人参多糖抗疲劳和抗抑郁作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参(Panax ginseng C.A.Meyer)是著名中药,具有多种药效。现代中药学研究表明人参具有抗疲劳、抗抑郁等作用。人参多糖是人参的有效成分,对人参的抗疲劳和抗抑郁活性起重要作用,有关这方面的研究还未见报导。
     制备人参多糖是按照本实验室已经建立的方法进行的,人参根经过水提、醇沉、Sevag法脱蛋白得到人参总多糖WGP。WGP用DEAE-Cellulose柱层析分离,蒸馏水洗脱得到未结合部分淀粉样葡萄糖WGPN; 0.5 M NaCl洗脱下结合部分人参果胶WGPA。实验室以前的工作已经证明WGPA含有RG-I、HG和AG结构的果胶。进一步通过DEAE-Cellulose柱纯化从WGPA中分离出中性的AG多糖WGPA-N,剩余部分为含有RG-I和HG型结构的果胶WGPA-A。将得到的人参多糖样品口服给予小鼠,研究了人参多糖抗疲劳、抗抑郁的作用及其机制。
     本论文研究了WGP、WGPN及WGPA的抗疲劳作用及其剂量效应关系。小鼠的强迫游泳实验及血清生化实验结果表明WGP及WGPA具有抗疲劳活性,以剂量200 mg/kg效果最为明显,而中性的淀粉样葡聚糖几乎没有抗疲劳作用。通过小鼠的强迫游泳实验,血清生化检测及电子显微镜超微结构图像对比研究WGPA-N及WGPA-A的抗疲劳活性,结果表明具有RG-I和HG-型结构的WGPA-A具有更明显的抗疲劳活性,其活性主要是通过①直接的抗氧化过程或是修饰几种抗氧化酶的活性从而减少对细胞膜及细胞内线粒体膜的损伤,减少了氧化应激介导的疲劳;②促进脂肪动员,节约糖原,保持血糖浓度的稳态,减少了能源耗竭引起的疲劳;③减少疲劳代谢产物乳酸的蓄积,减少了毒性物质对中枢的抑制。
     抑郁和疲劳有着密切的联系和许多共同的起因,在研究人参果胶WGPA抗疲劳的同时,本论文也通过小鼠口服给药方式研究了WGPA的抗抑郁作用及其可能的机制。自主活动测试,高架十字迷宫测试,社会干扰测试及强迫游泳测试系列行为学实验结果表明WGPA具有显著的抗抑郁活性。为了进一步确定人参果胶抗抑郁的机制,本论文研究了与抑郁密切相关的ERK及GSK-3β神经信号转导通路,通过Western Blotting实验分析了该通路下游的重要靶位BDNF、β-Catenin的蛋白表达,结果显示人参果胶抗抑郁活性可能是通过上调BDNF和β-Catenin的蛋白表达实现的。
Panax ginseng C. A. Meyer (ginseng) as a famous plant medicine has diverse phamacological effects. Specially, its anti-fatigue and antidepressant activities have been confirmed through the modern pharmacological research on traditional Chinese drug. Being the active components of ginseng, ginseng polysaccharides have effective anti-fatigue and antidepressant effects, but little research on the effects has ever been reported.
     Ginseng polysaccharides were prepared following the methods built in our lab before, ginseng total polysaccharide WGP was prepared by hot water extraction, ethanol precipitation and destarch from the root of Panax ginseng C. A. Meyer. WGP was loaded on DEAE-cellulose column. The column was eluted first with distilled water to elute the unbound fraction WGPN and then with 0.5 M NaCl to elute the bound fraction WGPA. The polysaccharide components of WGPA-A have been confirmed as RG-I, HG and AG-rich pectin. WGPA was reloaded on DEAE-cellulose column, and it was isolated into the neural AG polysaccharide WGPA-N and the acid RG-I and HG-rich pectin WGPA-A. The anti-fatigue and antidepressant effects of the fractions of ginseng polysaccharide and their possible mechanisms were studied by orally administrated way in mice.
     The anti-fatigue effects of WGP, WGPN and WGPA and their dose-effect relations were investigated through the results of the forced swimming test and the serum biochemical tests in mice. It was confirmed that 200 mg/kg is the most optimum dosage of the anti-fatigue effects of WGP and WGPA. The anti-faitgue effects of WGPA-A and WGPA-N were compared and the results showed the effects of WGPA-A whose structure is RG-I and HG pectin was more significant than that of WGPA-N. The resuts were evaluated by the forced swimming test, the serum biochemical tests and the morphological changes of mitochondria in striated skeletal muscle. The anti-fatigue mechanisms were mainly focused on①directly antioxidative effects or increasing the activities of antioxidant enzymes, reducing the myocardial damage of membrane structure of mitochondria or cells, alleviating the fatigue mediated by oxidative stress;②significantly promoting fat utilization of mice during exercising, sparing the consumption of blood glucose and therefore delaying fatigue mediated by energy exhaustion;③significantly decreasing the accumulation of lactic acid the metabolic products of fatigue, and decreasing its inhibition to central nervous systerm.
     Based on the close connection and part of similar mechanisms between depression and fatigue, the antidepressant effects of ginseng pectin WGPA and its possible mechanisms were also studied in the present paper. WGPA was orally administrated to mice and some behavioral tests including the spontaneous activity test, the elevated plus-maze test, the social interaction test and the forced swimming test were performed, the results showed that WGPA has the significant antidepressant effects. To elucidate the antidepressant mechanisms of ginseng pectin, the neuronal signaling pathways of ERK and GSK-3βwere studied in the present paper. BDNF andβ-Catenin as the important targets of the pathways were tested with the Western Blotting analysis, the results showed that the antidepressant mechanisms of WGPA were mainly through up-regulating the expression of target protein BDNF andβ-Catenin in the ERK and GSK-3βsignaling pathway.
