牛蒡低聚果糖诱导拟南芥对Pseudomonas syringae pv.tomato DC3000的抗性及其作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激发子(elicitor)是一类能激活寄主植物产生抗病防卫反应的生物或非生物因子。牛蒡低聚果糖(Burdock fructooligosaccharide, BFO)是从牛蒡(Arcitum lappa L.)根中分离出来的储存型低聚糖。前期研究表明,BFO是一种有效的激发子,能够增强植物对多种病原真菌和病毒的抗性。细菌是仅次于真菌和病毒的第三大类植物病原物,BFO是否能够增强植物对病原细菌的抗性还没有研究。引发(priming),是指被激发子诱导后的细胞对随后的侵染发生更强烈的防卫反应的现象。引发是植物诱导抗性的重要机制;气孔关闭可以作为抵御细菌入侵的屏障,也是植物抗病反应之一;这两个机制都可能影响植物对病原细菌的抗性。本文以模式植物拟南芥(Arabidopsis thaliana)为材料,研究了BFO处理对拟南芥防御Pseudomonas syringae pv. tomato DC3000(Pst DC3000)的影响及其引发效应。
     研究发现,5.0g/L BFO预处理能够显著抑制Pst DC3000在拟南芥叶片组织中增殖,减轻发病症状。BFO处理后接种Pst DC3000,引发拟南芥发生更强更快的细胞和分子防卫反应,拟南芥叶片组织出现过氧化氢(hydrogen peroxide, H2O2)积累、胼胝质沉积和过敏性细胞死亡;Pst DC3000单独接种,拟南芥没有发生显著的H202积累、胼胝质沉积和过敏性细胞死亡。BFO处理3d后接种Pst DC30006h,比单独接种Pst DC3000,拟南芥PRl基因的表达量升高27.5倍,PAL1基因的表达量升高2.7倍。在接种PstDC3000时,添加过氧化氢清除剂过氧化氢酶(catalase, CAT), BFO的引发效应被抑制。BFO诱导的引发效应在不积累水杨酸(salicylic acid, SA)的转基因植株NahG、SA缺陷突变体sid2和SA不敏感突变体nprl-1中被抑制,但在脱落酸(abscisic acid, ABA)缺陷突变体aba3-1中,BFO的引发效应不受影响。这些研究结果表明,BFO处理增强了拟南芥对Pst DC3000的抗性;BFO诱导拟南芥进入引发状态,再接种病原菌,拟南芥表现出更强的细胞和分子防卫反应,即引发效应;BFO的引发效应依赖H2O2、SA信号通路和NPR1基因,但可能不依赖ABA信号通路。
     研究了BFO处理3d内的拟南芥组织内活性氧相关变化及其对引发的作用。结果显示,BFO处理引起拟南芥组织内H2O2积累,并在6h达到高峰,此时H2O2含量是对照的2.4倍;24h后H2O2含量基本恢复到原来水平并保持稳定。GST1基因是植物抗膜脂过氧化的关键基因,其表达受氧化应激调控,BFO处理引起GST1基因表达上调;活性氧清除酶相关基因FSD1, CAT1、CAT2、APX1和ZAT10基因表达也上调。活性氧清除酶如超氧化物歧化酶(SOD)、过氧化物酶(POD),过氧化氢酶(CAT)的酶活性升高。进一步研究发现,BFO单独处理能够诱导拟南芥积累H2O2,但不引起胼胝质沉积和过敏性细胞死亡。BFO处理3d后接种Pst DC3000,不仅激发拟南芥组织内H2O2积累,还引起了过敏性细胞死亡和胼胝质沉积。在BFO处理时添加CAT,外源CAT抑制了BFO诱导的H2O2积累;再接种Pst DC3000后,拟南芥组织不发生显著的H2O2积累、胼胝质沉积和过敏性细胞死亡,同时拟南芥对PSt DC3000的抗性也被抑制。这些结果表明BFO处理可以诱导拟南芥活性氧积累,影响拟南芥的氧化-还原平衡,使氧化态升高;BFO诱导的活性氧积累和氧化还原状态的改变使植物进入引发状态(priming state),对病原菌的刺激表现出更强的防卫反应。
     气孔运动与植物防御反应关系密切。研究了BFO对气孔运动的影响,结果显示,BFO处理可以诱导拟南芥气孔关闭,并诱导拟南芥保卫细胞内积累活性氧(reactive oxygen species, ROS)。我们选用研究气孔运动的常用植物豌豆进一步研究了BFO诱导气孔关闭的作用机制。研究发现,BFO处理可以诱导豌豆气孔关闭,200μg/mL BFO使豌豆气孔开度减小54.5%,并且在20-200μg/mL范围内,与BFO的剂量呈正相关。BFO处理20min时,豌豆保卫细胞中ROS和一氧化氮(nitric oxide,NO)含量显著增加,ROS和NO的荧光强度分别是对照的2.8倍和1.64倍。ROS抑制剂过氧化氢酶同时抑制了BFO诱导的ROS积累和NO积累;而NO抑制剂L-NAME抑制了BFO诱导的NO积累,部分抑制了BFO诱导的ROS积累。过氧化氢酶和L-NAME都抑制了BFO诱导的气孔关闭。这些研究结果表明,BFO可以诱导豌豆气孔关闭;BFO诱导的气孔关闭依赖ROS和NO信号;BFO诱导的ROS可能位于NO上游,是其诱导NO所必需的NO位于ROS下游,并可能反作用于ROS。
