牛蒡功能性成分及其抗氧化、抗菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以牛蒡为原料,对牛蒡叶有效成分与牛蒡根菊糖的提取、分离及其活性进行了相关研究。为牛蒡综合深度加工利用提供了科学依据。具体研究内容及结果如下:
     1.牛蒡叶、根有效成分提取分离研究
     采用超声微波协同萃取技术提取多酚成分,发现提取时间、微波功率、料液比、提取次数对多酚提取有显著影响,分析得出了较佳提取条件为:以质量分数为70%的乙醇溶液为溶剂,提取时间30s,微波功率500w,超声波功率50w,料液比1g:20mL,提取次数为2次。在此条件下,多酚平均得率为10.28 mg/g,总提取物平均得率为232.79mg/g (牛蒡叶,干重)。通过扫描电镜观察发现,在超声微波协同萃取过程中,样品的微观结构被明显破坏,从而大大提高了多酚得率,加快了提取速度,取得最高得率所需的提取时间比超声波辅助提取和加热搅拌提取分别缩短了29.5min和5h。因此超声微波协同萃取技术在工业化提取多酚方面具有很大潜力,超声微波协同萃取为植物中多酚化合物的分析与鉴定提供了一种新的样品制备技术。采用超声微波协同萃取技术从牛蒡根中提取菊糖。分析得出了较佳提取条件为:以水为溶剂,提取时间60s,微波功率400w,料液比1g:15mL,菊糖平均得率为99.03 mg/g。结果表明,超声微波协同萃取处理破坏了样品的微观结构,因此与超声波辅助提取、加热搅拌提取相比,取得最高得率的提取时间分别显著缩短了120s与240s,提高了提取效率。
     采用二级超滤对菊糖提取液进行纯化处理,确定了较佳操作条件为:一级超滤膜截留分子量为10KD,超滤压力为0.5MPa,二级超滤膜为0.5KD,超滤压力为1.0MPa。提取液经过两级超滤处理后,制备了高纯度菊糖产品,为白色粉末,纯度达91.3%。将牛蒡叶总提取物依次用石油醚、乙酸乙酯、正丁醇、水分别萃取,得到四个组分,分别命名为PF、EF、BF、WF。乙酸乙酯组分经柱层析预处理后,再通过高速逆流色谱制备了对香豆酸与绿原酸,纯度分别为98.8%与98.3%,并通过UV、ESI-MS、1H-NMR与13C-NMR等波谱分析方法进行了鉴定。
     2.牛蒡叶成分的分析鉴定及5种主要成分同时检测方法的建立
     利用UPLC-MS/MS技术,通过与标准品比较保留时间、紫外光谱、质谱等,并进行分析,鉴定了牛蒡叶的十一种成分。这些化合物是槲皮素、二咖啡酰奎尼酸、苯甲酸、槲皮苷、咖啡酸、木犀草素、绿原酸、水杨酸、对香豆酸、牛蒡子苷、芦丁等。其中,水杨酸、对香豆酸、苯甲酸是在牛蒡叶中首次发现。并建立了同时测定牛蒡叶中五种主要活性成分(绿原酸、苯甲酸、咖啡酸、对香豆酸、芦丁)的HPLC分析方法,色谱条件为:色谱柱Waters symmetry C18;流动相甲醇(A)+ 20mmol/L甲酸水溶液(B),梯度洗脱;流速1mL/min;柱温30℃;检测波长280nm。所建立的方法方便快速,检测限达0.005μg/mL,回收率为95.7-105.8%,精密度为1.58-2.86%。
     3.牛蒡叶功能性成分的抗氧化、抗菌活性
     牛蒡叶总提取物清除DPPH自由基的IC50值为0.9 mg/mL,抑制脂质过氧化的IC50值为0.8 mg/mL;在浓度为2.5 mg/mL时,该提取物的羟自由基清除活性为55.21%,超氧阴离子自由基清除活性为79.80%。在总提取物萃取分级组分中,乙酸乙酯组分(EF)具有最强的抗氧化活性,其清除DPPH自由基、抑制脂质过氧化的的IC50值分别为90.67与133.91μg/mL,EF的抗氧化活性与TBHQ相近,因此EF有望替代合成抗氧化剂。且EF与TBHQ表现为协同增效作用,这为组合抗氧化剂的使用提供了基础。
     牛蒡叶总提取物对六种食品相关细菌(大肠杆菌、痢疾志贺氏菌、鼠伤寒沙门氏菌、枯草芽孢杆菌、肺炎链球菌、金黄色葡萄球菌)具有抑制活性,最低抑菌浓度(MIC)为1.5-2.5mg/mL;对三种真菌(黑曲霉、酿酒酵母、扩展青霉)的抑制效果不明显。探讨了牛蒡叶总提取物的萃取分级组分对6种食品相关菌的抑制情况。结果表明,乙酸乙酯组分(EF)能够抑制全部受试菌,EF的抗菌活性最强,其MIC为88-352μg/mL。杀菌试验表明,经过12h,在浓度为1×MIC,3×MIC和5×MIC时,EF能够杀灭4/6,6/6和6/6的受试菌。所以,EF是一种有效的天然杀菌剂资源。从牛蒡叶中纯化得到的对香豆酸的抗菌活性比绿原酸强,对香豆酸对肺炎链球菌、金黄色葡萄球菌、枯草芽孢杆菌、痢疾志贺氏菌、鼠伤寒沙门氏菌、大肠杆菌的MIC分别为:20、10、20、20、20、80μg/mL。通过经口急性毒性初步试验测定得出EF的LD50>10000mg/kg,属于实际无毒级。对于各个组分,抗氧化、抗菌活性与其多酚含量密切相关(R=0.86 ~0.99)。因此组分的抗菌、抗氧化活性主要是绿原酸、对香豆酸、芦丁、咖啡酸、水杨酸等多酚化合物共同作用的结果。
     4.对香豆酸、绿原酸的抗菌机理
     在多酚化合物绿原酸、对香豆酸作用下,都引起了痢疾志贺氏菌细胞膜通透性增大,导致了明显的胞内离子泄露及电导率的增大。流式细胞仪的分析表明,经过绿原酸或对香豆酸作用后,都导致了细菌细胞膜破裂。透射电镜实验结果直观的表明,对香豆酸、绿原酸都能导致细胞膜破裂或孔洞形成,导致细菌细胞内容物外泄,最终导致痢疾志贺氏菌死亡。
     对香豆酸、绿原酸进入细菌细胞后,其作用靶标是DNA。琼脂糖凝胶电泳、荧光光谱分析表明,对香豆酸或绿原酸都不能断裂细菌基因组DNA,而是结合DNA。圆二色谱表明对香豆酸、绿原酸结合到DNA的链上以后,使其双螺旋结构变得松散,并造成了细菌DNA构象的改变。从而改变了细菌的各种生理功能,最终导致细菌死亡。
Burdock (Arctium lappa L.) is a popular vegetable in China and Japan, exhibiting various biochemical activities. The extraction, separation, activities of the active components in burdock leaves and the inulin in burdock root were studied. The present study could provide help for the deep development of burdock and its application in food industry.