引文
[1]张勤,莫迎锐.运动性疲劳产生机制的综述[J].Science Information,2007 (10):148.
    [2]汉·许慎撰,清.段立裁注.说文解字注[M].上海书店出版,1992,700.
    [3]汉语大字典编辑委员会.汉语大字典[M].四川:四川辞书出版社,湖北辞书出版社,1988,2669.
    [4]中华大字典[M].北京:中华书局影印,1978.142.
    [5]辞海编辑委员会编.辞海(缩印本)[M].上海:上海辞书出版社,1980.1781.
    [6]罗竹风.汉语大词典[M].上海:汉语大词典出版社,1991.309.
    [7]涂通今.现代医学百科辞典[M].万国学术出版社,1992.592.
    [8]冯炜权.运动生物化学的回顾和展望[J].北京体育大学学报,1994(4):43-49.
    [9]Singh Garg V, Gupta S, Kulkarni S K. Role of antioxidants in chronic fatigue syndrome in mice[J]. Indian J Exp Biol,2002,40:1240-1244.
    [10]Raghavendra V, Gurpreet K, Kulkarni S K. Anti-depressant action of melatonin in chronic forced swimming-induced behavioral despair in mice, role of peripheral benzodiazepine receptor modulation[J]. European NeuroPsychopharmacology,2000,10:473-481.
    [11]Dubovik B V, Bogomazov S D. Multifactorial method for assessing the physical work capacity of mice[J]. Farmakol Tlksikol,1987,2:116-121.
    [12]Connor T J, Kelliher P, Shen Y, et al. Effect of Subchronic Antidepressant treatments on behavioral, neurochemical, and endocrine changes in the forced-swim test[J]. Pharmacol. Biochem Behav,2000,65:591-597.
    [13]Moriura T, Matsuda H, Kubo M. Pharmacological study on Agkistrodon blomhorfii blomhofii BOIE. V. Anti-fatigue effect of 50% ethanol extract in acute weight-loaded forced swimming-treated rats[J]. Biological and Pharmaceutical Bulletin,1996,19:62-66.
    [14]马莉,蔡东联.中药在运动医学中的应用现状及前景[J].中西医结合学报,2006,4(5):541-543.
    [15]Bahrke M S, Morgan W P. Evaluation of the ergogenic properties of ginseng[J]. sports med, 1994,18(4):229-248.
    [16]Choi Y D, Xin Z C, Choi H K. Effect of korean red ginseng on the rabbit corpus cavernosal smooth muscle[J]. intj impotres,1998,10(1):37-43.
    [17]Gill A, Womack R, Safranek S. Clinical Inquiries:Does exercise alleviate symptoms of depression [J]? J Fam Pract,59(9):530-531.
    [18]Lim J H, Wen T C, Matsuda S, et al. Protection of ischemic hippocampal neurons by ginsenoside rbl, a main ingredient of ginseng root[J]. Neurosci Res,1997,28(3):191-200.
    [19]Scaglione F, Cattaneo G, Alessandria M, et al. Efficiancy and safety of the standardised ginseng extract g115 for potentiating vaccination against the influenza syndrome and protection against the common cold[J]. Drugs Exp Clin Res,1996,22(2):65-72.
    [20]Zhang D, Yasuda T, Yu Y, et al. Ginseng extract scavenges hydroxyl radical and protects unsaturated fatty acids from decomposition caused by iron-mediated lipid peroxidation[J]. Free Radic Biol Med,1996, (20):1.
    [21]Bucci L R, Meistrich M L. Effects of busulfan on murine spermatogenesis:cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mugagenesis,1987,176(2):259-268.
    [22]卢恬,屠洁,王立平.抑郁症的发病机制研究进展[J].先进技术研究通报,2009,3(1):57-59.
    [23]Manji H K, Drevets W C, Charney D S. The cellular neurobiology of depression[J]. Nature Medicine,2001.
    [24]Todorovic C, Sherrin T, Pitts M, et al. Suppression of the MEK/ERK signaling pathway reverses depression-like behaviors of CRF2-deficient mice[J]. Neuropsychopharmacology, 2009,34:1416-1426.
    [25]夏启德,袁翠华.香菇多糖抗疲劳的实验研究[J].通话师范学报,2004,25(4):77-79.
    [26]杨娟,吴谋成,张声华,梁光义.香菇蛋白多糖抗疲劳作用研究[J].营养学报,2002,23(4):350-352。
    [27]辛晓林,张桂春,黄清荣,香菇多糖对离体骨骼肌疲劳的影响[J].食品科学,2006,27(11):21.
    [28]顾佳雯,张陆曦,郭婷婷.条斑紫菜多糖抗疲劳生物活性研究[J].生物技术通报,2007,4:120-125.
    [29]郭敏,陈靠山.牛蒡低聚果糖对小鼠抗疲劳作用的研究[J].天然产物研究与开发,2007(19):642-644.
    [30]杨晓杰,付学鹏,刘泽东,蒲公英多糖抗疲劳作用研究[J].时珍国医国药,2008,19(11):2686-2687
    [31]池爱平,陈锦屏,熊正英.木枣多糖抗疲劳组分对力竭游泳小鼠糖代谢的影响[J].中国运动医学杂志,2007,26(4):411-415.
