流化床吸附干燥特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业的发展,流态化干燥技术在散粒状物料的干燥方面获得了广泛的应用。但是对于大颗粒(如农作物的种子)以及形状不规则的物料,使用流化床干燥时会出现沟流现象,造成干燥不均匀;同时由于一部分热空气几乎没有与物料发生热量传递便排出,并且大颗粒流化需要较高的气速,因而能量消耗增大。
     当大颗粒物料在流化床中干燥时,通过加入一定量易流化的小颗粒,可使物料易于流化,从而使被干燥物料在均一的环境中进行热质传递,并在一定程度上减小了最小流化速度;因而干燥产品质量好,能耗低。如果添加的易流化小颗粒具有吸附性,则为流态化吸附干燥。流态化吸附干燥是将流化床中气流的干燥作用和吸附剂的脱水作用相结合,吸附剂不仅起着流化的作用,同时起着传热介质和蒸汽载体的作用,可使物料周围的水蒸气分压很低。流态化吸附干燥用吸附剂吸收水分后放热的特点,实现生物性物料的低温低湿度干燥。
     本文以大豆种子为实验物料,硅胶为吸附剂,进行了静态吸附实验研究,通过在流化床中通入一定流量空气进行了动态吸附实验和动静结合吸附干燥实验的研究,并且在此基础上,对吸附干燥系统的性能及其影响因素作了较为全面的实验和理论研究,建立了大豆的吸附干燥模型,详细分析了系统中各操作参数之间的相互关系及其对干燥特性的影响,并对此进行了优化。本文分析了大豆初始湿含量、吸附剂与大豆的混合比、硅胶粒径、床层高度以及风速等因素对干燥过程的影响,同时分析了硅胶的吸水状况;对动态吸附和动静结合吸附干燥进行了对比分析。
     本文实验结果表明:通过加入硅胶吸附剂,促进了大豆流化,增加了大豆种子的湿分扩散率,提高了干燥速率;但是硅胶粒径的变化对于大豆干燥速率没有显著影响;大豆初始湿含量、混合比及风速对大豆的干燥速率影响较为显著:大豆初始湿含量越高,风速越高,干燥速率越快;混合比在2:1时干燥最快;通过实验还发现,动静结合吸附干燥与动态吸附干燥相比,干燥速率并无明显区别,但干燥产品质量提高,大豆爆裂率减少。
With the development of industry and agriculture, fluidized bed drying technology has been widely used in the drying of particulate and powdered materials. But for large articles (such as crop seeds), as well as irregularly shaped materials, fluidized bed drying will ditch reflow phenomenon and cause non-uniform drying, some of hot air is discharged without transferring heat to materials; in addition, the fluidization need higher air velocity and higher energy consumption.
     This research adopts media-fluidization technology, by adding smaller particles to facilitate fluidization and meanwhile adsorb water from larger particles to be dried in the uniform condition; therefore, the quality of material can be ensured and the minimum fluidization velocity can be reduced to a certain extent. If the small particles are adsorbents, then the technology is called "fluidized adsorption drying". Fluidized adsorption drying is the combination of air fluidized bed drying and the role of the adsorbent with dehydration. Adsorbent is not only to play the role of fluidization, but also is the medium of heat transfer and steam, which can make the vapor partial pressure lower. The technology can achieve low temperature and low humidity drying to biological materials because adsorbents released heat after water absorption.
     In this paper, experiment is carried out with soybean seeds as materials and silica gel particles as adsorbents to investigate static adsorption drying, dynamic adsorption drying and hybrid of fluidized bed drying and fixed drying. The drying characteristics and influencing factors on adsorption drying system is investigated experimentally. The mathematical model was developed to describe the water transport that occurs in the soybean-silica gel system. The relationship between the operating parameters and their effects on the drying process is analyzed. The effects of initial moisture content, the mixed ratio, silica gel particles, bed height and air velocity on the drying characteristics of soybean is investigated; the differences between dynamic adsorption drying and hybrid drying is compared.
     The experiment results indicate that the moisture content dispersion rate of soybean seeds increased with addition of silica gel particles. It is inferred that gas-solids contacting is improved with addition of small particles to the bed of large particles. In addition, from the result we can find that changing the size of silica gel particles conspicuously affects drying rate, but it is improved with the increase of gas velocity, with the decrease of initial moisture content, and when mass ratio being 2:1, the drying speed is high. In hybrid drying scheme the drying rate has no significant difference compared with dynamic adsorption drying, but product quality is improved and soybean burst rate is reduced.