     BFO是植物自身产生的一种菊糖型低聚糖,本研究证实BFO能够增强植物对病原细菌的抗性,揭示了BFO的引发效应,发现BFO可以诱导气孔关闭,对理解BFO诱导植物抗病的作用机制有一定理论价值,也为BFO在农业生产上的应用进一步提供了理论依据。
Plants can acquire strengthened resistance to pathogens after treatment with incompatible pathogens or elicitors. Elicitors are chemicals or biofactors that can induce plant defense resonses. Burdock fructooligosaccharide (BFO) isolated from the root tissue of Arctium lappa is a reserve carbohydrate. BFO alone has no anti-microbial activities in vitro, but instead, it induces defensive responses in plants as a potential elicitor. BFO can induce resistance against a number of plant diseases, including fungal diseases and virus diseases.
     This study shows that BFO could increase resistance against Pseudomonas syringae pv. tomato DC3000(Pst DC3000) in Arabidopsis. The growth rate of Pst DC3000declined in Arabidopsis leaves and disease symptoms were suppressed in BFO-pretreated plants. Burdock fructooligosaccharide (BFO) induces plant defense responses through priming, leading to rapid counterattack against pathogen. To investigate the effects of priming by BFO on defense-related responses, Arabidopsis was treated with BFO and the effects of pathogen challenge on cellular and molecular defense responses were analyzed. BFO treatment and subsequent Pseudomonas syringae pv. tomato DC3000challenge triggered earlier expression of defense response genes and pronounced cellular defense events, including a hydrogen peroxide (H2O2) burst, hypersensitive cell death (HCD), and callose deposition. BFO-induced priming was absent in NahG [a transgenic plant that does not accumulate salicylic acid (SA)], sid2(a SA-deficient mutant), and nprl-1(a mutant that carries a deficient NPR1gene), but not in aba3-1[an abscisic acid (ABA)-deficient mutant]. Removal of H2O2by catalase almost completely nullified the cellular and molecular defense responses. Our results indicated that BFO-induced priming is dependent on H2O2, SA and intact NPR1, but is not affected by the ABA signal transduction pathway.