    [32]罗琼,阎俊,张声华.枸杞多糖的分离纯化及其抗疲劳作用[J].卫生研究,2000,29(2):115-117.
    [33]史亚丽,辛晓林.不同浓度黑木耳多糖对离体肌肉收缩能力的影响[J].2005,24(4):59-61.
    [34]刘娟,王春影.卷柏多糖的抗疲劳生物活性研究[J].佳木斯大学学报(自然科学版),2009,(4):634-636.
    [35]Chi A P, Chen J P, Wang Z Z, Xiong Z Y, Li Q X. Morphological and structural characterization of a polysaccharide from Gynostemma pentaphyllum Makino and its anti-exercise fatigue activity[J]. Carbohydrate polymers,2008,74(4):868-874.
    [36]Li Z J, Li B F, Hu J Y, Preliminary study on anti-fatigue effectt of five marine polysaccharides. Chinese journal of marine drugs.2003,12(3):523-525.
    [37]Shin H Y, Park S J, Seo S W, et al. Gamibojungikki-tang decreses immobility time on the forced swimming test and increases interferon-yproduction from MOLT-4 cells[J]. Journal of Ethonopharmcology,2005,102:113-119.
    [38]梁霜,王乃平,黄仁彬,谭宏棣,付书婕.玉郎伞多糖抗抑郁作用研究[J].时珍国医国药,2010,(1):241-242.
    [39]陈辰,徐维平,魏伟,耿甄彦,徐婷娟.黄精多糖对慢性应激抑郁小鼠模型行为学及脑内5-HT的影响[J].山东医药,2009,49(4):39-41.
    [40]左萍萍,杨楠,郝文宇,马宁,牟亮.焦虑与抑郁动物模型及其药效干预研究[J].第九次全国精神病学学术大会论文汇编.2006.
    [41]赵俊.人参多糖的化学与药理学研究进展[J].国外医学中医中药分册,2004,26(2).
    [42]杨明,王本祥,金玉莲.人参多糖降血糖和肝糖原的作用[J].中国药理学报,1990,11(6):520-524.
    [43]陈艳[D].人参水提物降血糖作用的研究[博士学位论文].长春:东北师范大学生命科学院,2009.
    [44]Kim J M, Shin J E, Han M J, et al. Inhibitory effect of ginseng saponins and polysaccharides on infection and vacuolation of helicobacter pylori[J]. Journal of Microbiology and Biotechnology,2003,13(5):706-709.
    [45]Ahn J, Choi I, Shim J, et al. The immunomodulator ginsan induces resistance to experimental sepsis by inhibiting Toll-like receptormediated inflammatory signals[J]. European journal of immunology,2006,36:37-45.
    [46]戴勤,王亚平,周开昭.红参多糖对粒单系造血祖细胞增殖分化的影响[J].重庆医科大学学报,2001,26(2):126-131.
    [47]王本祥,崔景朝,刘爱晶.人参多糖对免疫机能的影响[J].药学学报,1982(1).
    [48]邹一愚,顾学裘,陈骑.双多糖多相脂质体的研究[J].沈阳药学院学报,1987,6(3):170.
    [49]谢遵江,刘文庆,贺业春,刘颖,张湛波.人参多糖及IL-2对小鼠黑色素瘤细胞体内的抑制效应[J].解剖学报,2002,33(5):35-37.
    [50]倪伟华[D].人参多糖免疫活性及抗肿瘤作用[博士学位论文].长春:东北师范大学生命科学院,2009.
    [51]Han Y S S, Akhalaia M, et al. Modulation of radiation-induced disturbances of antioxidant defense systems by ginsan[J]. eCAM,2005,2(4):529-536.
    [52]Han S S J, Yun Y, et al. Ginsan improved Thl immune response inhibited by gamma radiation. archives of pharmacal research[J].2005,28(3):343-350.
    [53]Lee T, Johnke R M, Allison R R, et al. Radioproective potential of ginseng [J]. Mutagenesis, 2005,20 (4):237-243.
    [54]Song J H S, Bae K, et al. Radioprotective effects of ginsan, an immunomodulator[J]. Radiation Research,2003,159:768-774.
    [55]尹旭辉,廖利军,杨晓临,周正任,姜在福.人参多糖对免疫功能影响的实验研究[J].沈阳部队医药,1997,10(4):301-302.
    [1]Zhang X, Yu L, Bi H T. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer[J]. Carbohydrate Polymers,2009, 77:544-552.
    [2]Dubois M, Gilles K A, Hamiton J K.. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry,1956,28:350-356.
    [3]Blumenkrantz N, Asboc-Hansen G. New method for quantitative determination of uronic acids[J]. Analytical Biochemistry,1973,54:484-489.
    [4]Sedmark J J, Grossberg S E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250[J]. Analytical Biochemistry,1979,79:544-552.
    [5]刘海林,贺丽.淀粉含量的快速比较测定法[J].技术监督纵横,2001(6):49.
    [6]Chambers R E, Clamp J R. An assessment of methanolysis and other factors used in the analysis of carbohydrate-containing materials[J]. The biochemical journal,1971,125: 1009-1018.
    [7]Strydom D J. Chromatographic separation of 1-phenyl-3-methyl-Spyrazolone-derivatized neutral, acidic and basic aldoses[J]. Journal of Chromatography A,1994,678:17-23.
    [8]Fu D, O'neill R A. Monosaccharide composition analysis of oligosaccharides and glycoproteins by high-performance liquid chromatography [J]. Analytical Biochemistry,1995, 227:377-384.
