牛蒡低聚果糖诱导植物系统抗性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛蒡低聚果糖(Burdock Fructooligosaccharide)是本课题组从耐盐植物牛蒡(Arctium lappa L.)根中提取的一种果糖低聚糖,由12个呋喃型果糖与一个吡喃型葡萄糖组成。本论文以黄瓜为模式植物,对牛蒡低聚果糖诱导植物抗病性进行了系统的研究,从与抗性相关酶活性与内源信号分子的角度阐述了诱导抗性的作用机理,以期为牛蒡低聚果糖作为抗病诱导子的应用提供科学依据。研究结果总结如下。
     1 牛蒡低聚果糖对黄瓜炭疽病的诱抗效果:黄瓜幼苗用5.0mg/mL的牛蒡低聚果糖预先诱导后再接种炭疽病菌,以病斑数计算的抗病效果达到了50.01%,而以病斑面积计算的抗病效果达到了56.83%。这表明牛蒡低聚果糖能有效地诱导黄瓜对炭疽病的抗性。
     2 不同浓度牛蒡低聚果糖对黄瓜幼苗防御酶和β-1,3-葡聚糖酶活性的影响:使用梯度浓度牛蒡低聚果糖(0、1.0、3.0、5.0、7.0、9.0mg/mL)处理黄瓜幼苗4天后,不同的酶的活性变化不同。与抗性呈正相关性的PPO、SOD、POD、β-1,3-葡聚糖酶的活性在诱导后活性上升,与抗性呈负相关性的CAT酶在诱导后活性下降。在设计浓度范围内,不同酶的活性达到最大诱导程度所需牛蒡低聚果糖的浓度不同。PPO酶在7.0mg/mL牛蒡低聚果糖诱导时活性最高,SOD酶在5.0mg/mL牛蒡低聚果糖诱导时活性最高,POD酶在3.0mg/mL牛蒡低聚果糖诱导时活性最高,β-1,3-葡聚糖酶在5.0mg/mL牛蒡低聚果糖诱导时活性最高,CAT酶活性在5.0mg/mL牛蒡低聚果糖诱导时活性达最低。从不同浓度牛蒡低聚果糖对防御酶和β-1,3-葡聚糖酶活性的影响来看,牛蒡低聚果糖诱导黄瓜抗性的最适浓度是3.0~7.0mg/mL。
     3 5.0mg/mL牛蒡低聚果糖诱导后防御酶、β-1,3-葡聚糖酶活性与木质素含量在不同时间的变化:用5.0mg/mL的牛蒡低聚果糖诱导后,PPO酶的活性从第4天开始持续升高,第6天时比同期对照高279.6%;SOD酶的活性在诱导后第1天就开始上升,在第3天到达峰值,比同期对照高117.3%;CAT酶的活性在诱导后第1天稍有上升,但在第2、3天开始降低,分别比同期对照降低23.50%和29.36%,第2天为最低值,在第4、5、6天活性上升,都高于同期对照;POD酶的活性在诱导后即开始持续上升,在第4天到达峰值,比对照高出184.3%;β-1,3-葡聚糖酶
Burdock Fructooligosaccharide is a kind of oligofructose extracted from the roots of salt-tolerant Burdock (Arctium lappa L.) by our group, which consisted of 12 fructofuranose and 1 glucopyranose. In this paper, resistance to plant diseases was systematically studied, which induced by Burdock Fructooligosaccharide in cucumber. And the mechanism of induced resistance was demonstrated through changes of enzymes activity and endogenous signal molecules content. Followsing conclusions can be made from the study.
    1 Resistance effects of cucumber to anthracnose were studied after employing 5.0mg/mL Burdock Fructooligosaccharide on cucumber seedlings. The results show that cucumber seedlings had significant resistance to anthracnose after induced by 5.0mg/mL Burdock Fructooligosaccharide. Compared with the controls, the number of lesions decreased 50.01% in cucumber leaves previously treated with Burdock Fructooligosaccharide after inoculated Colletotrichum lagenarium, at the same time the area of lesions decreased 56.83% in cucumber leaves.
    2 Effects of different concentration Burdock Fructooligosaccharide were studied on activities of defense enzymes and β -1,3-glucanase in cucumber leaves. The results show that the activities of those enzymes positively correlated with disease resistance increased after induced by Burdock Fructooligosaccharide, such as PPO, SOD, POD, β -1,3-glucanase, and the activity of CAT negatively correlated with disease resistance decreased after induced by Burdock Fructooligosaccharide. Different enzymes reached maximum or minimum activities at different concentrations of Burdock Fructooligosaccharide. PPO, SOD, POD, β -1,3-glucanase reached maximum activities at concentrations of 7.0, 5.0, 3.0, 5.0mg/mL Burdock Fructooligosaccharide respectively, and CAT reached minimum activity at concentration of 5.0mg/mL Burdock Fructooligosaccharide. Therefore, the optimum concentration of Burdock Fructooligosaccharide which induce disease resistance of plants is 3.0~7.0mg/mL.
    3 Effects of 5.0mg/mL Burdock Fructooligosaccharide on activities of defense.
引文
Adrian M, Jeandet P, Bessis R, Joubert J M. Induction of phytoalexin (resveratrol) synthesis in grapevine leaves treated with aluminum chloride (AlCl3)[J]. Journal of Agricultural and Food Chemistry, 1996, 44 (8): 1979~1981