     1. The extraction and separation of active components from burdock leaves and burdock roots
     The simultaneous ultrasonic and microwave assisted extraction (UMAE) technique was employed to obtain phenolics. The effects of UMAE variables on the yield of phenolics were investigated. The optimized conditions were as follows: solvent to solid ratio was 20:1 (mL/g), extraction time was 30s, microwave power was 500 W and two times of extraction. Moreover, the phenolic yield of UMAE (10.28mg/g) was higher than that by maceration extraction (ME) and ultrasonic extraction, indicating a significant reduction of extraction time and an improvement of efficiency. The phenomenon is related to the strong disruption of leaf tissue structure by microwave induced expansion and ultrasonic shaking, which had been observed with the scanning electron microscopy. The results suggest that UMAE is a good alternative for the extraction of phenolics, with a great potential for industrial application. Also, UMAE provides a new sample preparation technique for characterization of the phenolic compounds from plants. The inulin from burdock root was extracted by simultaneous ultrasonic/ microwave assisted extraction (UMAE). It was found that UMAE required a much shorter extraction time than conventional stirring extraction. The suitable condition for UMAE of inulin was under a simultaneous ultrasonic power of 50w and a microwave power of 400w, at a ratio of 1g of solid material to 15mL of water for an extraction time of 60s. A comparison of scanning electron microscopy images of raw and simultaneous ultrasonic/microwave treated burdock roots indicated microfractures and disruption of cell walls in burdock root flakes.
     After ultrafiltration, the purified inulin product was obtained, and the purity of inulin product was 91.3%. The burdock leaves extract was fractioned with petroleum ether, ethyl acetate, n-butanol and water, named as PF, EF, BF and WF. After activity-guide fractionation, separation by column chromatogram and high-speed counter-current chromatography, two purified active compounds (chlorogenic acid, p-coumaric acid) were obtained from EF. The compounds were then identified by UV、ESI-MS、1HNMR and 13CNMR.
     2. Identification of the compounds and development of a method for the determination of five compounds in burdock leaves
     The compositions of burdock leaves were then identified by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The composition was identified based on retention time, UV and MS spectra compared with those of authentic compounds or literature data, and 11 compounds were characterized, providing a more complete identification of phenolic compounds in burdock leaves than previously reported. The compounds were quercetin, cynarin, o-hydrobenzoic acid, benzoic acid, quercitrin, caffeic acid, luteolin, chlorogenic acid, p-coumaric acid, arctiin and rutin. The occurrence of benzoic acid, o-hydrobenzoic acid and p-coumaric acid is reported for the first time. By optimizing the extraction, separation and analytical conditions, a sensitive and accurate high performance liquid chromatographic method has been developed for the simultaneous determination of five active compounds (benzoic acid, caffeic acid, chlorogenic acid, p-coumaric acid and rutin) in burdock leaves. The analysis was performed on a Waters symmetry C18 column at 30℃using 20mmol/L aqueous formic acid solution/methanol gradient system at a flow rate of 1.0mL·min-1 and photodiode array detection (PDA) at wavelength of 280 nm. The method showed good linearity and satisfactory accuracy and recoveries.
     3. The antimicrobial and antioxidant activities of active components from burdock leaves
     The burdock leaf extract exhibited high lipid peroxidation inhibition activity, DPPH radical, hydroxyl and superoxide anion radicals scavenging ability. The antioxidant activities of each burdock leaves fraction were investigated alone and in combination with tertiary butylhydroquinone (TBHQ). The EF exhibited the highest antioxidant activity. Although TBHQ exhibited higher lipid peroxidation inhibitory activity than EF, the reducing power, superoxide anion scavenging capability, DPPH and hydroxyl radicals scavenging ability of EF were higher than those of synthetic antioxidant (TBHQ). Moreover, a synergistic antioxidant effect between EF and TBHQ was first demonstrated by isobolographic analysis, indicating that EF dramatically enhances the antioxidant efficiency of TBHQ. The results indicate that the EF could be used as sources of nature antioxidant in food industry, and allows a decrease of about 4 folds in the amounts of the synthetic compounds used. The extract of burdock leaves was tested for its antimicrobial potential against three Gram-positive (streptococcus pneumoniae, bacillus subtilis, Staphylococcus aureus), three Gram-negative bacteria (Shigella dysenteriae, Escherichia coli, salmonella typhimurium) and three kinds of fungi (Aspergillus niger, saccharomyces cerevisiae, penicillium). The extract could not significantly inhibit the growth of fungi. But, the extract was effective against both Gram-positive and Gram-negative bacteria. The MIC values ranged from 1.5 to 2.5 mg/mL. The antibacterial activities of burdock leaves fractions against six food-related bacteria were first investigated. The data from minimum inhibitory concentration (MIC) values showed that EF and other fractions effectively inhibited the growth of all test bacterial pathogens, the antibacterial activity of EF being much greater than BF and WF. The time-kill assay indicated that EF exhibited significant bactericidal activity against all the six pathogens. At 12 h, EF was bactericidal for 4/6, 6/6 and 6/6 strains at 1×MIC, 3×MIC and 5×MIC, respectively. The ethyl acetate fraction based on its lower MIC values, concentration and time-dependent antibacterial ?and bactericidal activities could be useful in control of bacterial pathogens. The antibacterial activities of chlorogenic acid, p-coumaric acid, rutin and benzoic acid against six food-related bacteria were investigated. The antibacterial activity of p-coumaric acid was higher than other conpounds. The MIC values of p-coumaric acid against streptococcus pneumoniae, Staphylococcus aureus, bacillus subtilis, Shigella dysenteriae, Escherichia coli and salmonella typhimurium were 20, 10, 20, 20, 20 and 80μg/mL, respectively. The oral acute toxicity test indicated that the LD50 of EF was beyond 10000mg/kg, and EF was actually non-toxic. For all the fractions, the antioxidant and capacity had a significant correlation with total phenolic content. The antibacterial ability also had a significant correlation with total phenolic content, suggesting that the activities were probably due to the combined action of phenolic compounds. The phenolic compounds of the fractions were then identified. Among them the contents of chlorogenic acid, o-hydrobenzoic acid, p-coumaric acid and rutin were high.
     4. The antibacterial mechanism of chlorogenic acid and p-coumaric acid
     Chlorogenic acid and p-coumaric acid could increase the membrane permeabilization of G- bacteria, causing the ion leakage. The treatment of Shigella dysenteriae cells with phenolic compounds induced a major influx of PI, demonstrating that the phenolic compounds executed their antibacterial effects via binding to the surface of the cells, followed by the formation of membrane pores. Also, it was supported by the observations made under transmission electron microscopy. Taken together, the antibacterial activity of chlorogenic acid and p-coumaric acid was concluded to result from the disintegration of the cell membrane.
     The nucleic acid was the action target of two phenolic compounds after penetrating the Shigella dysenteriae cells. They didn’t breakdown the genomic DNA, but strongly binding to DNA. The results of fluorescence quenching experiments and circular dichroism indicated that chlorogenic acid and p-coumaric acid could bind to bacterial genomic DNA, change its conformation, and loosen the double helix of DNA. Both phenolic compounds binding to DNA influenced the function of gene. The results demonstrated that chlorogenic acid and p-coumaric acid have dual bactericidal mechanisms: disrupting bacterial cell membranes and binding to bacterial genomic DNA to inhibit cellular functions, ultimately leading to cell death.