    [9]Liu F, Liu Y, Meng Y, et al. Structure of polysaccharide from polygonatum cyrtonema hua and the antiherpetic activity of its hydrolyzed fragments[J]. Antiviral Research,2004,63(3): 183-189.
    [10]Corradi M D L, Fukuda E K, Vasconcelos A F D, et al. Structural characterization of the cell wall d-glucans isolated from the mycelium of Botryosphaeria rhodina MAMB-05[J]. Carbohydrate Research,2008,343(4):793-798.
    [1]Hur J.'Dong-eui-bo-gam'(Korean)[J]. Seoul, Korea:Nam-san-dang,1989:372-447.
    [2]王莹,蔡东联.人参抗疲劳作用研究进展[J].氨基酸和生物资源,2005,27(3):68-67.
    [3]Fu P P, Gao Q P, Wang W Z, et al. Chemical properties and anti-tumor activity of polysaccharides from roots of panax ginseng[J]. Journal of Norman Bethune University of medical science,1994,20:439-441.
    [4]Lee J H, Shim J S, Lee J S, et al. Pectin-like acidic polysaccharide from Panax ginseng with selective anti-adhesive activity against pathogenic bacteria[J]. Carbohydrate Research,2006, 341:1154-1163.
    [5]Lim D S, Bae K G., Jung I S, et al. Anti-septicemia effect of polysaccharide from Panax ginseng by macrophage activation[J]. Journal of Infection,2002,45:32-38.
    [6]Luo D, Fang B. Structural identification of ginseng polysaccharides and testing of their antioxidant activities[J]. Carbohydrate Polymers,2008,72:376-381.
    [7]倪伟华.人参多糖免疫活性及抗肿瘤作用[D][博士学位论文].长春:东北师范大学生命科学院,2009.
    [8]Shin J Y, Song J Y., Yun Y S, et al. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function[J]. Immunopharmacology and Immunotoxicology, 2002,24:469-482.
    [9]Song J H S, Bae K. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan[J]. International Immunopharmacology,2002,2:857-856.
    [10]Suzuki Y H H. Mechanisms of hypoglycemic activity of panaxans A and B, glycans of panax ginseng roots:effects on the key enzymes of Glucose metabolism in the liver of mice[J]. Phytotherapy research,1989,3(1):15-19.
    [11]Tomoda M, Hirabayashi K, Shimizu N, et al. Characterization of two novel polysaccharides having immunological activities from the root of Panax ginseng[J]. Biological & pharmaceutical bulletin,1993,16(11):1087-1090.
    [12]Young S K, Kyu S K, Shin K. Study on antitumor and immunomodulating activities of polysaccharide fractions from panax ginseng:Comparison of effects of neutral and acidic polysaccharide fraction[J]. Arch. Pharm. Res,1990,13:330-337.
    [13]Chohachi K, Miki M, Yoshiteru O, et al. Isolation and hypoglycemic activity of panaxans Q, R, S, T and U, glycans of panax ginseng roots[J]. Journal of Ethnoparmacology,1985,14: 69-74.
    [14]Yoshiteru O, Chohachi K, Hiroshi H. Isolation and hypoglycemic activity of panaxans I, J, K and L, glycans of panax ginseng roots[J]. Journal of Ethnopharmacology,1985,14: 255-259.
    [15]Qi P G, Hiroaki K, Jong C C, et al. Chemical properties and anti-complementary activities of polysaccharide fractions from roots and leaves of panax ginseng[J]. Planta Medica,1989,55: 9-12.
    [16]Porsolt R D, Anton G., Blavet N, et al. Behavioral despair in rats:a new model sensitive to antidepressant treatments[J]. Eur. J. Pharmacol,1978,47:379-391.
    [17]Kim K M, Yu K W, Kang D H, et al. Anti-stress and anti-fatigue effects of fermented rice bran[J]. Bioscience, Biotechnology, and Biochemistry,2001,65:2294-2296.
    [18]Koo H N, Lee J K, Hong S H, et al. Herbkines increases physical stamina in mice[J]. Biological and Pharmaceutical Bulletin,2004,27:117-119.
    [19]Zhang X, Yu L, Bi H T. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer[J]. Carbohydrate Polymers,2009, 77:544-552.
    [20]张惠,马洪林.人参多糖的活性成分及药理作用[J].中医药研究,1989,(6):38-40.
    [21]Lim T N K, Choi E. Immunomodulating activities of polysaccharides isolated from panax ginseng[J]. Journal of medicinal food,2004,7(1):1-6.
    [22]Connor T J, Kelliher P, Shen Y, et al. Effect of subchronic antidepressant treatments on behavioral, neurochemical, and endocrine changes in the forced-swim test[J]. Pharmacol Biochem Behav,2000,65:591-597.
    [23]Dorchy H. Sports and type I diabetes:personal experience[J]. Rev. Med. Brux,2002,4: 211-217.
    [24]Dubovik B V, Bogomazov S D. Multifactorial method for assessing the physical work capacity of mice[J]. Farmakol Tlksikol,1987,2:116-121.
    [25]Kucinskaite A, Briedis V, Savickkas A. Experimental analysis of therapeutic properties of Rhodiola rosea L. and its possible application in medicine[J]. Medicina (Kaunas),2004, 40(7):614-619.
    [26]Coyle E F, Jeukendrup A E, Wagenmakers A J M, et al. Fatty acid oxidation is directed regulated by carbohydrate metabolism during exercise[J]. Am J Physiol.1997,273: 268-275.