     To explore whether the disturbed redox homeostasis also functions in BFO-induced priming, we detected the H2O2accumulation, the activities of reactive oxygen species scavengers and the transcription of their encoding genes while reducing reactive oxygen species levels and GST1. The results showed that BFO triggered H2O2accumulation in Arabidopsis during the period tested and the level of H2O2reach the highest at6hours post treatment, but restore to the original level at24hours post treatment. Meanwhile, BFO treatment improved the activities of reactive oxygen species scavengers, the transcription of their encoding genes while reducing reactive oxygen species levels and GST1. These results suggested that the plants have escalated oxidative state. Combined with catalase and Pst DC3000inoculation, we analyzed the cellular defense responses. Catalase, which infiltrated with BFO treatment, nullifies the escalated oxidative state and the augmented ROS accumulation when infected by Pst DC3000. Moreover, the disease resistance was also abolished in BFO pretreated but catalase treated plants, which suggests that the disrupted redox homeostasis is required in BFO-induced priming.
     Stomatal closure is a part of plant innate immune response to restrict bacterial invasion. In this study, the effects of BFO on stomata movement in Pisum sativum and the possible mechanisms were studied. The results showed that BFO could induce stomatal closure accompanied by ROS and NO production, as is the case with ABA. BFO-induced stomatal closure was inhibited by pre-treatment with L-NAME (NG-nitro-L-arginine methyl ester, hydrochloride; nitric oxide synthase inhibitor) and catalase (hydrogen peroxide scavenger). Exogenous catalase completely restricted BFO-induced production of ROS and NO in guard cells. In contrast, L-NAME prevented the rise in NO levels but only partially restricted the ROS production. These results indicate that BFO-induced stomatal closure is mediated by ROS and ROS-dependent NO production. Another, BFO could also induce stomatal closure in Arabidopsis in this study.
引文
Ahn I.P., Kim S., Lee Y.H., Suh S.C.,2007. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol.143,838-848.
    Ahn I.P., Lee S.W., Kim M.G., Park S.R., Hwang D.J., Bae S.C.,2011. Priming by rhizobacterium protects tomato plants from biotrophic and necrotrophic pathogen infections through multiple defense mechanisms. Mol. Cells 32, 7-14.
    Ahuja I., Kissen R., Bones A.M.,2012. Phytoalexins in defense against pathogens. Trends Plant Sci.17,73-90.
    Alvarez M.E., Pennell R.I., Meijer P.J., Ishikawa A., Dixon R.A., Lamb C.,1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92,773-784.
    Andi S., Taguchi F., Toyoda K., Shiraishi T., Ichinose Y.,2001. Effect of methyl jasmonate on harpin-induced hypersensitive cell death generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells. Plant Cell Physiol.42,446-449.
    Asai T., Tena G., Plotnikova J., Willmann M.R., Chiu W.L., Gomez-Gomez L., Boller T., Ausubel F.M., Sheen J.,2002. MAP k-inase signalling cascade in Arabidopsis innate immunity. Nature 415,977-983.
    Assmann, S.M., Shimazaki K.,1999. The multisensory guard cell. Stomatal responses to blue light and abscisic acid. Plant Physiol.119,809-816.
    Bahuguna R.N., Joshi R., Shukla A., Pandey M., Kumar J.,2012. Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.). Plant Physiol. Biochem.57,159-167.
    Beckers G.J., Conrath U.,2007. Priming for stress resistance:from the lab to the field. Curr. Opin. Plant Biol.10,425-431.
    Beckers, G. Jaskiewicz M., Liu Y., Underwood W.R., He S.Y., Zhang S., Conrath U.,2009. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21, 944-953.
    Bednarek P., Pislewska-Bednarek M, Svatos A., Schneider B., Doubsky J., Mansurova M., Humphry M., Consonni C, Panstruga R., Sanchez-Vallet A., Molina A.,Schulze-Lefert P.,2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323, 101-106.
    Boubakri H., Wahab M.A., Chong J., Bertsch C., MLiki A., Soustre-Gacougnolle I.,2012. Thiamine induced resistance to Plasmopara viticola in grapevine and elicited hostedefense responses, including HR like-cell death. Plant Physiol. Biochem.57,120-133.
    Bright, J., Desikan, R., Hancock, J.T., Weir, I. S., Neill, S.J.,2006. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J.45,113-122.
    Brisson L.F., Tenhaken R., Lamb C.,1994. Function of oxidative crosslinking of cell wall structural proteins in plant disease resistance. Plant Cell 6, 1703-1712.