引文
[1] Chen F.-A., Wu A.-B., Chen C.-Y. The influence of different treatments on the free radical scavenging activity of burdock and variations of its active components[J]. Food Chemistry, 2004, 86: 479-484.
    [2] Wang B.-S., Yen G.-C., Chang L.-W., et al. Protective effects of burdock (Arctium lappa Linne) on oxidation of low-density lipoprotein and oxidative stress in RAW 264.7 macrophages[J]. Food Chemistry, 2007, 101: 729-738.
    [3] Ebata J., Kikuchi M., Suginaga K., et al. Antimutagenic and active oxygen-scavenging activities of great burdock root[J]. Mutation Research/Environmental Mutagenesis and Related Subjects, 1991, 253: 244-244.
    [4] Ferracane R., Graziani G., Gallo M., et al. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves[J]. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51: 399-404.
    [5]郝林华,陈靠山,李光友.牛蒡菊糖及其制备方法的研究[J].中国海洋大学学报(自然科学版), 2004, 34(3): 423-428
    [6] Maruta Y., Kawabata J., Niki R. Antioxidative caffeoylquinic acid derivatives in the roots of burdock (Arctium lappa L.) [J]. Journal of Agricultural and Food Chemistry, 1995, 43: 2592-2595.
    [7]刘世名,董国霞,陈靠山.牛蒡叶中绿原酸的提取工艺优化[J].中国药学杂志, 2003, 38(9): 650-661.
    [8] Li H., Liu Y., Zhang Z., et al. Separation and purification of chlorogenic acid by molecularly imprinted polymer monolithic stationary phase[J]. Journal of Chromatography A, 2005, 1098: 66-74.
    [9]王学堂.牛蒡开发技术简介[J].食品工业, 2003, (2): 51-52.
    [10]罗巅辉,王昭晶.均匀设计法优化微波辅助提取牛蒡菊糖工艺[J].福建农林大学学报(自然科学版), 2006, 35(3): 329-332.
    [11]林学政,柳春燕,陈靠山,等.不同地域牛蒡叶绿原酸的含量比较及其抑菌实验[J].天然产物研究与开发, 2004, 16(4): 328-330
    [12]任常胜,朱庆玲.牛蒡子的研究概况[J].中国民族医药杂志, 2003, (12): 36-29.
    [13] Han J.-S., Cheigh M.-J., Kim S.-J., et al. A Study on Wooung (burdock, Arctium lappa, L) kimchi changes in chemical, microbial, sensory characteristics and volatile flavor components in wooung kimchi during fermentation[J]. Journal of Food Science and Nutrition, 1996, 1: 30-36.
    [14] Umehara K., Nakamura M., Miyase T.Studies on differentiation inducers .6. Lignan derivatives from Arctium Fructus .2[J]. Chemical & Pharmaceutical Bulletin, 1996, 44: 2300-2304.
    [15]罗永明,李诒光,李斌.几种辛味中药的化学成分分析[J].江西中医学院学报, 1999, 11(2): 80-81
    [16]刘军海,崔庆新,程霜.牛蒡籽油理化特性及脂肪酸组成的研究[J].中国油脂, 2000,25(2): 51-53.
    [17]王程田,张学杰,李法曾,等.牛蒡籽油中脂肪酸成分的气相色谱质谱联用分析[J].植物资源与环境学报, 2002, 11(4): 58-59
    [18] Lou Z., Wang H., Wang D., et al. Preparation of inulin and phenols-rich dietary fibre powder from burdock root[J]. Carbohydrate Polymers, 2009, 78: 666-671.
    [19] Lingyun W., Jianhua W., Xiaodong Z., et al. Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers[J]. Journal of Food Engineering, 2007, 79: 1087-1093.
    [20] Hoang T.H., Sharma R., Susanto D., et al. Microwave-assisted extraction of active pharmaceutical ingredient from solid dosage forms[J]. Journal of Chromatography A, 2007, 1156: 149-153.
    [21] Ring A.S., Waniska R.D., Rooney L.W. Phenolic compounds in different sorghum tissues during maturation[J]. Biomass, 1988, 17: 39-49.
    [22] Goli A.H., Barzegar M., Sahari M.A., Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts[J]. Food Chemistry, 2005, 92: 521-525.
    [23] Romano C.S., Abadi K., Repetto V.,et al.Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives[J]. Food Chemistry, 2009, 115: 456-461.
    [24] Alothman M., Bhat R., Karim A.A. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents[J]. Food Chemistry, 2009, 115: 785-788.
    [25] Al-Farsi M.A., Lee C.Y. Optimization of phenolics and dietary fibre extraction from date seeds[J]. Food Chemistry, 2008, 108: 977-985.
    [26] Eskilsson C.S. Analytical-scale microwave-assisted extraction [J]. Journal of Chromatography A, 2000, 902: 227-250.
    [27] Yang C., He N., Ling X., et al. The isolation and characterization of polysaccharides from longan pulp[J]. Separation and Purification Technology, 2008, 63: 226-230.
    [28] Xiao X., Guo Z., Deng J. Separation and purification of isofraxidin from Sarcandra glabra by microwave-assisted extraction coupled with HSCCC[J]. Separation and Purification Technology, 2009, 68: 250-254.
    [29] Liazid A., Palma M., Brigui J., et al. Investigation on phenolic compounds stability during microwave-assisted extraction[J]. Journal of Chromatography A , 2007, 1140: 29-34.
    [30] Yang B., Zhao M., Shi J., et al. Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp[J]. Food Chemistry, 2008, 106: 685-690.
    [31] Li J., Guo S., Li X. Degradation kinetics of polystyrene and EPDM melts under ultrasonic irradiation[J]. Polymer Degradation and Stability, 2005, 89: 6-14.
    [32] Lianfu Z., Zelong L. Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes[J].Ultrasonics Sonochemistry, 2008, 15: 731-737.
    [33] Fairbanks H.V. Drying powdered coal with the aid of ultrasound[J]. Powder Technology, 1984, 40: 257-264.
    [34] Hemwimol S., Pavasant P., Shotipruk A. Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia[J]. Ultrasonics Sonochemistry, 2006, 13: 543-548.
    [35] Li H., Pordesimo L., Weiss J. High intensity ultrasound-assisted extraction of oil from soybeans[J]. Food Research International, 2004, 37: 731-738.
    [36] Mason T.J., Paniwnyk L., Lorimer J.P. The uses of ultrasound in food technology[J]. Ultrasonics Sonochemistry, 1996, 3: S253-S260.
    [37] Paniwnyk L., Beaufoy E., Lorimer J.P., et al. The extraction of rutin from flower buds of Sophora japonica[J]. Ultrasonics Sonochemistry, 2001,8: 299-301.
    [38] Jadhav D., B.N R., Gogate P.R., et al. Extraction of vanillin from vanilla pods: A comparison study of conventional soxhlet and ultrasound assisted extraction[J]. Journal of Food Engineering, 2009,93: 421-426.