    [27]Galbo H, Holst J J, Christensen N J. The effect of different diets and of insulin on the hormonal response to prolonged exercise[J]. Acta Physiol Scand,1979,107:19-32.
    [28]Fukatsu S N, Shimizu H.50-mile walking race suppresses neutrophil bactericidal function by inducing increases in cortisol and ketone bodies [J]. Life Sci,1996,58:2337-2343.
    [29]Sahlin K K, Broberg S. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise [J]. Am J,1990,259:834-841.
    [30]Spencer M K, Yan Z, Katz A. Effect of low glycogen on carbohydrate and energy metabolism in human muscle during exercise[J]. Am J Physiol,1992,262:975-979.
    [31]Wagenmaker A M J, Beckers E J, Bronuns F, et al. Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise[J]. Am J Physiol,1991,260: 883-890.
    [32]Bennard P, Imbeault P, Doucet E. Maximizing acute fat utilization:effects of exercise, food, and individual characteristics[J]. Can J Appl Physiol,2005,30(4):475-499.
    [33]Holloszy J O, Coyle E F. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences[J]. J Appl Physiol,1984,56:831-838.
    [34]Jones N L, Havel R J. Metabolism of free fatty acids and chylomicron triglycerides during exercise in rats[J]. American journal of physiology,1967,213:824-828.
    [35]Walberg J L, Greenwood M R C, Stern J S. Lipoprotein lipase activity and lpolysis after swim taining in obese Zucker rats[J]. American Journal of Physiology,1983,245:706-712.
    [36]John B, Michael J M, Patricia A R, et al. Imparied calcium pump function does not slow relaxation in human skeletal muscle after prolonged exercise[J]. J Apply Physiol,1997,83: 511-521.
    [37]Zhang D, Zhang D, Yu Y. Ginseng extract scavenges hydroxyl radical and protects unsaturated fatty acids from decomposition caused by iorn-mediated lipid peorxidation[J]. Free Radical Biol Med,1996,20:145-150.
    [38]Burr J R, Reinhart G A, Swenson R A, et al. Serum biochemical values in sled dogs before and after competing in long-distance races[J]. Journal of the American veterinary Medical Association,1997,211:175-179.
    [39]Coombes J S, Mcnaughton L R. Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise[J]. Sports J Med. Phys. Fitness,2000,3:240-246.
    [40]Salvatore P, Lidia D B, Daniela V. Mitochondria and L-lactate metabolism[J]. FEBS Letters, 2008,582:3569-3576.
    [41]Jyn J W, Meng J S, Shing L K, Chun L L, Tzu M P. Effect of red mold rice on anti-fatigue and exercise-related changes in lipid peroxidation in endurance exercise[J]. Appl Microbiol Biotechnol,2006,70:247-253.
    [42]Alessio H M, Goldfarb H. Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training [J]. Journal of Applied Physiology,1988,64:1333-1336.
    [43]Halliwell B, Gutteridge J M C. Free radicals in biology and medicine[J]. Clarendon Press. Oxford, England,1989.
    [44]Liu J, Wang X, Mori A. Immobilization stress induced antioxidant defences changes in rat plasma[J]. Int. J. Biochem,1994,14:511-517.
    [45]Fridovich I. Superoxide dismutases, an adaptation to a paramagnetic gas[J]. J. Biol. Chem, 1989,264:7761-7764.
    [46]Lenaz G. Role of mitochondria in oxidative stress and aging[J]. Biochim. Biophys. Acta, 1998.,1366:53-67.
    [47]Yagmurca M, Erdogan H, Iraz M, et al. Caffeic acid phenethyl ester as a protective agent against doxorubicin nephrotoxicity in rats[J]. Clin. Chim. Acta,2004,348:27-34.
    [48]Passarella P, Bari L D, Valenti D, et al. Mitochondria and L-lactate metabolism[J]. FEBS Letters,2008,582:3569-3576.
    [49]Yu F, Lu S Q, Yu F H, et al. Protective effects of polyssacharide from Euphorbia kansui (Euphorbiaceae) on the swimming exercise-induced oxidative stress in mice[J]. NRC Research,2006,84:1071-1079.
    [1]Ikeuchi M, Koyama T, Takahashi J, et al. Effects of astaxanthin supplementation on exercise-induced fatigue in mice[J]. Biol. Pharm. Bull,2006,29:2016-2110.
    [2]Grenhaff P L, Timmonns J A. Interaction between aerobic and anaerobic metabolism during intense muscle exercise[J]. Exerc. Sports Sci. Rev,1998,26:1-30.
    [3]Pedersen T H, Nielsen O B, Lamb G. D, et al. Intracellular acidosis enhances the excitability of working muscle[J]. Science,2004,305:1144-1147.
    [4]Skinner J S, Mclellan T H. The transition from aerobic to anaerobic mebabolism[J]. Res. Q Exerc. Spor,1980,51:243-248.
    [5]Alessio H M, Goldfarb A H. Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training[J]. J Appl Physiol,1988,64:1333-1336.
    [6]Davies K J, Quintanilha A T, Brooks G A, et al. Free radicals and tissue damage produced by exercise[J]. Biochem Biophys Res Commun,1982,107:1198-1205.
    [7]邹志俊,张峰华.中医药抗运动性疲劳研究进展[J].陕西中医,2004,25(3):287-289.
    [8]冯炜权.运动性疲劳和恢复过程与运动能力的研究新进展[J].北京体育学院学报,1993,16(2):17-30.
    [9]王德才,陈美华.辛泰山四叶参提取物对小鼠耐缺氧及抗疲劳能力的影响[J].泰山医院学报,2007,28(6):401-403.
