biosycle, 1993, 11:48-57
    [6] Lutz W. International perspective on composting Biocycle, 1984, 25(2): 221-225
    [7] 李根福译.堆肥.国外废物处理技术(第二集),全国城市环境卫生科技情报网中心站编,1985,271-292
    [8] 中国环境保护产业协会编著.中国环境保护产业技术装备水平评价.北京:中国环境科学出版社,2000,116-121
    [9] 李建国,陈世和等编.城市垃圾处理与处置.北京.中国环境科学出版社,1992,55-62
    [10] 陈世和.城市生活垃圾堆肥化处理的微生物特性研究.上海环境科学,1989,8(8):17-21
    [11] 李国建等.全国城市环境卫生科学论文集.北京:中国环境科学出版,1998.95-99
    [12] 张所明,陈世和.城市生活垃圾堆肥发酵的腐熟度的研究.上海环境科学,1988,7(10):9-12
    [13] 聂梅生主编.城市垃圾处理技术推广项目.北京:中国建筑工业出版社,1992,167-172
    [14] 尚谦,袁兴中.关于城市垃圾堆肥处理的思考.冶金安全,2001,1:35-38
    [15] Veerapan Chanyassak et al.J. Fechnol, 1982, 60 (5): 439-446
    [16] John A Hogon et al. Physical mideling of the composting ecosystem.
    
    Appl. Environ. Microbiol. , 1989, 55 (5): 1082-1092
    [17]V, Miikki et al. Chemosphere, 1994, 29:2609-2618
    [18]Wang, M. J., Land application of sewage sludge in China, The Science of the Total Environment,1997, 197:149-160
    [19]国家环境保护总局污染控制司.城市固体废物与处理处置技术.北京:中国石化出版社,2000,262-272
    [20]Hans F. Stroo, Biotechnology and hazardous waste treatment J. Environ. Qual. 1992, 21:167-175
    [21]Haimann R A. Fungal technological for the treatment of hazardous waste. Environ. Prog. 1995, 14 (3): 201-203
    [22]Giovanni Vallini et al.J.Gen.Appl.Microbiol.,1994,40:445-461
    [23]廖利编着.城市垃圾清运处理设施规划.北京:科学出版社,1999,57-65
    [24]北京市坏境卫生设计科学研究所编著.城市环境卫生.北京:中国标准出版社,1999,213-220
    [25]吴鸿强.城市垃圾堆肥深度加工的处理工艺及设备.环境保护,1998,(3):22-24
    [26]曲颂华,陈绍伟.城市垃圾与污水厂污泥的混合堆肥研究.环境保护,1998:10:15-16
    [27]徐仁琼.城市生活垃圾堆肥过程的动力学参量.环境卫生工程与技术,1986,1:33-35
    [28]聂永丰主编.三废处理工程技术手册。固体废物卷.北京:化学工业出版,2000,389-396
    [29]杨国清主编.固体废物处理工程.北京:科学出版社,2000,192-199
    [30]曹微寰.浅议城市垃圾堆肥处理技术.江苏环保科技,1998,(3):42-44
    [31]周少奇.有机垃圾好氧堆肥法的生化反应机理.环境保护,1999,(3):30-32
    [32]芈振明,高忠爱.固体废物的处理与处置.北京:高等教育出版社,1993.245-253
    [33]George Tchobanoglous, Hilary Theisen, Samuel Vigil. Integrated. Solid Waste Management-Engineering Principles and Management Issues. The Mc Graw-Hill Comanies, Inc. 1993, 652-667
    [34]王中民主编.城市垃圾处理与处置.北京:中国建筑工业出版社,1991,206-213
    