    [39] Jiao Y., Zuo Y.G. Ultrasonic Extraction and HPLC Determination of Anthraquinones, Aloe-emodine, Emodine, Rheine, Chrysophanol and Physcione, in Roots of Polygoni multiflori[J]. Phytochemical Analysis, 2009,20: 272-278.
    [40] Gaur R., Sharma A., Khare S.K., et al. A novel process for extraction of edible oils: Enzyme assisted three phase partitioning (EATPP) [J]. Bioresource Technology, 2007,98: 696-699.
    [41] Jung S., Maurer D., Johnson L.A. Factors affecting emulsion stability and quality of oil recovered from enzyme-assisted aqueous extraction of soybeans[J].Bioresource Technology,2009,100: 5340-5347.
    [42] Shen L., Wang X., Wang Z., et al. Studies on tea protein extraction using alkaline and enzyme methods[J]. Food Chemistry, 2008,107: 929-938.
    [43] Pinelo M., Zornoza B., Meyer A.S. Selective release of phenols from apple skin: Mass transfer kinetics during solvent and enzyme-assisted extraction[J]. Separation and Purification Technology,2008, 63: 620-627.
    [44] Li B.B., Smith B., Hossain M.M. Extraction of phenolics from citrus peels: II. Enzyme-assisted extraction method[J]. Separation and Purification Technology, 2006,48: 189-196.
    [45] Zu Y., Wang Y., Fu Y., et al. Enzyme-assisted extraction of paclitaxel and related taxanes from needles of Taxus chinensis[J]. Separation and Purification Technology, 2009,68: 238-243.
    [46] Herrero M., Plaza M., Cifuentes A. Green processes for the extraction of bioactives from Rosemary: Chemical and functional characterization via ultra-performance liquid chromatography-tandem mass spectrometry and in-vitro assays[J]. Journal of Chromatography A In Press, Corrected Proof.
    [47] Vatai T., Skerget M., Knez Z. Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide[J]. Journal of Food Engineering, 2009, 90: 246-254.
    [48] Chen J.-L., Liu C.-Y. Optimization of preconcentration and isolation for the determination of 15 phenols by supercritical-fluid extraction and gas chromatography with metallomesogenic stationary phase[J]. Analytica Chimica Acta, 2005, 528: 83-88.
    [49] Persson P., Barisic Z., Cohen A., et al. Countercurrent supercritical fluid extraction of phenolic compounds from aqueous matrices[J]. Analytica Chimica Acta, 2002,460: 1-12.
    [50] Klejdus B., Kopeck J., Benesov L.,et al. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species[J]. Journal of Chromatography A, 2009,1216: 763-771.
    [51]束鲁燕,汤一.茶多酚提取和纯化技术研究进展[J].茶叶,2009,35(2):74-79.
    [52] Kil H.Y., Seong E.S., Ghimire B.K., et al. Antioxidant and antimicrobial activities of crude sorghum extract[J]. Food Chemistry, 2009,115: 1234-1239.
    [53] LeBlanc B.W., Davis O.K., Boue S., et al. Antioxidant activity of Sonoran Desert bee pollen[J]. Food Chemistry, 2009,115: 1299-1305.
    [54] Marghitas L.A., Stanciu O.G., Dezmirean D.S., et al. In vitro antioxidant capacity of honeybee-collected pollen of selected floral origin harvested from Romania[J]. Food Chemistry, 2009,115: 878-883.
    [55] Sun Y.-P., Chou C.-C., Yu R.-C. Antioxidant activity of lactic-fermented Chinese cabbage[J]. Food Chemistry, 2009,115: 912-917.
    [56] Li J., Zhang M., Zheng T. The in vitro antioxidant activity of lotus germ oil from supercritical fluid carbon dioxide extraction[J]. Food Chemistry, 2009,115: 939-944.
    [57] Pasko P., Barton H., Zagrodzki P., et al. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth[J]. Food Chemistry, 2009, 115: 994-998.
    [58] Ma C., Tao G., JianTang, et al. Preparative separation and purification of rosavin in Rhodiola rosea by macroporous adsorption resins[J]. Separation and Purification Technology, 2009,69: 22-28.
    [59] Wei D., Li Z., Wang G., Y et al. Separation and Purification of Natural Pyrethrins by Reversed Phase High Performance Liquid Chromatography[J]. Chinese Journal of Analytical Chemistry, 2006,34: 1776-1779.
    [60] Liu S., Chen K., Schliemann W., et al. Isolation and identification of arctiin and arctigenin in leaves of burdock (Arctium lappa L.) by polyamide column chromatography in combination with HPLC-ESI/MS[J]. Phytochemical Analysis, 2005, 16: 86-89.
    [61] Ma C.Y., Tang J., Wang H.X., et al. Preparative purification of salidroside from Rhodiola rosea by two-step adsorption chromatography on resins[J]. Journal of Separation Science, 2009,32: 185-191.
    [62] Wang X., Liu J., Zhang T., et al. Rapid and Simple Method for Quality Control of Raw Materials of Herbs by HSCCC[J]. Journal of Liquid Chromatography & Related Technologies, 2007, 30: 2585-2592.
    [63] Wang X., Li F., Sun Q., et al. Application of preparative high-speed counter-current chromatography for separation and purification of arctiin from Fructus Arctii[J]. Journal of Chromatography A, 2005,1063: 247-251.
    [64] Chen L., Zhang Q., Yang G., et al. Rapid purification and scale-up of honokiol and magnolol using high-capacity high-speed counter-current chromatography[J]. Journal of Chromatography A, 2007,1142: 115-122.
    [65] Mousavinejad G., Emam-Djomeh Z., Rezaei K., et al. Identification and quantification of phenolic compounds and their effects on antioxidant activity in pomegranate juices of eight Iranian cultivars [J]. Food Chemistry, 2009,115: 1274-1278.
    [66] Aguete E.C. HPLC and HPCE analysis of microcystins RR, LR and YR present in cyanobacteria and water by using immunoaffinity extraction[J]. Talanta, 2003, 59: 697-705.
    [67] Siluveru M., Stewart J.T. HPCE determination of R(+) and S(-) mepivacaine in human serum using a derivatized cyclodextrin and ultraviolet detection[J]. Journal of Pharmaceutical and Biomedical Analysis, 1997, 15: 1751-1756.
    [68] Bonoli M., Pelillo M., Toschi T.G., et al. Analysis of green tea catechins: comparative study between HPLC and HPCE[J]. Food Chemistry, 2003, 81: 631-638.
    [69] Krizman M., Baricevic D., Prosek M. Determination of phenolic compounds in fennel by HPLC and HPLC-MS using a monolithic reversed-phase column[J]. Journal of Pharmaceutical and Biomedical Analysis, 2007,43: 481-485.
    [70] Wang C.-H., Cheng X.-M., He Y.-Q., et al. Simultaneous Determination of Danshensu and Puerarin in Rat Plasma by LC-MS-MS and Its Application to a Pharmacokinetics and Bioequivalence Study after Oral Administration of Tongmai Dripping Pill and Tongmai Oral Solutions[J]. Chromatographia, 2009,70: 95-102.
    [71] Kondo Y., Miyazawa T., Mizutani J. Detection and time-course analysis of phospholipid hydroperoxide in soybean seedlings after treatment with fungal elicitor, by chemiluminescence-HPLC assay[J]. Biochimica et Biophysica Acta (BBA), 1992,1127: 227-232.