    [10]Shin H Y, Park S J, Seo S W, et al. Gamibojungikki-tang decreses immobility time on the forced swimming test and increases interferon-yproduction from MOLT-4 cells[J]. Journal of Ethonopharmcology,2005,102:113-119.
    [11]Zhang X, Yu L, Bi H T. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer[J]. Carbohydrate Polymers,2009, 77:544-552.
    [12]Porsolt R D, Anton G, Blavet N, et al. Behavioral despair in rats:a new model sensitive to antidepressant treatments[J]. Eur. J. Pharmacol,1978,47:379-391.
    [13]Singh A, Naidu P S, Gupta S, et al. Effect of natural and synthetic antioxidants in a mouse model of chronic fatigue syndrome[J]. J Med Food,2002,5:211-220.
    [14]Kaur G, Kulkarni S K. Comparative study of antidepressants and herbal psychotropic drugs in a mouse model of chronic fatigue[J]. J Chronic Fatigue Syndrome,1998,6:23-35.
    [15]Singal A, Kaur S, Tirkey N, et al. Green tea extract and catechin ameliorate chronic fatigue-induced oxidative stress in mice [J]. J Med Food,2005,8:47-52.
    [16]Kumar A, Garg R, Kumar P. Nitric oxide modulation mediates the protective effect of trazodone in a mouse model of chronic fatigue syndrome[J]. Pharmacol Rep,2008,60: 664-672.
    [17]Saito H, Yoshida Y, Takagi K. Effect of Panax ginseng root on exhaustive exercise in mice[J]. Jpn J Pharmacol,1974,24:119-127.
    [18]Richards R S, Roberts T K, Mcgregor N R. Blood parameters indicative of oxidative stress are associated with symptom expression in chronic fatigue syndrome[J]. Redox Rep,2000,5: 35-41.
    [19]Wiber C G. Some factors which are correlated with swimming capacity in guinea pigs[J]. Journal of Applied Physiology,1959,14:199-203.
    [20]杨晓杰,付学鹏,刘泽东.蒲公英多糖抗疲劳作用研究[J].时珍国医国药,2008,9(11):11-14.
    [21]席昭雁,赵起华,向前,等.蝙蝠蛾拟青霉菌丝体抗疲劳功能实验研究[J].中国自然医学杂志,2006,8(2):143-145.
    [22]Ozcan M E, Gulec M, Ozerol E, et al. Antioxidant enzyme activities and oxidative stress in affective disorders[J]. Int Clin Psychopharmacol,2004,19:89-95.
    [23]Rybak L P, Husain K, Whitworth C, et al. Dose dependent protection by lipoic acid against cisplatin-induced autotoxicity in rats:antioxidant defense system[J]. Toxicological Sciences, 1999,47:195-202.
    [24]Halliwell B, Gutteridge J M C. Free radicals in biology and medicine[J]. Clarendon Press. Oxford, England,1989.
    [25]Liu J, Wang X, Mori A. Immobilization stress induced antioxidant defences changes in rat plasma[J]. Int. J. Biochem,1994,14:511-517.
    [26]Fridovich I. Superoxide dismutases, an adaptation to a paramagnetic gas[J]. J. Biol. Chem, 1989,264:7761-7764.
    [27]Lenaz G. Role of mitochondria in oxidative stress and aging[J]. Biochim. Biophys. Acta,1998, 1366:53-67.
    [28]Yagmurca M, Erdogan H, Iraz M, et al. Caffeic acid phenethyl ester as a protective agent against doxorubicin nephrotoxicity in rats[J]. Clin. Chim. Acta,2004,348:27-34.
    [29]Passarella P, Bari L D, Valenti D, et al. Mitochondria and L-lactate metabolism[J]. FEBS Letters,2008,582:3569-3576.
    [30]Yu F, Lu S Q, Yu F H, et al. Protective effects of polyssacharide from Euphorbia kansui (Euphorbiaceae) on the swimming exercise-induced oxidative stress in mice[J].NRC Research,2006,84:1071-1079.
    [31]Dhuley J N, Raman P H, Mujumdar A M, et al. Inhibtion of lipid peroxidation by piperine during experimental inflammation in rats[J]. Indian J Exp Biol,1993,31:443-445.
    [32]Behan W M H, More I A R, Behan P O. Mitochondrial abnormalities in the postviral fatigue syndrome[J]. Acta Neuropathol,1991,83:61-65.
    [33]Derman W, Schwellnus M P, Lambert M I, et al. The'worn-out athlete':A clinical approach to chronic fatigue in athletes[J]. J Sports Sci,1997,15:341-351.
    [34]Kang K S, Yokozawa T, Kim H Y, et al. Study on the nitric oxide scavenging effects of ginseng and its compounds[J]. J. Agric. Food Chem,2006,54:2558-2562.
    [35]Park K, Kim Y, Jeong T, et al. Nitric oxide is involved in the immunomodulating activities of acidic polysaccharide from Panax ginseng[J]. Planta Med,2001,67:122-126.
    [36]Gharibzadeh S, Hoseini S S. The potential role of nitric oxide metabolites in diagnosing chronic fatigue syndrome[J]. Med Hypotheses,2006,67:197-198.
    [37]Maes M, Mihaylova I, Kubera M, et al. Not in the mind but in the cell:increased production of cyclo-oxygenase-2 and inducible NO synthase in chronic fatigue syndrome[J]. Neuro Endocrinol Lett,2007,28:463-469.