    Brownleader M.D., McNally P.E., Davies G.E.A., Trevan M., dey P.M.,1997. Elicitor-induced extensin insolubilization in suspension-cultured tomato cells. Phytochemistry 46,1-9.
    Cannon M.C., Terneus K., Hall Q., Tan L., Wang Y., Wegenhart B.L., Chen L., Lamport D.T., Chen Y., Kieliszewski M.J.,2008. Self-assembly of the plant cell wall requires an extensin scaffold. Proc. Natl. Acad. Sci. USA 105, 2226-2231.
    Cao H., Bowling S.A., Gordon A.S., Dong X.,1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 8,1583-1592.
    Cao H., Glazebrook J., Clarke J.D., Volko S., Dong X.,1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88,57-63.
    Cao H., Li X. Dong X.,1998. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA 95,6531-6536.
    Chen Z., Silva H.,Klessing D.F.,1993. Active oxygen species in the induction of plant systemie acquired resistance by salicylic acid. Science 262,1883-1886.
    Chisholm, S.T., Coaker, G., Day, B., Staskawicz B.J.,2006. Host-microbe interactions:shaping the evolution of the plant immune response. Cell 124, 803-814.
    Clay N.K., Adio A.M., Denoux C., Jander G., Ausubel F.M.,2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323, 95-101.
    Conrath U.,2011. Molecular aspects of defence priming. Trends Plant Sci.16, 524-531.
    Conrath U., Beckers G.J., Flors V., Garcia-Agustin P., Jakab G., Mauch F., Newman M.A., Pieterse C.M., Poinssot B., Pozo M.J., Pugin A., Schaffrath U., Ton J., Wendehenne D., Zimmerli L., Mauch-Mani B.,2006. Priming:getting ready for battle. Mol. Plant Microbe Interact.19,1062-1071.
    Conrath U., Pieterse C.M., Mauch-Mani B.,2002. Priming in plant pathogen interactions. Trends Plant Sci.7,210-216.
    Conrath U., Thulke V., Katz S., Schwindling S., Kohler A.,2001. Priming as a mechanism in induced systemic resistance of plants. Eur. J. Plant Pathol.107, 113-119.
    Dahal D., Pich A., Braun H.P., Wydra K.,2010. Analysis of cell wall proteins regulated in stem of susceptible and resistant tomato species after inoculation with Ralstonia solanacearum: a proteomic approach. Plant Mol. Biol.73, 643-658.
    de Pinto M.C., Tommasi F., De Gara L.,2002. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells. Plant Physiol.130,698-708.
    Delledonne M., Xia Y., Dixon R.A., Lamb C.,1998. Nitric oxide functions as a secondary signal in plant disease resistance. Nature 934,585-588.
    Dixon R.A.,2001. Natural products and plant disease resistance. Nature 411, 843-847.
    Dong X.,2004. NPR1, all things considered. Curr. Opin. Plant Biol.7,547-552.
    Donofrio N.M., Delaney T.P.,2001. Abnormal callose response phenotype and hypersusceptibility to Peronospoara parasitica in defence-compromised Arabidopsis niml-1 and salicylate hydroxylase-expressing plants. Mol. Plant-Microbe.439-450.
    Dorey S., Baillieul F., Pierrel M.-A., Saindrenan P., Fritig B., Kauffmann, S., 1997. Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor. Mol. Plant-Microbe Interact.10,646-655.
    Durrant W.E., Dong X.,2004. Systemic acquired resistance. Annu. Rev. Phytopathol.42,185-209.
    Edreva A.,2005. Pathogenesis-related proteins:Research progress in the last 15 years. Gen. Appl. Plant Physiol.31,105-124.
    Friedrich L., Lawton K., Ruess W., Masner P., Specker N., Rella M.G., Meier B., Dincher S., Staub T., Uknes S., Metraux J.P., Kessmann H., Ryals J.,1996. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J.10,61-70.
    Garcia-Mata C., Lamattina L.,2001. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol., 126,1196-1204.