    [72] Zhang J.-R., Cazers A.R., Lutzke B.S., et al. HPLC-chemiluminescence and thermospray LC/MS study of hydroperoxides generated from phosphatidylcholine[J]. Free Radical Biology and Medicine, 1995,18: 1-10.
    [73] Furiga A., Lonvaud-Funel A., Badet C. In vitro study of antioxidant capacity and antibacterial activity on oral anaerobes of a grape seed extract[J]. Food Chemistry, 2009, 113: 1037-1040.
    [74]李叶,唐浩国,刘建学,黄酮类化合物抑菌作用的研究进展[J].农产品加工(学刊),2008,(12):53-56.
    [75]殷彩霞,谢家敏,张更,易洪荣,茶多酚抑菌抗氧性能研究[J].云南化工, 1999, (2):24-26.
    [76]韩淑琴,杨洋,黄涛,聂静然,史德芳,仙人掌提取物的抑菌机理[J].食品科技,2007,(3):130-134.
    [77] Ulanowska K., Tkaczyk A., Konopa G., et al. Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains[J]. Archives of Microbiology, 2006,184: 271-278.
    [78] Zhao G.-R., Zhang H.-M., Ye T.-X., et al. Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B[J]. Food and Chemical Toxicology, 2008, 46: 73-81.
    [79] Esmaeili M.A., Sonboli A. Antioxidant, free radical scavenging activities of Salvia brachyantha and its protective effect against oxidative cardiac cell injury[J]. Food and Chemical Toxicology, 2009 48: 846-853.
    [80] Balasundram N., Sundram K., Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses[J]. Food Chemistry, 2006, 99: 191-203.
    [81] Nair S.C., Panikkar B., Akamanchi K.G., et al. Inhibitory effects of Ixora javanica extract on skin chemical carcinogenesis in mice and its antitumour activity[J]. Cancer Letters, 1991, 60: 253-258.
    [82] Ming D.S., Guns E., Eberding A., et al. Isolation and Characterization of Compounds with Anti-prostate Cancer Activity from Arctium lappa L. Using Bioactivity-guided Fractionation[J]. Pharmaceutical Biology, 2004, 42: 44-48.
    [83] Han Y.-Q., Huang Z.-M., Yang X.-B., et al. In vivo and in vitro anti-hepatitis B virus activity of total phenolics from Oenanthe javanica[J]. Journal of Ethnopharmacology, 2008, 118: 148-153.
    [84] Lin C.-W., Tsai F.-J., Tsai C.-H., et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds[J]. Antiviral Research, 2005, 68: 36-42.
    [85] Shetty K. Role of proline-linked pentose phosphate pathway in biosynthesis of plant phenolics for functional food and environmental applications: a review[J]. Process Biochemistry, 2004, 39: 789-804.
    [86] Berrougui H., Cloutier M., Isabelle M., et al. Phenolic-extract from argan oil (Argania spinosa L.) inhibits human low-density lipoprotein (LDL) oxidation and enhances cholesterol efflux from human THP-1 macrophages[J]. Atherosclerosis, 2006, 184: 389-396.
    [87] Cirico T.L., Omaye S.T. Additive or synergetic effects of phenolic compounds on human low density lipoprotein oxidation[J]. Food and Chemical Toxicology, 2006, 44: 510-516.
    [88] Shimoi K., Masuda S., Shen B., et al. Radioprotective effects of antioxidative plant flavonoids in mice[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 350: 153-161.
    [89] Subhasree B., Baskar R., Laxmi Keerthana R., et al. Evaluation of antioxidant potential in selected green leafy vegetables[J]. Food Chemistry, 2009, 115: 1213-1220.
    [90] Cheung L.M., Cheung P.C.K., Ooi V.E.C. Antioxidant activity and total phenolics of edible mushroom extracts[J]. Food Chemistry, 2003, 81: 249-255.
    [91] Ismail A., Marjan Z.M., Foong C.W. Total antioxidant activity and phenolic content in selected vegetables[J]. Food Chemistry, 2004, 87: 581-586.
    [92] Surveswaran S., Cai Y.-Z., Corke H., et al. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants[J]. Food Chemistry, 2007, 102: 938-953.
    [1] LeBlanc B.W., Davis O.K., Boue S., et al. Antioxidant activity of Sonoran Desert bee pollen[J]. Food Chemistry, 2009,115: 1299-1305.
    [2] Subhasree B., Baskar R., Laxmi Keerthana R., et al. Evaluation of antioxidant potential in selected green leafy vegetables[J]. Food Chemistry, 2009, 115: 1213-1220.
    [3] Marghitas L.A., Stanciu O.G., Dezmirean D.S., et al. In vitro antioxidant capacity of honeybee-collected pollen of selected floral origin harvested from Romania[J]. Food Chemistry, 2009, 115: 878-883.
    [4] Roberfroid M., Gibson G.R., Delzenne N. The Biochemistry of Oligofructose, a Nondigestible Fiber: An Approach to Calculate Its Caloric Value[J]. Nutrition Reviews, 1993, 51:137-146.
    [5] Lingyun W., Jianhua W., Xiaodong Z., et al. Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers[J]. Journal of Food Engineering, 2007, 79: 1087-1093.
    [6] Niness K.R. Inulin and oligofructose: What are they? [J]. Journal of Nutrition,1999, 129:1402-1406.
    [7] Saunders J.A., Blume D.E. Quantitation of major tobacco alkaloids by high-performance liquid chromatography[J]. Journal of Chromatography A, 1981, 205: 147-154.
    [8] Li B.B., Smith B., Hossain M.M. Extraction of phenolics from citrus peels: II. Enzyme-assisted extraction method[J]. Separation and Purification Technology, 2006, 48: 189-196.
    [9] Pan X., Niu G., Liu H. Comparison of microwave-assisted extraction and conventional extraction techniques for the extraction of tanshinones from Salvia miltiorrhiza bunge[J]. Biochemical EngineeringJournal,2002, 12: 71-77.
    [10] Zuo Y., Zhang L., Wu J., et al. Ultrasonic extraction and capillary gas chromatography determination of nicotine in pharmaceutical formulations[J]. Analytica Chimica Acta, 2004, 526: 35-39.
    [11] Zuo Y.G., Zhang K., Wu J.P., et al. An accurate and nondestructive GC method for determination of cocaine on US paper currency[J]. Journal of Separation Science, 2008, 31: 2444-2450.
    [12] Jiao Y., Zuo Y.G. Ultrasonic Extraction and HPLC Determination of Anthraquinones, Aloe-emodine, Emodine, Rheine, Chrysophanol and Physcione, in Roots of Polygoni multiflori[J]. Phytochemical Analysis, 2009, 20: 272-278.
    [13] Xiao X., Guo Z., Deng J., et al. Separation and purification of isofraxidin from Sarcandra glabra by microwave-assisted extraction coupled with high-speed counter-current chromatography[J]. Separation and Purification Technology, 2009, 68: 250-254.
    [14] Hoang T.H., Sharma R., Susanto D., et al. Microwave-assisted extraction of active pharmaceutical ingredient from solid dosage forms[J]. Journal of Chromatography A, 2007, 1156: 149-153.