    Adrian M, Jeandet P, Bessis R, Joubert J M. Biological activity of resveratrol, a stilbenic compound from grapevine, against BFtrytis cinerea, the causal agent for gray mold[J]. Journal of Chemical Ecology. 1997, 23: 1689~1702
    Al-Barwani F M, Eltayeb E A. Antifungal compounds from induced Conium maculatum L. plants[J]. Biochemical Systematics and Ecology, 2004, 32: 1097~1108
    Alvarez M E, Pennell R I, Meijer P J. et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity[J]. Cell, 1998, 92: 773~784
    Apostol I. Heinstein P F, Low P S. Rapid stimulation of an oxidative burst during eficitation of cultured plant-cells: role in defense and signal transduction[J]. Plant Physiology, 1989, 90: 109~116
    Arlorio M, Ludwing A, BFiler T, et al. Inhibition of fungal growth by plant chitinase and β-1, 3-glucanases[J]. Protoplasma, 1992, 171: 34
    Baker C J, Orlandi E W. Active oxygen in plant pathogenesis[J]. Annual Review of Phytopathology, 1995, 33: 299~321
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72: 248~254
    Bradley D J, et al. Elicitor and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell, 1992, 70: 21~30
    Buonaurio R, Tone G D, Montalbini P. Soluble superoxide dismutase(SOD) in susceptible and resistant host-parasite complex of paseolus vulgaris and uromyces phaseoli[J]. Physiological and Molecular Plant Pathology, 1987, 31: 173~184
    Chamnongpol, S, Willekens H, Moeder W, et al. Defense activation and enhanced pathogen tolerance induced by H_2O_2 in transgenie plants[J]. Proceedings of the National Acadeny of Sciences of the United States of America, 1998, 95(10): 5818~5823
    Chigrin V V, Rozmu L V, Zlaigalkina T E, et al. Hydrolytic enzyme activity in resistant and susceptible wheat varieties following infection with stem rust[J]. Fizologiya Rastenii, 1988, 35(4): 781~787
    Conrath U, Pieterse C M J, Mauch-Mani B. Priming in plant-pathogen interactions[J]. Trends in Plant Science, 2002, 7(5): 210~216
    Desikan R, Reynolds A, Hancock J T, et al. Harpin and hydrogen peroxide BFth initiate programmed cell death but have differential effects on gene expression in Arabidopsis suspension cultures[J]. Biochemical Journal, 1998, 330: 115~120
    Doares S H. Salicylic acid inhibits synthesis of protienase inhibitors in tomato leaves induced by systemin and jasmonic acid[J]. Plant Physiology, 1995, 108: 1741~1746
    Doke N. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components[J]. Physiological Plant Pathology, 1983, 23: 345~357
    Durner J, Shah J, Klessig D F. Salicylic acid and disease resistance in plants[J]. Trends in Plant Science, 1997, 2(7): 266~274
    Esquerre-Tugaye M T, BFudart G, Dumas B. Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens[J]. Plant Physiology and Biochemistry, 2000, 38: 157~163
    Foyer C H, Lopez-Delgado H, Ferrer M A. Hydrogen peroxide and glutathioneassociated mechanisms of acclamatory stress tolerance and signaling[J]. Plant Physiology, 1997,100:241~254
    Garcia P, Solorzano E, Peteira B, et al. Induction of peroxidase and chitinase activity by Alternaria solani in five tomato cultivars with different susceptibility degree to this fungus[J]. Revistade Proteccion Veget al,1998,13(2): 91~95
    Glazener J A, Orlandi E W, Baker J. The active oxygen response of cell suspensions to incompatible bacteria is not sufficient to cause hypersensitive cell death[J]. Plant Physiology, 1996,110:759—763
    