    Gardan L., Shafik H., Belouin S., Broch R., Grimont F., Grimont P.A.,1999. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. Int. J. Syst. Bacteriol.49,469-478.
    Glazebrook J.,2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol.43,205-227.
    Grant M.R., Jones J.D.,2009. Hormone (dis)harmony moulds plant health and disease. Science 324,750-752.
    Guo M., Chen K.., Zhang P.,2012. Transcriptome profile analysis of resistance induced by burdock fructooligosaccharide in tobacco. Plant Physiol.169, 1511-1519.
    Hammond-Kosack K.E., Jones J.D.,1996. Resistance gene-dependent plant defense responses. Plant Cell 8,1773-1791.
    He P., Li T., Chen K., Hao L., Li G,,2006. Induction of volatile organic compounds of Lycopersicon esculentum mill. and its resistance to Botrytis cinerea Pers. by Burdock oligosaccharide. J. Integr. Plant Biol.48,550-557.
    He P., Lin X., Shen J., Huang X., Chen K., Li G.,2005. Induction of volatile organic compounds in the leaves of Lycopersicon esculentum by chitosan oligomer. High Technol. Lett.11,95-100.
    Huang J.S.,1986. Ultrastructure of bacterial penetration in plants. Ann. Rev. Phytopathol.24,141-157.
    Jia Z., Zou B., Wang X., Qiu J., Ma H., Gou Z., Song S., Dong H.,2010. Quercetin-induced H2O2 mediates the pathogen resistance against Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana. Biochem. Biophys. Res. Commin.396,522-527.
    Jung H.W., Tschaplinski T.J., Wang L., Glazebrook J., Greenberg J.T.,2009. Priming in systemic plant immunity. Science 324,89-91.
    Kachroo P., Yoshioka K., Shah J., Dooner H.K., Klessig D.F.,2000. Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent. Plant Cell 12,677-690.
    Khokon A.R., Okuma E., Hossain M.A., Munemasa S., Uraji M., Nakamura Y., Mori I.C., Murata Y.,2011. Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ.34, 434-443.
    Khokon M.A., Hossain M.A., Munemasa S., Uraji M., Nakamura Y., Mori I.C., Murata Y.,2010a. Yeast elicitor-induced stomatal closure and peroxidase-mediated ROS production in Arabidopsis. Plant Cell Physiol.51, 1915-1921.
    Khokon M.A., Uraji M., Munemasa S., Okuma E., Nakamura Y., Mori I.C., Murata Y.,2010b. Chitosan-induced stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis. Biosci. Biotech. Bioch.74,2313-2315.
    Klusener B., Young J.J., Murata Y, Allen G.J., Mori, I.C., Hugouvieux V., Schroeder J.I.,2002. Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol. 130,2152-2163.
    Kohler A., Conrath U.,2000. Extraction and quantitative determination of callose from Arabidopsis leaves. Biotechniques 28,1084-1086.
    Kohler A., Schwindling S., Conrath U.,2002. Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol. 128,1046-1056.
    Lamb C., Dixon R.A.,1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol.48,251-275.
    Leckie C., McAinsh, M., Montgomery L., Priestley, A., Staxen, I., Webb, A., Hetherington, A.,1998. Second messengers in guard cells. J. Exp. Bot.49, 339-349.
    Lee S., Choi H., Suh S., Doo I.S., Oh K.Y., Choi E.J., Schroeder Taylor A.T., Low P.S., Lee Y.,1999. Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol.121,147-152.
    Levine A., Tenhaken R., Dixon R., Lamb C.,1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583-593.
    Li Y., Yin H., Wang Q., Zhao X., Du Y., Li F.,2009. Oligochitosan induced Brassica napus L. production of NO and H2O2 and their physiological function. Carbohyd. Polym.75,612-617.
    Liu J., Elmore J.M., Fuglsang A.T., Palmgren M.G., Staskawicz B.J., Coaker G., 2009. RIN4 functions with plasma membrane H+ -ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol.7,1-16.