    
    [35]Suler D J et al. Effect of temperature, aeration, and moisture on CO_2 formation in bench-scale, continuously thermophilic composting of solid waste. Appl. Environ. Microbiol. 1977,33(2): 345-350
    [36] 李国学,张福锁编著.固体废物堆肥化与有机复混肥生产.北京:化学工业出版社,2000,98-132
    [37]何品晶等.城市垃圾与排水污泥混合堆肥配比的研究.上海环境科学1994,13(6):21-23
    [38] 冯明谦.动态发酵工艺参数的研究.四川环境,1999,18(4):17-21
    [39]曾光明,陈耀宁,袁兴中等.对含煤狄渣生活垃圾堆肥处理的研究.高技术通讯,2003,13(147):85-89
    [40]Hironshi Kubota and Kiyokiko Nakasaki.Biocycle,1991, 6:66-68
    [41]蔡建成,李国珍.有机垃圾堆肥的可控技术及设施.资源与环境保护专集.有机废物再循环国际学术专题讨论会文集,1988,91-98
    [42]Mickingley V L, Vestal J R. Applied and Environmental Microbiology, 1985, 50 (6): 1395-1401
    [43]Peter F strom. Effect. of temperature on bacterial species diversity in thermophilic solid -waste composting. Appl. Environ Microbiol., 1985, 50(4): 899-905
    [44]USEPA. A Plain English Guide to the EPA Part 503 Biosolids Rule. EPA/832/r-93/003, pp116.U.S. Environmental Protection Agency Office of Wastewater Management. Washington, DC.1994
    [45]Haug R T.the Practical Handbook of Compost Engineering, Lewis Publishers: 1993, 533-541
    [46]Miller F C, Mac Gergor S T, Psarianos K Met al. Direction of Ventilat- ion in Composting Wastewater Sludge Journal WPCF, 1982, 54(1): 111-113
    [47]Kuchenrither R D, Martin W J, Smith D G and Williams D W. Design and Operation of an Aerated Windrow Composting Facility. Journal WPCF, 1985, 5(3): 213-219
    [48]Stentiford E I. composting Control: Principles and Practice. In: The Science of Composting. ed. by M.de Bertroldi,Paolo Sequi,Bert Lemmes and Tiziano Papi.Blackie Academic and Professional, 1996, 49-59
    [49]Lynch N J, and Cherry R S.Winter Compsting Using Passively Aerated Windrows Compost Science & Utilization,1996, 4:44-52
    
    
    [50] Lynch N J, Gering K L and Cherry R S. Design of Passively Aerated Copost Piles: Vertical Air Velocities between the Pipes. Biotechnology Progess, 1996, 12(5): 624-629
    [51] Lynch N J, Gering K L and Cherry R S. Composting as a Reactor Design Problem: Modeling and Experiment. Annals New York Academy of Science, 1997, 829:290-301
    [52] Rynk R. On Farm Composting Handbook. Northeast Regional Agricultural Engineering Service,1992, 247-252
    [53] Fernands L.and Sartaj M. Comparative Study of Static Pile Composting Using Natural, Forced and Passive Aeration Methods. Compost Science & Utilization, 1997, 5(4): 65-77
    [54] Miikki,V.,Senesi,N.,and Hanninen,K. Charsterization of humic material formed by composting of domestic and industrial biowastes. Chemosp- here, 1997, 34(8): 1639-1651
    [55] E. Iglesias-Jimezez,C. E. Alvarez. Apparent availability of nitrogen in composting municipal refuse. Biol Fertil Soils, 1993, 16:313-318
    [56] M. P. Bernal, A. F. Navarro, M. A. Sanchez-Monedero. A. Roig and J. Cegarra. Infuence of sewage sludge compost stability and Maturity on carbon and nitrogen mineralization in soil. Soil Biol. Biochem., 1998, 30(3): 305-313
    [57] 李承强,魏源送等.堆肥腐熟度的研究进度.坏境科学进展.1999,7(6):1-12
    [58] J. T. Pera-Neto,E. I. Steniford and D. D. Mara. Low cost controlled composting of refuse and sewage sludge. Wat. Sci.Tech.,1987, 19: 839-845
    [59] Kiyohiko Nakasaki, Makoto Shoda, and Hiroshi Kubota. Effect of Temperature on Composting of Sewage Sludge. Applied and Environmental Microbiology, 1985, Dec. pp. 1526-1530
    [60] E. I. Stentiford,J. T. Perera Nero and D. D. Mara. Low cost composting. The University of Leeds, 1996, 114-120
    [61] Nora Goldstein. Odor control progress. Biocyle, 1993, March. 56-58
    [62] John C. Kissel. Charles L. Henry and Robert B. Harrison. Potential emissions of volatile and odordous organic compounds from municipal solid waste composting facilities. Biomass and Bioenergy, 1992, 3 (3-4):181-194
    