    [38]Ltorres R, Torres I L S, Gamaro G D, et al. Lipid peroxidation and total radical trapping potential of the lungs of rats submitted to chronic and sub-chronic stress[J]. Braz J Med Biol Res,2004,37:185-192.
    [39]Pall M L. Elevated, sustained peroxynitrite levels as the cause of chronic fatigue syndrome[J]. Med Hypotheses,2000,54:115-125.
    [40]Pall M L. Nitric oxide synthase partial uncoupling as a key switching mechanism for the NO/ONOO-cycle[J]. Med Hypotheses,2007,69:821-825.
    [41]Voces J, Oliveiracabral C D, Prieto J G, et al. Ginseng administration protects skeletal muscle from oxidative stress induced by acute exercise in rats[J]. Braz J Med Biol Res,2004,37: 1863-1871.
    [42]Luo D H, Fang B S. Structural identification of ginseng polysaccharides and testing of their antioxidant activities[J]. Carbohydr Polym,2008,72:376-381.
    [43]Choi K T. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer[J]. Acta Pharmacologica Sinica,2008,29:1109-1118.
    [44]Srivastava R, Kulshreshtha D K. Bioactive polysaccharides from plants[J]. Psytochemistry, 1989,28:2877-2883.
    [45]Young S K, Kyu S K, Shin K. Study on antitumor and immunomodulating activities of polysaccharide fractions from panax ginseng:Comparison of effects of neutral and acidic polysaccharide fraction[J]. Arch. Pharm. Res,1990,13:330-337.
    [1]Kim D H, Moon Y S, Jung J S, et al. Effects of ginseng saponin administered intraperitoneally on the hypothalamo-pituitary-adrenal axis in mice[J]. Neurosci Lett,2003,343:62-66.
    [2]Fugh-Berman A, Cott J M. Dietary supplements and natural products as psychotherapeutic agents[J]. Psychosom Med,1999,61:712-728.
    [3]王莹,蔡东联.人参抗疲劳作用研究进展[J].氨基酸和生物资源,2005,27(3):68-67.
    [4]Radad K, Gille G, Moldzio R, et al. Ginsenosides Rb1 and Rg1 effects on survival and neurite growth of MPP+-affected mesencephalic dopaminergic cells[J]. J Neural Transm,2004,111: 37-45.
    [5]Lee E H, Cho S Y, Kim S J, et al. Ginsenoside F1 protects human HaCaT keratinocytes from ultraviolet-B-induced apoptosis by maintaining constant levels of Bcl-2[J]. J Invest Dermatol, 2003,121:607-613.
    [6]Park E K, Choo M K, Oh J K, et al. Ginsenoside Rh2 reduces ischemic brain injury in rats[J]. Biol Pharm Bull,2004,27:433-436.
    [7]Ji Y C, Kim Y B, Park S W, et al. Neuroprotective effect of ginseng total saponins in experimental traumatic brain injury[J]. J Korean Med Sci,2005,20:291-296.
    [8]Van Kampen J, Robertson H, Hagg T, et al. Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson's disease[J]. Exp Neurol,2003,184:521-529.
    [9]Wu C F, Liu Y L, Song M, et al. Protective effects of pseudoginsenoside-F11 on methamphetamine-induced neurotoxicity in mice[J]. Pharmacol Biochem Behav,2003,76: 103-109.
    [10]Carr M N, Bekku N, Yoshimura H. Identification of anxiolytic ingredients in ginseng root using the elevated plus-maze test in mice[J]. Eur J Pharmacol. Biochem Behav,2006,531: 160-165.
    [11]Park J H, Cha H Y, Seo J J, et al. Anxiolytic-like effects of ginseng in the elevated plus-maze model:comparison of red ginseng and sun ginseng[J]. Prog Neuropsychopharmacol Biol Psychiatry,2005,29:895-900.
    [12]Cha H, Park J, Hong J. Anxiolytic-like effects of ginsenosides on the elevated plus-maze model in mice[J]. Biol Pharm Bull,2005,35:5-49.
    [13]Manji H K, Drevets W C, Charney D S. The cellular neurobiology of depression [J]. Nat Med, 2001,7:541-547.
    [14]Duman R S. Synaptic plasticity and mood disorders[J]. Mol Psychiatry,2002,7:29-34.
    [15]Coyle J, Duman R. Finding the intracellular signaling pathways affected by mood disorder treatments[J]. Neuron,2003,38:157-160.
    [16]Einat H, Yuan P, Gould T D. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation[J]. J Neurosci,2003,23:7311-7316.
    [17]Einat H, Yuan P, Dogra S, et al. Does the PKC signaling pathway play a role in the pathophysiology and treatment of bipolar disorder [J]? Biol Psychiatry,2003,53:399.
    [18]Gould T D, Einat H, Bhat R, et al. AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test[J]. Int J Neuropsychopharmacol,2004,7: 387-390.
    [19]Einat H, Yuan P, Manji H K. Increased anxiety-like behaviors and mitochondrial dysfunction in mice with targeted mutation of the Bcl-2 gene:Further support for the involvement of mitochondrial function in anxiety disorders[J]. Behav Brain Res,2005,165:172-180.
    [20]Einat H, Karbovski H, Korik J, et al. Inositol reduces depressive-like behaviors in two different animal models of depression[J]. Psychopharmacology (Berl),1999,144:158-162.
    [21]Benjamin J, Agam G, Levine J, et al. Inositol treatment in psychiatry[J]. Psychopharmacol Bull,1995,31:167-175.
    [22]Einat H, Clenet F, Shaldubina A, et al. The antidepressant activity of inositol in the forced swim test involves 5-HT(2) receptors[J]. Behav Brain Res,2001,118:77-83.