    Lozano-Duran R., Bourdais G., He S.Y., Robatzek S.,2013. The bacterial effector HopMl suppresses PAMP-triggered oxidative burst and stomatal immunity. New Phytol.202,259-269.
    Luna E., Pastor V., Robert J., Flors V., Mauch-Mani B., Ton J.,2011. Callose deposition:a multifaceted plant defense response. Mol. Plant Microbe. Interact.24,183-193.
    Melotto M., Underwood W., He S.Y.,2008. Role of stomata in plant innate immunity and foliar bacterial diseases. Ann. Rev. Phyto.46,101-122.
    Melotto M., Underwood W., Koczan J., Nomura K., He S.Y.,2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969-980.
    Metraux J.P., Signer H., Ryals J., Ward E., Wyss-Benz M., Gaudin J., Raschdorf K., Schmid E., Blum W., Inverardi B.,1990. Increase in salicylic acid at the onset of systemic acquired resistance in Cucumber. Science 250,1004-1006.
    Mino M., Maekawa K., Ogawa K., Yamagishi H., Inoue M.,2002. Cell death processes during expression of hybrid lethality in interspecific F1 hybrid between Nicotiana gossei domin and Nicotiana tabacum. Plant Physiol.130, 1776-1787.
    Mou Z., Fan W., Dong X.,2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113,935-944.
    Mylona P., Owatworakit A., Papadopoulou K., Jenner H., Qin B., Findlay K., Hill L., Qi X., Bakht S., Melton R., Osbourn A.,2008. Sad3 and Sad4 are required for saponin biosynthesis and root development in oat. Plant Cell 20,201-212.
    Newman M.A., von Roepenack-Lahaye E., Parr A., Daniels M.J., Dow J.M., 2002. Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J.29,487-495.
    Olszyk D.M., Tibbitts T.W.,1981. Stomatal response and leaf injury of Pisum sativum L. with SO2 and O3 exposures. Plant Physiol.67,539-544.
    Pandey S., Zhang W., Assmann S.M.,2007. Roles of ion channels and transporters in guard cell signal transduetion. FEBS Letters 581,2325-2336.
    Pei Z.M., Murata Y., Benning G., Thomine S., Klusener B., Allen G.J., Grill E., Schroeder J.I.,2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406,731-734.
    Peng J.L., Dong H.S., Dong H.P., Delaney T.P., Bonasera J.M., Beer S.V.,2003. Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol. Mol. Plant Pathol.62,317-326.
    Puli M.R., Raghavendra A.S.,2012. Pyrabactin, an ABA agonist, induced stomatal closure and changes in signalling components of guard cells in abaxial epidermis of Pi sum sativum. J. Exp. Bot.63,1349-1356.
    Radman R., Saez T., Bucke C., Keshavarz T.,2003. Elicitation of plants and microbial cell systems. Biotechnol. Appl. Biochem.37,91-102.
    Ryals J.A., Neuenschwander U.H., Willits M.G., Molina A., Steiner H.Y., Hunt M.D.,1996. Systemic acquired resistance. Plant Cell 8,1809-1819.
    Shah, J.,2009. Plants under attack:systemic signals in defence. Curr. Opin. Plant Biol.12,459-464.
    Siegrist J., Orober M., Buchenauer H.,2000.β-Aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiol. Mol. Plant Pathol.56,95-106.
    Slaughter A., Daniel X., Flors V., Luna E., Hohn B., Mauch-Mani B.,2012. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol.158,2835-2843.
    Srivastava N., Gonugunta V.K., Puli M.R., Raghavendra A.S.,2009. Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229,757-765.
    Sun F., Zhang P., Guo M., Yu W., Chen K.,2013. Burdock fructooligosaccharide induces fungal resistance in postharvest Kyoho grapes by activating the sylicylic acid-dependent pathway and inhibiting browning. Food Chem.138, 539-546.
    Ton J., Jakab G., Toquin V., Flors V., Iavicoli A., Maeder M.N., Metraux J.P, Mauch-Mani B.,2005. Dissecting the β-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17,987-999.