    Gozzo F. Systemic acquired resistance in crop protection: from nature to a chemical approach[J]. Journal of Agricultural Food Chemical,200,51(16):4487—4503
    
    Greenberg J T, Ailan G, Klessig D F, et al. Programmed cell death in plants: A pathogen-triggered response activated coordinately with multiple defense functions[J]. Cell,1994,77:551-563
    
    Guo Z J, Lamb C, Dixon R A. Potentiation of the oxidative burst and isoflavonoid phytoalexin accumulation by serine protease inhibitors[J]. Plant Physiology, 1998,118: 1487-1494
    
    Hammerschmidt R. Induced disease resistahce:how do induced plants stop pathogens[J]? Physiological and Molecular Plant Pathology, 1999,55,77—84
    
    Hennig J. Malamy J. Grynkiewicz G. et al. Interconversion of the salicylic acid signal and its glucoside in tobacco[J]. the Plant Journal,1993,4(4):593—600
    
    Hwang B K, Sunwoo J Y, Kim Y J, et al. Accumulation of b-1,3-glucanase and chitinase isoforms, and salicylic acid in the DL-b-amino-n-butyric acid-induced resistance response of pepper stems to Phytophthora capsici[S]. Physiological and Molecular Plant Pathology, 1997,51:305—322
    
    Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D. Elicitor-stimulated ion fluxes and ·O_2~- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley[J]. Proceedings of the National Acadeny of Sciences of the United States of America, 1997,94:4800—4805
    
    Keppler L D, Novacky A. Changes in cucumber cotyledon membrane lipid fatty acids during paraquat treatment and a bacteria-induced hypersensitive reaction[J]. Phytopathology, 1989,79:705
    
    Kim Y J, Hwang B K. Isolation of a basic 34kD β-1,3-glucanase with inhibitory activity against Phytophthora capsici from pepper stemsfj]. Physiological and Molecular Plant Pathology, 1997,50:103—115
    
    Klarzynski O, Plesse B, Joubert J M, et al. Linear β -1,3-glucans are elicitors of defense responses in tobacco[J]. Plant Physiology,2000,124:1027—1037
    
    Kumar V U , Hindumathy C K, Kini K R, et al. Prior inoculation inducing resistance to downy mildew (Sclerospora graminicola) enhances growth, peroxidase and β-1,3-glucanase activity in pearl millet (Pennisetum glaucum)[J]. Journal of Plant Pathology, 1998,80(3):203 -209
    
    Lamb C, Dixon R A. The oxidative burst in plant disease resistance[J]. Annual Reviews of Plant Physiology and Plant Molecular Biology,1997,48:251—275
    
    Lawrence C B, Joosten M H A, Tuzun S. Differential induction of pathogenesis-related proteins in tomato infected with Alternaria solani and the association of a basic chitinase isozyme with resistance[J]. Physiological and Molecular Plant Pathology, 1996,48(6):361 —377
    