    
    [63] Chayasak, V.,Hirai, M. & Kubota, H. changes of chemical components and Nitrogen transformation in water extracts during composting of garbage. J. Ferment. Technol.,1982, 60:439-446
    [64] Sugahara, K. Harada, Y. & Inoko, A. color change of city refuse during composting process. Soil Sci. Plant. Nutri.,1979, 25:197-208
    [65] Lossin,R. D. Compost studies:Ⅲ. Disposing of animal waste Measurement of the chemical Oxygen Demand of Compost. Compost Sci. In Emeterio Igiesias Jimenez & Victor Perez Garcia 1989. Evalustion of City Refuse Compost Maturity: A Review. Biological Wastes,1997,27:115-142
    [66] H. Ishii, K. Tanaka, M. Aoki, T. Murakami and M. Yamada. Sewage sludge composting process by static pile method. Wat. Sci. Tech., 1991, 23:1979-1991
    [67] S. P. Mathur, H. Dinel,G. Owen,M. Schuitzer and J. Dugan. Determination of Compost Biomaturity. Ⅱ. Optical Density of Water Extracts of Composts as a Reflection of their Maturity. Biological Agiculture and Horticulture., 1993, 10:87-108
    [68] A. Bengtsson Mikael Quednau G. Haska et al. Composting of oily sludge- degradation, stabilized residues, volatiles and microbial activity. Waste Manage Res, 1998,16(3): 273-284
    [69] Dr. P. Keller. Methods to Evaluate Maturity of Compost. Compost Science autumn,1961,20-26
    [70] Inbar,Y.,Y. Chen,and Y.Harada. Carbon-13 CPMAS NMR and FITR Spectro- scopic analysis of organic matter transformations during composting of solid waste from wineries. Soil Science,1991,152:272-282
    [71] T. Pare H. Dinel M. Schnitzer S. Dumontet. Transformations of carbon and nitrogen during composting of animal manure and shredded paper. Biol Fertil Soils.,1998,26:173-178
    [72] Colueke,C. G. Principles of biological resource recovery. Biocycle, 1981, 26:36-40
    [73] Morel T. L.,Colin,F.,Germon,J. C.,Godin,et al. Methods for the evaluat ion of the maturity of municipal refuse compost. In composting of Agricultural and other Wastes. ed. J. K. R. Gasser. Elsevier Appled Science publishers, London & New York, 1985, 56-72
    
    
    [74] Harada, Y. Inoko,A.,Todati, M. & Izawa, T. Maturing process of city refuse compost during,piling. Soil Sci. Plant.Nutr.,1981,27:357-364
    [75] Emeterio iglesias Jimenez and Vicor Perez Garcia. Composting of domestic refuse and sewage sludge. I. Evolution of tempetature,pH,C/N ratio and cation-exchange capacity. Resource,Conservation and Recyling.,1991,6:45-60
    [76] C. Garcia,T. Hernasndez,Fosta,and M. Ayuso. Evaluation of the maturity of municipal waste compost using simple chemical parameters. Commun. Soil. Sci. Plant Anal.,1992,23:1501-1512
    [77] F. Adani, P. L. Genevini and F. Tambone. A New Index of Orgnanic Matter Stability. Compost Science & Utilizition.,1995, 3(2):25-37
    [78] M. de Bertoldi. G. Vallini and A. pera. The Biology of composting: a review. Waste Management & Research. 1983,1:157-176
    [79] William F. Brinton. Volatile Organic Acids In Compost: Production and Odorant Aspects. Compost Science & Utilization.Winter, 1998,75-82
    [80] De Vleeschauwer, D., O. Verdonck, and P. Van Assche. Phytotoxicity of refuse compost. Biocycle, 1981,22:44-46
    [81] T. Usui, Akiko sboji and M. yusa. Ripeness Index of Wastewater Sludge Compost. Biocycle. Jan/Feb,1983,25-27
    [82] Don Richard and Robert Zimmerman. Respiration Rate-Reheating Potential: A Comparison of Measures of Compost Stability. Compost Science & Utilization. Spring.,1995,74-79
    [83] D. A. Innotti, T. Pang, B. L. Toth. Etal .A Quantitative repirometric Method for Monitoring Compost Stability. Compost Science & Utilization. 1993,1(3):52-65
    [84] Lasaridi, K. E.& Stentiford, E. I. Respirometric technique in context of compost stability asseasment:principles and practice:In:de Bertoidi, M., Sequi, P., Lemmes, B. & Papi, T. (eds)The science of composting Glasgow, Scotiand: Blackie Academic & Professional (Chapnian & Hall), 1996, 274-286
    [85] M. Fang, J. W. C. Wong,G. X. Li and M.H. Wong. Changes in biological parameters during co-composting of sewage sludge and coal ash residues. Bioresource Technology., 1998,64:55-61
    [86] M.A. Diax-Burgos, B. Ceccanti. A. Polo. Monitoring biochemical
    