    [15] Wang X., Liu J., Zhang T., et al. Rapid and Simple Method for Quality Control of Raw Materials of Herbs by HSCCC[J]. Journal of Liquid Chromatography & Related Technologies, 2007, 30: 2585-2592.
    [16] Wang X., Li F., Sun Q., et al. Application of preparative high-speed counter-current chromatography for separation and purification of arctiin from Fructus Arctii[J]. Journal of Chromatography, A, 2005, 1063: 247-251.
    [17] Huang L., Cao Y., Chen G. Purification of quercetin in Anoectochilu roxburghii (wall) Lindl using UMAE by high-speed counter-current chromatography and subsequent structure identification[J]. Separation and Purification Technology, 2008, 64: 101-107.
    [18] Yang C., Li D., Wan X. Combination of HSCCC and Sephadex LH-20 methods: An approach to isolation and purification of the main individual theaflavins from black tea[J]. Journal of Chromatography B, 2008, 861: 140-144.
    [19] Jerz G., Skotzki T., Fiege K., et al. Separation of betalains from berries of Phytolacca americana by ion-pair high-speed counter-current chromatography[J].Journal of Chromatography A, 2008,1190: 63-73.
    [20] Gutzeit D., Winterhalter P., Jerz G. Application of preparative high-speed counter-current chromatography/electrospray ionization mass spectrometry for a fast screening and fractionation of polyphenols[J]. Journal of Chromatography A, 2007, 1172: 40-46.
    [21] Chen L., Zhang Q., Yang G., et al.Rapid purification and scale-up of honokiol and magnolol using high-capacity high-speed counter-current chromatography[J]. Journal of Chromatography A, 2007, 1142: 115-122.
    [22] Yoo K.M., Lee K.W., Park J.B., et al. Variation in major antioxidants and total antioxidant activity of yuzu (Citrus junos Sieb ex Tanaka) during maturation and between cultivars[J]. Journal of Agricultural and Food Chemistry, 2004, 52: 5907-5913.
    [23] Navarini L., Gilli R., Gombac V., et al. Polysaccharides from hot water extracts of roasted Coffea arabica beans: isolation and characterization[J]. Carbohydrate Polymers, 1999, 40: 71-81.
    [24] DuBois M., Gilles K.A., Hamilton J.K., et al. Colorimetric Method for Determination of Sugars and Related Substances[J]. Analytical Chemistry, 1956, 28: 350-356.
    [25] Miller G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar[J]. AnalyticalChemistry, 2002, 31: 426-428.
    [26] Yang C., He N., Ling X., et al. The isolation and characterization of polysaccharides from longan pulp[J]. Separation and Purification Technology, 2008, 63: 226-230.
    [27] Jayaprakasha G.K., Girennavar B., Patil B.S., Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems[J]. Bioresource Technology, 2008, 99: 4484-4494.
    [28] Eskilsson C.S., Bjorklund E. Analytical-scale microwave-assisted extraction[J]. Journal of Chromatography A, 2000, 902: 227-250.
    [29] Yang B., Zhao M., Shi J., et al. Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp[J]. Food Chemistry, 2008, 106: 685-690.
    [30] Jin U.-H., Lee J.-Y., Kang S.-K., et al. A phenolic compound, 5-caffeoylquinic acid (chlorogenic acid), is a new type and strong matrix metalloproteinase-9 inhibitor: Isolation and identification from methanol extract of Euonymus alatus[J]. Life Sciences, 2005, 77: 2760-2769.
    [31] Ou S.Y., Luo Y.L., Huang C.H., et al. Production of coumaric acid from sugarcane bagasse[J]. Innovative Food Science & Emerging Technologies, 2009, 10: 253-259.
    [32] Neish A.C. Formation of m- and p-coumaric acids by enzymatic deamination of the corresponding isomers of tyrosine[J]. Phytochemistry, 1961, 1: 1-24.
    [33] Kardosova A., Ebringerova A., Alfoldi J., et al. A biologically active fructan from the roots of Arctium lappa L., var. Herkules[J]. Journal of biological macromolecules, 2003, 33: 135-140.
    [34]郝林华,陈靠山,李光友,牛蒡菊糖及其制备方法的研究[J].中国海洋大学学报(自然科学版), 2004, 34(3): 423-428
    [35] Susanto H., Arafat H., Janssen E.M.L., et al. Ultrafiltration of polysaccharide-protein mixtures: Elucidation of fouling mechanisms and fouling control by membrane surface modification[J]. Separation and Purification Technology, 2008, 63: 558-565.
    [36] Saha N.K., Balakrishnan M., Ulbricht M. Sugarcane juice ultrafiltration: FTIR and SEM analysis of polysaccharide fouling[J]. Journal of Membrane Science, 2007, 306: 287-297.
    [37]王丽玲,焦必宁.柑桔汁超滤传质过程机理的研究[J].现代食品科技, 2008, 24(4): 327-329.
    [38]高园,房玉林,张昂,等.葡萄枝条中多酚类物质的超声波辅助提取[J].西北农林科技大学学报(自然科学版), 2009, 37(9):77-82
    [39] Wang J.-X., Xiao X.-H., Li G.-K. Study of vacuum microwave-assisted extraction of polyphenolic compounds and pigment from Chinese herbs[J]. Journal of Chromatography A, 2008, 1198-1199: 45-53.
    [1] Krizman M., Baricevic D., Prosek M. Determination of phenolic compounds in fennel by HPLC and HPLC-MS using a monolithic reversed-phase column[J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43: 481-485.
    [2] Surveswaran S., Cai Y.-Z., Corke H., et al. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants[J]. Food Chemistry, 2007, 102: 938-953.
    [3] Subhasree B., Baskar R., Laxmi Keerthana R., et al. Evaluation of antioxidant potential in selected green leafy vegetables[J]. Food Chemistry, 2009, 115: 1213-1220.
    [4] Marghitas L.A., Stanciu O.G., Dezmirean D.S., et al. In vitro antioxidant capacity of honeybee-collected pollen of selected floral origin harvested from Romania[J]. Food Chemistry, 2009, 115: 878-883.
    [5] Liu S.M., Chen K.S., Schliemann W., et al. Isolation and identification of arctiin and arctigenin in leaves of burdock (Arctium lappla L.) by polyamide column chromatography in combination with HPLC-ESI/MS[J]. Phytochemical Analysis, 2005, 16: 86-89.
    [6] Ferracane R., Graziani G., Gallo M., et al. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves[J]. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51: 399-404.
    [7] Fang X.-K., Gao J., Zhu D.-N. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity[J]. Life Sciences, 2008, 82: 615-622.
    [8] Clifford M.N., Wu W., Kirkpatrick J., et al. Profiling the Chlorogenic Acids and Other Caffeic Acid Derivatives of Herbal Chrysanthemum by LC/MSn[J]. Journal of Agricultural and Food Chemistry, 2007, 55: 929-936.
    [9] Chen L., Qi J., Chang Y.-x., Zhu D., Yu B. Identification and determination of the major constituentsin Traditional Chinese Medicinal formula Danggui-Shaoyao-San by HPLC-DAD-ESI-MS/MS[J]. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50: 127-137.