    Lee A, Cho K, Jang S, et al. Inverse correlation between jasmonic acid and salicylic acid during early wound response in rice[J]. Biochemical and Biophysical Research Communications,2004,318:734— 738
    
    Levine A, Pennell R I, Alvarez M E, et al. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response[J]. Current Biology, 1996,6:427—437
    
    Levine A, Tenhaken R, Dixon R, et al. H_2O_2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response[J]. Cell,1994,79(4):583—593
    
    Liu R J, Li H F, Shen C Y. Detection of pathogenesis-related proteins in cotton plants[J]. Physiological and Molecular Plant Pathology, 1995,47:357—363
    
    Martha Orozco-Cardenas, Clarence A. Ryan. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway[J]. Proceedings of the National Acadeny of Sciences of the United States of America,1999,96(11): 6553-6557
    
    Mauch F. Antifungal hydralases in pea tissue I . Purification and characterization of two chitinases and β-1,3-glucanases differentially regulated during development and in response to fungal infection[J]. Plant Physiology,1988,87:325
    
    Mauch F, Antifungal hydralases in pea tissue Ⅱ .Inhibition of fungal growth by combination of chitinase and β-1,3-glucanase[J]. Plant Physiology,1988,88:936
    
    Mittler R, Herr E H, Orvar B L, et al. Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection[J]. Proceedings of the National Acadeny of Sciences of the United States of America, 1999,96 (24): 14165—14170
    
    Montalbini P, Buonaurio R. Effect of tobacco mosaic virus infection on leves of soluble superoxide dismutase(SOD) in Nicotiana tabacum and Nicotiana glutinosa leaves[J]. Plant Science letter, 1986,47:135—143
    
    Nakashita H I , Yasuda M, Nishioka M, et al. Chloroisonicotinamide derivative induces a broad range of disease resistance in rice and tobacco[J]. Plant Cell Phisiology,2002,43(7):823—831
    
    Nakashita H Ⅱ, Yasuda M, Nitta T, et al. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice[J]. The Plant Journal,2003,33:887—898
    
    Penacortes H, Albrecht T, Prat S, et al. Aspirin prevents wounds-induced gene expression in tomato leaves by blocking jasmonic acid biosysthesis[J]. Planta,1993,191:123-128
    
    Peng M, Kuc J. Peroxidase-generated hydrogen peroxide as a source of anti-fungal activity in vitro and on tobacco leaf disks[J]. Phytopathology, 1992,82:696—699
    
    Remus-BFrel W, Menzies J G, Belanger R R. Silicon induces antifungal compounds in powdery mildew-infected wheat [J]. Physiological and Molecular Plant Pathology,2005,66:108—115
    
    Repka V, Tamas L, Fischerova I, Fric F. Identification and partial characterization of beta-1,3-glucanase from virus-infected cucumber cotyledons[J]. Acta Virologica, 1997,41(1):35-9
    
    Reymond P, Farmer E E. Jasmonate and salicylate as global signals for defense gene expression[J]. Current Opinion of Plant Biology,1998,1(5):404-411
    
    Rodrigues F A, Jurick W M, Datnoff L E, et al. Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions[J]. Physiological and Molecular Plant Pathology,2005,66:144—59
    
    Rogers K R, Albert F, Anderson A J. Lipid peroxidation is a consequense of elicitor activity[J]. Plant Physiology,1988,86:547-553
    
    Shirasu K, Nakajima H, Rajasekhar V K, et al. Salicylic acid potentiation of an agonist-dependent gain control amplifying pathogen signals in the activation of defense mechanisms[J]. the Plant Cell,1997,9:261-270
    
    Shulaev V, Leon J, Raskin I. Is salicylic acid a translocated signal of systemic acquired resistance in plants?[J], the Plant Cell,1995,7:1691 —1701
    
    Siegrist J, Orober M, Buchenauer H. B-Aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid[J]. Physiological and Molecular Plant Pathology ,2000,56:95-106
    
    Silverman P, Seskar M, Kanter D, et al. Salicylic acid in rice: biosynthesis, conjugation, and possible role[J]. Plant Physiology,1995,108(2):633-639
    