    Ton J., Mauch-Mani B.,2004.β-Amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J.38,119-130.
    Underwood W., Melotto M., He S.Y.,2007. Role of plant stomata in bacterial invasion. Cell Microbiol.9,1621-1629.
    Van Loon L.C.,1997. Induced resistance in plants and the role of pathogenesis-related proteins. Eur. J. Plant Pathol.103,753-765.
    van Wees S.C.M., Glazebrook J.,2003. Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv phaseolicola is due to degradation products of salicylic acid. Plant J.33,733-742.
    Wang F., Feng G., Chen K.,2009a. Burdock fructooligosaccharide induces resistance to tobacco mosaic virus in tobacco seedlings. Physiol. Mol. Plant P. 74,34-40.
    Wang F., Feng G., Chen K.,2009b. Defense responses of harvested tomato fruit to burdock fructooligosaccharide, a novel potential elicitor. Postharvest Biol. Technol.52,110-116.
    Ward E.R., Uknes S.J., Williams S.C., Dincher S.S., Wiederhold D.L., Alexander D.C., Ahl-Goy P., Metraux J.P., Ryals J.A.,1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell. Oct.3, 1085-1094.
    Yamaguchi Y., Huffaker A., Bryan A.C., Tax F.E., Ryan C.A.,2010. PEPR2 is a second receptor for the Pepl and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22,508-522.
    You M.K., Shin H.Y., Kim Y.J., Ok S.H., Cho S.K., Jeung J.U., Yoo S.D., Kim J.K., Shin J.S.,2010. Novel bifunctional nucleases, OmBBD and AtBBDl, are involved in abscisic acid-mediated callose deposition in Arabidopsis. Plant Physiol.152,1015-1029.
    Zeng W.Q. Melotto M., He S.Y.,2010. Plant stomata:a checkpoint of host immunity and pathogen virulence. Curr. Opin. Biotechnol.21,599-603.
    Zeng W.Q., He S.Y.,2010. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol.153,1188-1198.
    Zhang H., Liu Z., Xu B., Chen K., Yang Q., Zhang Q. Burdock fructooligosaccharide enhances biocontrol of Rhodotorula mucilaginosa to postharvest decay of peaches. Carbohyd. Polym.98,366-371.
    Zhang P., Wang C., Liu S., Chen K.,2009. A novel burdock fructooligosaccharide induces changes in the production of salicylates, activates defence enzymes and induces systemic acquired resistance to Colletotrichum orbiculare in cucumber seedlings. J. Phytopathol.157, 201-207.
    Zhang S., Yang X., Sun M., Sun F., Deng S., Dong H.,2009. Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J. Integr. Plant Biol.51, 167-174.
    Zhang X., Zhang L., Dong F., Gao J., Galbraith D.W., Song C.,2001. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol.126,1438-1448.
    Zhao J., Davis L.C., Verpoorte R.,2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv.23,283-333.
    Zheng X.Y., Spivey N.W., Zeng W., Liu P.P., Fu Z.Q., Klessig D.F., He S.Y., Dong X.,2012. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe.11,587-596.
    郝林华,陈磊,仲娜,陈靠山,李光友.牛蒡寡糖的分离纯化及结构研究.2005,26(7):1242-1247.
    郝林华,陈靠山,李光友.牛蒡根不同处理方式对提取牛蒡寡糖的影响及提取工艺的优化.饲料工业.2006,27(9):34-37.
    李岩,徐珊珊,高静,王根轩.气孔免疫的研究进展及展望.植物生理学报.2011,47(8):765-770.
    李伟,熊谨,陈晓阳.木质素代谢的生理意义及其遗传控制研究进展.西北植物学报.2003,23(4):675-681.
    刘大群,董金皋主编.植物病理学导论(M).2007,4.
    彭友良等译Richard N. Strange著植物病理学导论(M).2007,13-18.
    刘学敏,孟玉芹.植物病原细菌检测和细菌病害诊断方法.菌物研究.2009,7(3-4):765-770.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700