    [23]Kim K M, Yu K W, Kang D H, et al. Anti-stress and anti-fatigue effects of fermented rice bran[J]. Bioscience, Biotechnology, and Biochemistry,2001,65:2294-2296.
    [24]Crawley J N. What's wrong with my mouse? behavioral phenotyping of transgenic and knockout Mice[J]. Wiley-Liss,2000, New York.
    [25]Flaisher-Grinberg S, Einat H. Mice models for the manic pole of bipolar disorder. Neuromethods,2009,42:297-326.
    [26]Flaisher-Grinberg S, Einat H. Strain-specific battery of tests for domains of mania:effects of valproate, lithium and imipramine[J]. Frontiers in Psychopharmacology,2010,1.
    [27]Porsolt R D, Anton G., Blavet N, et al. Behavioral despair in rats:a new model sensitive to antidepressant treatments[J]. Eur. J. Pharmacol,1978,47:379-391.
    [28]Manji H K, Drevets W C, Charney D S. The cellular neurobiology of depression[J]. Nature Medicine,2001.
    [29]Chen S, Guttridge D, You Z, et al. Wnt-1 signaling inhibits apoptosis by activating betacatenin/T cell factor-mediated transcription[J]. J Cell Biol,2001,152:87-96.
    [30]Hamilton S, Liu B, Parsons R, et al. The molecular basis of Turcot's syndrome[J]. N Engl J Med,1995,332:839-847.
    [31]Huang H, Mahler-Araujo B, Sankila A, et al. APC mutations in sporadic medulloblastomas[J]. Am J Pathol,2000,156:433-437.
    [32]Koch A, Waha A, Tonn J, et al. Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors[J]. Int J Cancer,2001,93:445-449.
    [33]Spittaels K, Haute C V D, Dorpe J V, et al. Neonatal neuronal overexpression of glycogen synthase kinase-3beta reduces brain size in transgenic mice[J]. Neuroscience,2002,113:779.
    [34]Gould T, Manji H. The wnt signaling pathway in bipolar disorder[J]. Neuroscientist,2002,8: 497-511.
    [35]Todorovic C, Sherrin T, Pitts M, et al. Suppression of the MEK/ERK signaling pathway reverses depression-like behaviors of CRF2-deficient Mice[J]. Neuropsychopharmacology, 2009,34:1416-1426.
    [36]Dawson T, Ginty D. CREB family transcription factors inhibit neuronal suicide[J]. Nat Med, 2002,8:450-451.
    [37]Huang E, Reichardt L. Neurotrophins:roles in neuronal development and function[J]. Annu Rev Neurosci,2001,24:677-736.
    [38]Weeber E, Sweatt J. Molecular neurobiology of human cognition[J]. Neuron,2002,33: 845-848.
    [39]Einat H, Yuan P, Gould T D, et al. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation[J]. The Journal of Neuroscience,2003,23(19): 7311-7316.
    [40]Zhao H, Li Q, Pei X, et al. Long-term ginsenoside administration prevents memory impairment in aged C57BL/6J mice by up-regulating the synaptic plasticity-related proteins in hippocampus[J]. Behav Brain Res,2009,201:311-317.
    [41]Salim K N, Mcewen B S, Chao H M. Ginsenoside Rbl regulates ChAT, NGF and trkA mRNA expression in the rat brain[J]. Brain Res Mol Brain Res,1997,47:177-182.
    [42]Dang H, Chen Y, Liu X, et al. Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression[J]. Prog Neuropsychopharmacol Biol Psychiatry,2009,33:1417-1424.
    [43]Lee J Y, Kim J W, Cho S D, et al. Protective effect of ginseng extract against apoptotic cell death induced by 2,2',5,5'-tetrachlorobiphenyl in neuronal SK-N-MC cells[J]. Life Sciences, 2004,75(13):1621-1634.
    [44]Sun L Q. Information on research and application of ginseng, the king of traditional and herbal medicines[J]. Asian Journal of Drug Metabolism and Pharmacokinetics,2004,4(4): 261-284.
    [45]Wiklund I K, Mattsson L A, Lindgren R, et al. Effects of a standardized ginseng extract on quality of life and physiological parameters in symptomatic postmenopausal women:a double-blind, placebo-controlled trial. Swedish Alternative Medicine Group[J]. Int J Clin Pharmacol Res,1999,19:89-99.
    [46]Thommessen B, Laake K. No identifiable effect of ginseng (Gericomplex) as an adjuvant in the treatment of geriatric patients[J]. Aging (Milao),1996,8:417-420.
    [47]Wang L C, Lee T F. Effect of ginseng saponins on exercise performance in non-trained rats[J]. Planta Med,1998,64:130-133.
    [48]Zhu Y, Pettolino F, Mau S L, et al. Immunoactive polysaccharide-rich fractions from Panax notoginseng[J]. Planta Med,2006,72:1193-1199.
    [49]Porsolt R D, Bertin A, Jalfre M. Behavioral despair in mice:a primary screening test for antidepressants[J]. Arch Int Pharmacodyn Ther,1977,229:327-336.
    [50]Sanchez C, Meier E. Behavioral profiles of SSRIs in animal models of depression, anxiety and aggression. Are they all alike [J]? Psychopharmacology(Berl),1997,129:197-205.
    [51]Yoshimura H, Watanabe K, Ogawa N. Psychotropic effects of ginseng saponins on agonistic behavior between resident and intruder mice[J]. Eur J Pharmacol. Biochem Behav,1988,146: 291-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700