    Slaymaker D H, Keen N T. Syringolide elicitor-induced oxidative burst and protein phosphorylation in soybean cells, and tentative identification of two affected phosphoproteins[J]. Plant Science,2004,166:387-396
    
    Soylu S. Accumulation of cell-wall BFund phenolic compounds and phytoalexin in Arabidopsis thaliana leaves following inoculation with pathovars of Pseudomonas syringae[J]. Plant Science,2006,170:942-952
    
    Steijl H, Niemann G J, BFon J J. Changes in chemical composition related to fungal infection and induced resistance in carnation and radish investigated by pyrolysis mass spectrometry[J]. Physiological and Molecular Plant Pathology, 1999,55, 297- 311
    
    Stevenson P C, Turner H C, Haware M P. Phytoalexin accumulation in the roots of chickpea (Cicer arietinum L.) seedlings associated with resistance to Fusarium wilt (Fusarium oxysporum f. sp. ciceri)[J]. Physiological and Molecular Plant Pathology,1997,50:167-178
    
    Tenhaken R, Levine A, Brisson L F, et al. Function of the oxidative burst in hypersensitive disease resistance[J]. Proceedings of the National Acadeny of Sciences of the United States of America,1995,92:4158-4163
    
    Verberne M C, Brouwer N, Delbianco F, et al. Method for the extraction of the volatile compound salicylic acid from tobacco leaf material[J]. Phytochemical Analysis,2002,13:45-50
    