    activity during sewage siudge composting. Biol Feztil Soils,1993,16: 145-150
    [87]H. Insam ,K. Amor, M. Renner. C. Crepaz. Change in Functional Abilities of the Microbial Community During Composting of Manure. Microb Ecol. 1996,31:77-87
    [88]Zucconi, F., Forte.M,Monaco, A.& De Bertoldi,M.Biological evaluation of compost maturity.Biocycle.1981b,22:27-29
    [89]刘婷,陈朱蕾,周敬宣.外源接种粪便好氧堆肥的微生物相变化研究.华中科技大学学报(城市科学版).2002,19(2):57-59
    [90]袁月祥,廖银章,刘晓风等.有机垃圾发酵过程中的微生物研究.微生物学杂志,2002,22(1):22-26
    [91]Golueke C. G.,Card B. J.,Mc GauheyP. H. Appl. Microbiol. 1954, 2:45-53
    [92]席北斗,刘鸿亮,白庆中等.堆肥中纤维素和木质素的生物降解研究现状.环境污染治理技术与设备,2002,3(3):19-23
    [93]礼嘉,顾红雅,胡平等.现代生物技术导论.北京:高等教育出版社,1998,87-95
    [94]El Mastry H G. Utilization of Egyptian rice straw in production of cellulases and microbial protein: effect of various pretreatments on yields of protein and enzyme activity. J Sci. Food Agric., 1983, 34:725-732
    [95]Han Y W, Yu P L, Smith S K. Alkali treatment and fermentation of straw for animal feed. Biotech. And Bioeng., 1978, 20:1015-1026
    [96]Tassinari T, Macy C, Spano L. Energy requirements and process design consideration in compression milling pretreatment of cellulosic wastes for enzymatic hydrolysis. Biotech. And Bioeng., 1980,22:1689-1705
    [97]Saddler J N, Broanell H H, Clermont L P, et al. Enzymatic hydrolysis of cellulost and various pretreated wood fractions. Biotech. And Bioeng., 1982, 24:1389-1402
    [98]张群发,舒远才,郝军.康氏木霉、纤维素酶转化蔗髓纤维素成糖及生产SCP.微生物学通报,1991,18(4):214-220
    [99]周敬红,王双飞,韦小英等.蔗渣白腐菌处理的电镜观察.中国造纸学报,1999,14:15-19
    [100]Biermann, C. J. Essentials of Pulping and Papermaking. USA:
    
    Academic Press, 1993, 425-433
    [101]陈坚.环境生物技术.北京:中国轻工业出版社,2000:242-267
    [102]李阜棣.农业微生物学实验技术.北京:中国农业出版社,1991,143-152
    [103]A.N.格拉泽,二介堂弘.微生物生物技术——应用微生物学基础原理.北京:科学出版社,2002,337-345
    [104]李国鼎,金子奇.固体废物处理与资源化.北京:清华大学出版社,1990.117-125
    [105]王建龙,文湘华.现代环境生物技术.北京:清华大学出版社,2001,265-273
    [106]顾国维,何澄.绿色技术及其应用.上海:同济大学出版社,1999,225-231
    [107]程驭宇,梁如玉,暨仕臣.绿色木霉HB产纤维素酶的条件研究.西南农业大学学报,2000,22(6):539-541
    [108]陈士成,曲音波,张岩.产中性纤维素酶芽孢杆菌Y106产酶条件优化.应用与环境生物学报,2000,6(5):457-461
    [109]崔福绵,刘菡,韩辉.康宁木霉CP88329纤维素酶产生条件的研究.微生物学通报,1995,22(2):72-76
    [110]勇强,陈艳萍,余世袁.添加纤维二糖、淀粉水解液对纤维素酶制备的影响.南京林业大学学报,1998,22(2):53-56
    [111]夏黎明.固态发酵生产高活力纤维二糖酶.食品与发酵工业,1998,25(2):1-3
    [112]孟勇,王忠彦,苗艳芳.关于黑曲霉生产纤维二糖酶发酵条件的研究.四川大学学报(自然科学版),2002,39(5):938-941
    [113]Liming Xia, Peilin Cen. Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biocheminstry, 1999, 34:909-912
    [114]E. Kalogeris, F. Iniotaki, E. Topakas, et al.. Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresource Technology, 2003, 86: 207-213
    [115]Chundakkadu Krishna. Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresource Technology, 1999, 69:231-239
    [116]宋思扬,楼士林.生物技术概论.北京:科学出版社,2000,177-184
    