    [10] Tiberti L.A., Yariwake J.H., Ndjoko K., et al. On-line LC/UV/MS analysis of flavonols in the three apple varieties most widely cultivated in Brazil[J]. Journal of the Brazilian Chemical Society, 2007, 18: 100-105.
    [11] Li J.Y., Huang H., Zhou W., et al. Anti-hepatitis B virus activities of Geranium carolinianum L. extracts and identification of the active components[J].Biological & Pharmaceutical Bulletin, 2008, 31: 743-747.
    [12] Weisz G.M., Kammerer D.R., Carle R. Identification and quantification of phenolic compounds from sunflower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MSn[J]. Food Chemistry, 2009, 115: 758-765.
    [13] Olsen H., Aaby K., Borge G.I.A. Characterization and Quantification of Flavonoids and Hydroxycinnamic Acids in Curly Kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn[J]. Journal of Agricultural and Food Chemistry, 2009, 57: 2816-2825.
    [14] Harborne J.B., Williams C.A. Flavonoids in the seeds of Argemone mexicana: a reappraisal[J]. Phytochemistry, 1983, 22: 1520-1521.
    [15] Obied H.K., Bedgood Jr D.R., Prenzler P.D., et al. Chemical screening of olive biophenol extracts by hyphenated liquid chromatography[J]. Analytica Chimica Acta, 2007, 603: 176-189.
    [16] Zuo Y., Chen H., Deng Y. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector[J]. Talanta, 2002, 57: 307-316.
    [17] Yao L., Jiang Y., Datta N., et al. HPLC analyses of flavanols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia[J]. Food Chemistry, 2004, 84: 253-263.
    [18] Tarnawski M., Depta K., Grejciun D., et al. HPLC determination of phenolic acids and antioxidant activity in concentrated peat extract--a natural immunomodulator[J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41: 182-188.
    [19] Arimboor R., Kumar K.S., Arumughan C. Simultaneous estimation of phenolic acids in sea buckthorn (Hippopha?rhamnoides) using RP-HPLC with DAD[J]. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47: 31-38.
    [20] Rizzo M., Ventrice D., Varone M.A., et al. HPLC determination of phenolics adsorbed on yeasts[J]. Journal of Pharmaceutical and Biomedical Analysis , 2006, 42: 46-55.
    [21] Proestos C., Bakogiannis A., Psarianos C., et al. High performance liquid chromatography analysis of phenolic substances in Greek wines[J]. Food Control, 2005, 16: 319-323.
    [22] Kelebek H., Selli S., Canbas A., et al. HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan[J]. Microchemical Journal, 2009, 91: 187-192.
    [23] Liu A.-H., Li L., Xu M., et al. Simultaneous quantification of six major phenolic acids in the roots of Salvia miltiorrhiza and four related traditional Chinese medicinal preparations by HPLC-DAD method[J]. Journal of Pharmaceutical and Biomedical Analysis , 2006, 41: 48-56.
    [1] Subhasree B., Baskar R., Laxmi Keerthana R., et al. Evaluation of antioxidant potential in selected green leafy vegetables[J]. Food Chemistry, 2009, 115: 1213-1220.
    [2] Marghitas L.A., Stanciu O.G., Dezmirean D.S., et al. In vitro antioxidant capacity of honeybee-collected pollen of selected floral origin harvested from Romania[J]. Food Chemistry, 2009, 115: 878-883.
    [3] Paradiso V.M., Summo C., Pasqualone A., et al. Evaluation of different natural antioxidants as affecting volatile lipid oxidation products related to off-flavours in corn flakes[J]. Food Chemistry, 2009, 113: 543-549.
    [4] van Esch G.J., Toxicology of tert-butylhydroquinone (TBHQ), Food and Chemical Toxicology, 24 1063-1065.
    [5] Dai F., Chen W.-F., Zhou B. Antioxidant synergism of green tea polyphenols with [alpha]-tocopherol and l-ascorbic acid in SDS micelles[J]. Biochimie, 2008, 90: 1499-1505.
    [6] Brul S., Coote P. Preservative agents in foods: Mode of action and microbial resistance mechanisms[J]. International Journal of Food Microbiology, 1999, 50:1-17.
    [7] Zink D.L. The impact of consumer demands and trends on food processing[J]. Emerging Infectious Diseases, 1997, 3: 467-469.
    [8] ] Dupont S., Caffin N., Bhandari B. In vitro antibacterial activity of Australian native herb extracts against food-related bacteria[J]. Food Control, 2006,17:929-932.
    [9] Gram L., Ravn L., Rasch M., et al. Food spoilage--interactions between food spoilage bacteria[J]. International Journal of Food Microbiology, 2002, 78: 79-97.
    [10] Ao C., Li A., Elzaawely A.A., et al. Evaluation of antioxidant and antibacterial activities of Ficus microcarpa L. fil. extract[J]. Food Control, 2008, 19: 940-948.
    [11] Ozturk S., Ercisli S. Antibacterial activity and chemical constitutions of Ziziphora clinopodioides[J]. Food Control, 2007, 18: 535-540.
    [12] Bandyopdayay D., Chatterjee T.K., Dasgupta A., et al. In vitro and in vivo antimicrobial action of tea: The commonest beverage of Asia, Biological & Pharmaceutical Bulletin[J]. 2005, 28: 2125-2127.
    [13] Yoo K.M., Lee K.W., Park J.B., et al. Variation in major antioxidants and total antioxidant activity of yuzu (Citrus junos Sieb ex Tanaka) during maturation and between cultivars, Journal of Agricultural and Food Chemistry[J]. 2004, 52: 5907-5913.
    [14] Parvathy K.S., Negi P.S., Srinivas P. Antioxidant, antimutagenic and antibacterial activities of curcumin-[beta]-diglucoside[J]. Food Chemistry, 2009, 115: 265-271.
    [15] Fabry W., Okemo P.O., Ansorg R. Antibacterial activity of East African medicinal plants, Journal of Ethnopharmacology,1998, 60: 79-84.
    [16] Kubo I., Fujita K.-i., Nihei K.-i., et al. Non-antibiotic antibacterial activity of dodecyl gallate[J]. Bioorganic & Medicinal Chemistry, 2003, 11: 573-580.
    [17] Kays M.B., Lisek C.R., Denys G.A. Comparative in vitro and bactericidal activities of telithromycin against penicillin-nonsusceptible, levofloxacin-resistant, and macrolide-resistant Streptococcus pneumoniae by time-kill methodology[J]. International Journal of Antimicrobial Agents, 2007, 29: 289-94.
    [18] Soberon J.R., Sgariglia M.A., Sampietro D.A., et al. Antibacterial activity of plant extracts from northwestern Argentina[J]. Journal of Applied Microbiology, 2007, 102: 1450-1461.
    [19] Sun T., Xie W., Xu P. Superoxide anion scavenging activity of graft chitosan derivatives, Carbohydrate Polymers[J]. 2004, 58: 379-382.
    [20] Tsuda T., Watanabe M., Ohshima K., et al. Antioxidative Activity of the Anthocyanin Pigments Cyanidin 3-O-.beta.-D-Glucoside and Cyanidin[J]. Journal of Agricultural and Food Chemistry, 2002, 42: 2407-2410.