    Vernooij B, Friedrich L, Morse A, et al. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction[J], the Plant Cell, 1994,6(7):959~965
    White R F. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco[J]. Virology, 1979,99:410~412
    Wojtaszek P. Oxidative burst: an early plant response to pathogen infection[J]. Biochemistry Journal, 1997, 322: 681~692
    Wu G S, Short B J, Lawrence E B. Disease resistance conferred by expression of a gene encoding H_2O_2-generation glucose oxidase in transgenic potato plants[J], the Plant Cell, 1995, 7: 1357~1368
    Yuan Y J, Li C, Hu Z D, et al. A double oxidative burst for taxol production in suspension cultures of Taxus chinensis var. mairei induced by oligosaccharide from Fusarium oxysprum[J]. Enzyme and Microbial Technology, 2002, 30: 774~778
    Ziegler E, Pontzen R. Specific inhibition of glucan-elicited glyceollin accumulation in soybeans by an extracellular mannan-protein of Phytophthora megasperma fsp. glycinea[J]. Physiological Plant Pathology, 1982, 20: 321~331
    B.B.Buchanan等编,瞿礼嘉等译.植物生物化学与分子生物学[M].北京:科学出版社,2004.690~758
    陈利锋,宋玉立,徐雍皋等.抗感赤霉病小麦品种超氧化物歧化酶和过氧化氢酶的活性比较[J].植物病理学报,1997,27(3):209~213
    程龙军,郭得平.葱蒜类作物中的蒜氨酸酶[J].植物生理学通讯,2001,37(5):471~474
    董金皋,韩建民.植物与病原物互作中的活性氧代谢及其作用[J].沈阳农业大学学报,2000,3 1(5):427~431
    杜良成.稻瘟病诱导的水稻几丁质酶、β-1,3-葡聚糖酶活性及分布[J].植物生理学报,1992,18(1):29~36
    方玉达,刘大钧.转水稻几丁质酶基因烟草植株及其对烟草赤星病(Alternaria alternata)的抗性[J].南京农业大学学报,2000,23(1):5~9
    方允中,郑荣梁.自由基生物学的理论与应用[M].北京:科学出版社,2002.213~232
    古燕翔,王代军.外源诱导物水杨酸对草坪型高羊茅弯孢霉叶斑病抗性影响的研 究[J].中国草地,2003,25(4):56~60
    瓜谷郁三著,谢国生等译.植物逆境生物化学及分子生物学.着重热带薯类[M].北京:中国农业出版社,2004.159~162
    郭桢,胡小平,杨之为等.弱毒菌株尤Ⅱ对小麦条锈病的诱导抗性Ⅰ.诱导抗性的初步观察[J].西北农林科技大学学报(自然科学版),2005,33:22~26
    郝林华,陈靠山,李光友.牛蒡低聚果糖对黄瓜幼苗诱导抗病性的研究[J].高技术通讯,2004,14(9):43~48
    郝林华,陈磊,仲娜等.牛蒡低聚果糖的分离纯化及结构研究[J].高等学校化学学报,2005,26(7):1242~1247
    贺立红,宾金华.高等植物中的多酚氧化酶[J].植物生理学通讯,2001,37(4):340~345
    胡向阳,方建颖,蔡伟明.一氧化氮介导非亲和性激发子诱发水稻悬浮细胞过敏反应[J].科学通报,2003,48(2):157~161
    胡艳霞,孙振钧,孙永明等.蚯蚓粪对黄瓜炭疽病的系统诱导抗性作用[J].应用生态学报,2004,15(8):1358~1362
    蓝海燕,陈正华.葡聚糖酶及其在植物中的发育调节和防卫反应[J].生物技术通报,1998,4:10~15
    李红玉,吴健胜,宋从凤等.水稻IR26悬浮细胞与白叶枯病菌互作的过敏反应现象[J].植物病理学报,1999,29(4):299~303
    李妙,李俊明,裴宝琦.病害对不同抗枯类型棉花品种SOD和POD活性的影响[J].棉花学报,1995,7(1):52~55
    李向东,李怀方,范在丰.寡糖在植物防卫反应中的作用及其信号传导[J].河北农业大学学报,1999,22(1):47~49
    李学文,许玲,张辉等.诱导剂对甜瓜植株几丁质酶和β-1,3-葡聚糖酶活性诱导的研究[J].新疆农业大学学报,2004,27(3):18~21
    林葵,黄祥辉,王隆华等.甜瓜子叶不定芽分化过程中PAL活性和木质素含量变化研究[J].华东师范大学学报,1996,2:92~97
    铃木直治等著,张际中等译.近代植物病理化学[M].上海:上海科学技术出版社,1985.125~126