    
    [117]Muhannad I. Massadeh, Wan Mohtar Wan Yusoff, Othman Omar, et al.. Synergism of cellulase enzymes in mixed culture solid substrate fermentation. Biotechnology Letters, 2001, 23:1771-1774
    [118]郁红艳,曾光明,胡天觉等.真菌降解木质素研究进展及在好氧堆肥中的研究展望,2003,23(10):57-61
    [119]蒋挺大.木质素.北京:化学工业出版社,2001,57-65
    [120]马登波,刘紫娟,高培基等.木素生物降解的研究进展.纤维素科学与技术,1996,4(1):1-12
    [121]Capelari M, Zadrazil F.Lignin degradation and in vitro digestibility of wheat straw treated with Brazilian tropical species of white rot fungi.Folia Microbiologica, 1997, 42(5):481-487
    [122]Hyodo F, Azuma J, Abe T.A new pattern of lignin degradation in the fungus comb of Macrotermes carbonarius(Isoptera,Termitidae Macrotermitinae).Sociobiology, 1999, 34(3):591-596
    [123]Ferraz A, Duran N.Lignin degradation during softwood decaying by the ascomycete Chrysonilia sitophila.Biodegradation, 1995, 6(4):265-274
    [124]Kerem Z, Bao W, Hammel K E.Extracellular degradation of polyethers by the brown rot fungus Gloeophyllum.Biological Sciences Symposium, 1997, 461-462
    [125]Dey S, Maiti T K, Bhattacharyya B C.Production of some extracellular enzymes by a lignin peroxidase-producing brown-rot fungus, Polyporus ostreiformis,and its comparative abilities for lignin degradation and dye decolorization. Applied and Environmental Microbiology, 1994, 60(11):4216-4218
    [126]张建军,罗勤慧.木质素酶及其化学模拟的研究进展.化学通报,2001,8:470-477
    [127]Kenneth E H.Extracellular free radical biochemistry of ligninolytic fungi.New Journal of Chemistry, 1996, 20 (2): 195-198
    [128]J.Pérez·J, Muff oz-Dorado T, de la Rubia·J, et al.Biodegradation and biological treatments of cellulose, hemicellulose and lignin:an overview.Int Microbiol, 2002, 5: 53-63
    [129]Eggert C, Temp U, Eriksson K.Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus.Febs Letters, 1997, 407(1):89-92
    
    
    [130]Varela E, Martinez A T, Martinez M J.Molecular cloning of aryl-alcohol oxidase from the fungus Pleurotus eryngii, an enzyme involved in lignin degradation.Biochemical Journal, 1999, 341: 113-117
    [131]李华钟,章燕芳,华兆哲等.黄孢原毛平革菌选择性合成小质素过氧化物酶.过程上程学报,2002,2(2):137-141
    [132]Zadrazil F, Puniya A K.Influence of carbon dioxide on lignin degradation and digestibility of lignocellulosics treated with Pleurotus sajor-caju.International Biodeterioration & Biodegradation, 1994, 33(3):237-244
    [133]Fang J, Liu W, Gao P J.Cellobiose dehydrogenase: Inhibition of polymerization of phenolic compounds and enhancing lignin degradation by ligninases.Acta Biochimica et Biophysica Sinica, 1999, 31(4):415-419
    [134]Ardon O, Kerem Z, Hadar Y.Enhancement of lignin degradation and laccase activity in Pleurotus ostreatus by cotton stalk extract.Canadian Journal of Microbiology, 1998, 44(7):676-680
    [135]Kerem Z, Hadar Y.Effect of manganese on lignin degradation by Pleurotus ostreatus during solid state fermentation.Applied and Environmental Microbiology, 1993, 59(12):4115-4120
    [136]Singhal V, Rathore V S.Effects of Zn2+ and Cu2+ on growth, lignin degradation and ligninolytic enzymes in Phanerochaete chrysosporium.World Journal of Microbiology & Biotechnology, 2001, 17(3):235-240
    [137]管筱武,张甲耀,罗宇煊.木质素降解酶及其调控机理研究的进展.上海环境科学,1998,17(11):46-49
    [138]王双飞,陈嘉翔.制浆造纸废水的生物处理.北方造纸,1994,4:27-30
    [139]杨朝晖,曾光明,袁兴中.微生物选育技术在生活垃圾堆肥处理中的应用.环境卫生工程,2003,11(3):115-118
    [140]军卫,马辉文.微生物工程.北京:科学出版社,2002,276-282
    [141]Nakasaki K, Hiraoka S. A new operation for producing disease-suppressive compost from grass clippings. Applied and Environmental Microbiology. 1988, 64(10):36-41
    [142]Maier R M, Pepper I L, Gerba C P. Environmental Microbiology. San Diego, California, USA: Academic Press, 2000, 534-550
    