    [21] Sheih I.C., Wu T.-K., Fang T.J. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems[J]. Bioresource Technology, 2009, 100:3419-25.
    [22] Sun Y.-P., Chou C.-C., Yu R.-C. Antioxidant activity of lactic-fermented Chinese cabbage[J]. Food Chemistry.2009, 115: 912-917.
    [23] Tallarida R.J. Drug synergism: Its detection and applications[J]. Journal of Pharmacology and Experimental Therapeutics, 2001, 298: 865-872.
    [24] Romano C.S., Abadi K., Repetto V.,et al.Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives[J]. Food Chemistry, 2009, 115: 456-461.
    [25] Tu Y.-g., Sun Y.-z., Tian Y.-g., et al. Physicochemical characterisation and antioxidant activity of melanin from the muscles of Taihe Black-bone silky fowl[J]. Food Chemistry, 2009, 114: 1345-1350.
    [26] Kulkarni A.P., Aradhya S.M., Divakar S. Isolation and identification of a radical scavenging antioxidant - punicalagin from pith and carpellary membrane of pomegranate fruit[J]. Food Chemistry, 2004, 87: 551-557.
    [27] Elias R.J., Kellerby S.S., Decker E.A. Antioxidant activity of proteins and peptides[J]. Critical Reviews in Food Science and Nutrition, 2008, 48: 430-441.
    [28] Medina I., Gallardo J.M., Gonzalez M.J., et al. Effect of Molecular Structure of Phenolic Families as Hydroxycinnamic Acids and Catechins on Their Antioxidant Effectiveness in Minced Fish Muscle[J]. Journal of Agricultural and Food Chemistry, 2007, 55: 3889-3895.
    [29] Cheng J.-C., Dai F., Zhou B., Y et al. Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: Mechanism and structure-activity relationship[J]. Food Chemistry, 2007, 104: 132-139.
    [30] Ferrazzano G.F., Amato I., Ingenito A., et al. Anti-cariogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea) [J]. Fitoterapia, 2009, 80: 255-262.
    [31] van der Watt E., Pretorius J.C. Purification and identification of active antibacterial components in Carpobrotus edulis L[J]. Journal of Ethnopharmacology, 2001, 76: 87-91.
    [32] Speciale A., Musumeci R., Blandino G., et al. Minimal inhibitory concentrations and time-kill determination of moxifloxacin against aerobic and anaerobic isolates[J]. International Journal of Antimicrobial Agents, 2002, 19: 111-118.
    [33] Pankey G.A., Ashcraft D.S. In vitro antibacterial activity of tigecycline against resistant Gram-negative bacilli and enterococci by time-kill assay[J]. Diagnostic Microbiology and Infectious Disease, 2009, 64: 300-304.
    [1]孙峋,汪靖超,李洪涛,等.迷迭香酸的抗菌机理研究[J].青岛大学学报(自然科学版), 2005, 18(4): 41-46.
    [2] Tsou M.F., Hung C.F., Lu H.F., et al. Effects of caffeic acid, chlorogenic acid and ferulic acid on growth and arylamine N-acetyltransferase activity in Shigella sonnei (group D)[J]. Microbios, 2000, 101: 37-46.
    [3] Kong M., Chen X.G., Liu C.S., et al. Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli[J]. Colloids and Surfaces B: Biointerfaces, 2008, 65:197-202.
    [4] Jasniewski J., Cailliez-Grimal C., Younsi M., et al. Fluorescence anisotropy analysis of the mechanism of action of mesenterocin 52A: speculations on antimicrobial mechanism[J]. Applied Microbiology and Biotechnology, 2008, 81:339-347.
    [5] Santos F.A., Bastos E.M.A., Uzeda M., et al. Antibacterial activity of Brazilian propolis and fractions against oral anaerobic bacteria[J]. Journal of Ethnopharmacology, 2002, 80: 1-7.
    [6] Gun Lee D., Park Y., Il Kim P., et al. Influence on the plasma membrane of Candida albicans by HP (2-9)-magainin 2 (1-12) hybrid peptide[J]. Biochemical and Biophysical Research Communications, 2002, 297: 885-889.
    [7] Kaur G., Singh R.P., Antibacterial and membrane damaging activity of Livistona chinensis fruit extract[J]. Food and Chemical Toxicology, 2008, 46: 2429-2434.
    [8] Friedrich CL, Rozek A, Patrzykat A, et al. Structure and mechanism of action of an Indolicidin peptide derivative with improved activity against gram-positive bacteria[J]. Journal of Biological Chemostry 2001, 276: 24015-24022.
    [9] Tang Y.-L., Shi Y.-H., Zhao W., et al. Insertion mode of a novel anionic antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly and its effect on surface potential of bacterial membrane[J]. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48: 1187-1194.
    [10] Tang Y.-L., Shi Y.-H., Zhao W., et al. Interaction of MDpep9, a novel antimicrobial peptide from Chinese traditional edible larvae of housefly, with Escherichia coli genomic DNA[J]. Food Chemistry, 2009, 115: 867-872.
    [11] Denyer S.P., Mechanisms of action of antibacterial biocides[J]. International Biodeterioration & Biodegradation, 1995, 36: 227-245.
    [12] Nyarko E., Hanada N., Habib A., et al. Fluorescence and phosphorescence spectra of Au(III), Pt(II)and Pd(II) porphyrins with DNA at room temperature[J]. Inorganica Chimica Acta, 2004, 357: 739-745.
    [13] Sung W.S., Park Y., Choi C.-H., et al. Mode of antibacterial action of a signal peptide, Pep27 from Streptococcus pneumoniae[J]. Biochemical and Biophysical Research Communications, 2007, 363: 806-810.
    [14] Friedrich C.L., Rozek A., Patrzykat A., et al. Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria[J]. Journal of Biological Chemistry, 2001, 276: 24015-24022.
    [15] Hao G., Shi Y.-H., Tang Y.-L., et al. The membrane action mechanism of analogs of the antimicrobial peptide Buforin 2[J]. Peptides, 2009, 30: 1421-1427.
    [16] Stasiuk M., Kozubek A. Membrane perturbing properties of natural phenolic and resorcinolic lipids[J]. FEBS Letters, 2008, 582: 3607-3613.
    [17] Krishnakumari V., Nagaraj R., Interaction of antibacterial peptides spanning the carboxy-terminal region of human [beta]-defensins 1-3 with phospholipids at the air-water interface and inner membrane of E. coli[J]. Peptides, 2008. 29: 7-14.
    [18] Imura Y., Choda N., Matsuzaki K. Magainin 2 in Action: Distinct Modes of Membrane Permeabilization in Living Bacterial and Mammalian Cells[J]. Biophysical Journal, 2008, 95: 5757-5765.
    [19] Patel M.N., Patel S.H., Chhasatia M.R., et al. Five-coordinated oxovanadium(IV) complexes derived from amino acids and ciprofloxacin: Synthesis, spectral, antimicrobial, and DNA interaction approach[J]. Bioorganic & Medicinal Chemistry Letters, 2008, 18: 6494-6500.
    [20] Ulanowska K., Tkaczyk A., Konopa G., et al. Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains[J]. Archives of Microbiology, 2006, 184: 271-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700