    刘爱新,董汉松,梁元存.烟草几丁酶β-1,3-葡聚糖酶的抑菌作用[J].微生物学通报,1999,26(1):15~17
    刘爱新等.植物诱导抗病性原理和研究(董汉松主编)[M].北京:科学出版社,1995,160~168
    刘爱新,梁元存,张博等.植物诱导抗病性研究进展[J].山东农业大学学报,1998,29(3):410~414
    刘慧芹,刘慧平,韩巨才等.叶霉病菌毒素对番茄幼苗几种酶的影响[J].山西农业大学学报,2004,24(3):240~242
    刘亚光,徐刚,杨庆凯.大豆叶片内几丁质酶活性的变化与大豆抗灰斑病关系的研究[J].东北农业大学学报,2003,34(2):119~123
    陆家云.植物病害诊断[M].北京:中国农业出版社,1997.7~8
    潘汝谦,黄旭明,古希昕.活性氧清除酶类在黄瓜感染霜霉病过程中的活性变化[J].植物病理学报,1999,29(3):287~288
    宋泽双,江国英,卢迎春等.水杨酸处理导致过氧化氢酶基因mRNA水平的下降[J].科学通报,1998,43(4):422~425
    孙斌,李多川,慈晓燕等.小麦叶片β-1,3-葡聚糖酶的诱导、纯化与抗菌活性[J].植物生理与分子生物学报,2004,30(4):399~404
    王爱国,罗广华,邵从本等.植物的氧代谢及活性氧对细胞的伤害[A].中国科学.院华南植物研究所集刊[C].第5集.北京:科学出版社,1989,11~24
    王宝山.植物生理学[M].北京:科学出版社,2004.140~187
    王海华,曾富华,曹赐生等.硝酸镍对水稻抗白叶枯病的诱导作用[J].湖南农业大学学报,2000,26(2):119~121
    王海华1,曾富华,康健等.几种化学因子对水稻抗白叶枯病诱导作用比较[J].湛江师范学院学报(自然科学版),2000,21(1):46~50
    王红,叶和春,李国凤.诱导子的作用方式及其在植物组织培养中的应用[J].植物学通报,1999,16(1):11~18
    王敬文,薛应龙.植物苯丙氨酸解氨酶的研究-苯丙氨酸解氨酶在抗马铃薯晚疫病中的作用[J].植物生理学报,1982,8(1):35~42
    王曼玲,胡中立,周明全等.植物多酚氧化酶的研究进展[J].植物学通报 2005,22(2):215~222
    王荣富.植物抗寒性指标的种类及应用[J].植物生理学报,16(2):102~108
    王树才,周燮.植物体内的水杨酸[J].生命科学,1999,11:97~100
    王源超,张正光,李俊等.H_2O_2参与棉疫病菌90kD蛋白激发子诱导的烟草过敏反应和系统获得抗性[J].植物生理与分子生物学报,2003,29(3):185~191
    魏颖颖,王风龙,钱玉梅等.烟草和黄瓜花叶病毒互作中过氧化氢酶的动态变化[J].植物病理学报,2005,35(4):359~361
    吴家和,张献龙,罗晓丽等.转几丁质酶和葡聚糖酶基因棉花的获得及其对黄萎病的抗性[J].遗传学报,2004,31(2):183~188
    肖用森.外源水杨酸对杂交稻幼苗抗白叶枯病的效应[J].杂交水稻,1998,13(2):25~28
    谢春艳,宾金华,陈兆平等.多酚氧化酶及其生理功能[J].生物学通报1999,34(6):11~13
    谢世勇,卢同,李本金.苯丙氨酸解氨酶、过氧化物酶与甘薯抗青枯病的关系[J].福建农业学报,2003,18(4):236~238
    邢更妹,李杉,崔凯荣等.抗锈小麦新品系与感病品种甘麦8号的水杨酸含量和相关酶类活性的变化[J].作物学报,2002,28(3):355~358
    杨荣英,赵先华,朱友林.水稻幼苗超氧物歧化酶研究[J]。南昌大学学报,1996,20(4):324~326
    叶正襄.可持续农业与植物保护[A],中国农业可持续发展研究[C].北京:中国农业科技出版社,1997.77~79
    俞孕珍,刘建华,王军利等.水稻免疫育苗的抗性研究[J].植物病理学.报,1997,27(2):119~124
    岳东霞,许长蔼,张要武等.酵母多糖的制备及诱导黄瓜对灰霉病抗性的研究[J].华北农学报,2001,16(3):127~130
    曾富华,易克,徐向丽等.不同诱导处理后水稻悬浮细胞的活性氧变化与有关酶系的关系[J].作物学报,2005,31(1):18~23
    曾永三,王振中.苯丙氨酸解氨酶和过氧化氢酶活性与豇豆抗锈病性的关系[J].仲恺农业技术学院学报,2003,16(1):1~5
    张宏明,蔡以滢,陈珈.Phytophthora pahnivora分泌的10.6kD蛋白激发烟草的过敏反应[J].植物学报,1999,41(11):1183~1186
    张丽娟,杨庆凯,张彩英.大豆感染灰斑病菌后过氧化物酶活性的变化[J].大豆科学,2002,21(3):172~176
    张少英,王俊斌,王海风等.甜菜几丁质酶和β-1,3-葡聚糖酶活性与其对丛根病抗性的关系[J].植物生理与分子生物学学报,2005,31(3):281~286
    张治安,张美善,蔚荣海.植物生理学实验指导[M].北京:中国农业科学技术出版社,2004.132~137
    张志忠,吴菁华,吕柳新等.转番茄几丁质酶基因西瓜植株的获得及其抗病性研究[J].西北植物学报,2005,25(10):1943~1946
    中国科学院上海植物生理研究所,上海植物生理学会编.现代植物生理学实验指南[M].北京:科学出版社,1999.128,317~318(史益敏、赵会杰)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700