    
    [143]Breccia J D, Catro G R, Baigori M D, et al. Screening of Xylanolytic Bacteria Using a Coiour Plate Method. Journal of Applied Bacteriology, 1995, 78:469-472
    [144]顺希贤.垃圾堆肥微生物接种实验.应用与环境生物学,1995,1(3):274-278
    [145]李国学,李玉春,李彦富.固体废物堆肥化及堆肥添加剂研究进展,农业环境科学学报,2003,22(2):252-256
    [146]官家发.高温堆肥发酵工艺处理城市生活垃圾过程中的部分微生物学问题.四川环境,2000,19(3):21-30
    [147]沈根祥,袁大伟等.HSP菌剂在牛粪堆肥中的试验应用,农业环境保护,1999,18(2):62-64
    [148]李济寰,王健等,我国酵素菌引进、试验及应用概况,北京农业科学,2000,18 (3):18-22
    [149]李影,焦素芝.怎样用酵素菌制秸秆堆肥,新农业,1999,3:31-34
    [150]武汉大学,复旦大学生物系.微生物学,北京:高等教育出版社,1979.117-125
    [151]席北斗,刘鸿亮,孟伟等.高效复合微生物菌群在垃圾堆肥中的应用,环境科学,2201,22(5):122-125
    [152]席北斗,李英军,刘鸿亮等.纤维素分解菌和EM菌协同作用在有机废弃物堆肥中的应用,环境与开发,2001,16(4):16-18
    [153]席北斗,刘鸿亮,孟伟等.垃圾堆肥高效复合微生物菌剂的制备,环境科学研究,2003,16(2):58-64
    [154]席北斗,孟伟,刘鸿亮等.三阶段孔温堆肥过程中接种复合微生物菌群的变化规律研究,环境科学,24(2):152-155
    [155]刘萃文,侯志研.几种常用酵素菌肥的功能及其配制方法,土壤肥料,1999,101-104
    [156]Tam等,两种工业用细菌制品对猪废弃物圈内处理系统中营养物转换的影响,国外农业环境保护,1999,27(4):39-41
    [157]Tiwari V N. Effect of cattle dung and rock phosphate on composting of wool waste. Biological Wastes, 1989. 27:223-241
    [158]蒲一涛,钟毅沪,周万龙.固氮菌和纤维素分解菌的混合培养及其对生活垃圾降解的影响.环境科学与技术,1999,1:15-17
    [159]Sternberg D. Production of cellulase by Trichoderma. Biotech. Bioeng, 1976, 6:35-53
    [160]Ghose TK. Measurement of cellulase activities, Pure Appl Chem,
    
    1987, 59(2): 257-268
    [161]F. I. El-Hawary, Y. S. Mostafa, E. László. Cellulase production and conversion of rice straw to lactic acid by simultaneous saccharification and fermentation, Acta Alimentaria, 2001, 30(3): 281-295
    [162]孙迅,高庆义,毕瑞明.黑曲霉产木聚糖酶发酵条件的正交设计试验.微生物学通报,2000,27(2):108-112
    [163]夏黎明.纤维废物固态发酵产纤维素酶的研究.林产化学与工业,1999,19(1):6-10
    [164]白云玲,许『F宏,孙微.细菌产木聚糖酶发酵条件的研究.微生物学通报,2000,2(4):2 78-280
    [165]张敏,肖亚中,蒲春雷.白腐真菌AH2 8—2菌株发酵合成漆酶初步研究.微生物学通报,2002,29(3):37-45
    [166]邬敏辰,李江华,邬显章.黑曲霉固念培养生产纤维素酶的研究.酿酒,1997,5(总123):5-9
    [167]陈春洪,邝哲师,陈薇.里氏木霉纤维素酶产生条件的研究.微生物学通报,1998,25(2):77-79 ’
    [168]Lgnsane, B.K., Ghidyal, N.P., Budiatman, S., et al.. Engineering aspects of solid state fermentation. Enzyme Micro. Techol, 1985, 7: 258-265
    [169]Luiza Jecu. Solid state fermentation of agricultural wastes for endoglucanase production. Industrial Crops and Products, 2000, 11: 1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700