引文
[1]T.库德,A S牟久大著,李占勇译.先进干燥技术[M].北京:化学工业出版社,2005.
    [2]金涌,祝京旭,汪展文等.流态化工程原理[M].北京:清华大学出版社,2001.
    [3]王永刚.流化床干燥玉米的理论与实验研究[D].天津:河北工业大学,2002.
    [4]张琦,王国恒.一种新型干燥装置-脉冲流化床干燥器[J].Industrial Furnace,2005,27(2):9-17.
    [5]张引,于才渊.搅拌流化床干燥器传热特性的研究[J].化工装备技术,2002,23(1):5-8.
    [6]钱铭铨.多层振动流化床干燥器在活性炭干燥中的应用[J].林产化工通讯,2001,35(6):3-6.
    [7]Satom Watano,Nan Yeh,Kei Miyanami.Heat transfer and mechanism of drying in agitation fluidized bed[J].Chem Pharm Bull,1999,47(6):843-846.
    [8]Mujumdar A S.Handbook of Industrial Drying[M].New York:Marcel Dekker Inc,1987.
    [9]白杉,郭宏伟.关于干燥装置的探讨[J].橡塑技术与装备,2003,29(3):18-21.
    [10]宫国清.脉冲式流化床干燥器操作特性的研究[J].南京林业大学学报,1997,21(S1):43-45.
    [11]陈东,谢继红,赵丽娟等.热泵式流化床干燥装置及其应用优势[J].机械设计,2003(1):34-37.
    [12]朱保,张绪坤.热泵流化床干燥机的研制[J].粮油加工与食品机械,2006(6):70-73.
    [13]李建国,赵丽娟,潘永康等.组合干燥的应用及进展[J].化学工程,2006,34(1):8-11.
    [14]牛虎,邢召良,陆万鹏等.氯化钾干燥工艺的研究与开发[J].无机盐工业,2002,34(4):40-41.
    [15]李晓兰,叶京生,罗乔军.流化床干燥技术的研究与进展[J].通用机械,2007,5:61-64.
    [16]潘永康,王喜忠.现代干燥技术tM].北京:化学工业出版社,1998,2:182-186.
    [17]杨小静.流化床干燥玉米的理论研究[1)].天津:河北工业大学,2002.
    [18]Catipovie N M,Jovanovic G N,Fitzgerald T J.Affection of Solid Size on Characteristics[J].AICHEJ,1978,24(3):543-545.
    [19]Wolf E,Giber H.Modeling Drying Kinetics Using Adsorption Isotherms[J].Drying Technology,1990,8(2):405.
    [20]Arsem H B,Ma Y H.Simulation of a Combined Microwave and Radiant Freeze Dryer[J].Drying Technology,1990,8(5):993.
    [21]Eekert E R G,Faghri M.A General Analysis of Moisture Migration Caused by Temperature Differences in an Unsaturated Porous[J].International Journal of Heat and Mass Transfer,1980,23(8):1613-1623.
    [22]Ilic M,Turner I W.Convective Drying of a Consolidated Slab of Wet Porous Material[J].International Journal of Heat and Mass Transfer,1989,32(12):2351-2362.
    [23]童景山.流态化干燥工艺与设备[M].北京:科学出版社,1996.
    [24]Cibomwsld J,Kopec J.Method of drying flat materials with small thickness and apparatus for drying such materials[P].Polish Patent No 126843,1979.
    [25]Kudra T,Stmmillo Cz(eds).Thermal Processing of Biomaterials[M].New York:Gordon and Breach Science Publishers,1996.
    [26]Tutova E G,Kuts P S.Drying of Microbiological Products[M].Moscow(in Russian):Agropromizdat,1987.
    [27]Tutova E G,Kuts P S,Dushin V V,et al.Method of treatment of fodder micro-biological preparations[P].Russian Patent No 685886,1979.
    [28]Tutova E G.Fundamental of contact-sorption dehydration of labile materials[J].Drying Technology,1988,6(1):1-20.
    [29]Marchevski V N.Technology for continuous drying of casein[M].Kiev,Ukraine(in Russian):Bulletin of Kiev Technical Institution,1998.
    [30]Li J G,Zhao L J,Chen G H,Zhou M.Fluidized-bed drying of biological materials:two case studies[J].Chinese J.Chem.Eng,2004,12(6):840-842.
    [31]Pan Y K.,Pang J Z.,Li Z Y,Mujumdar A S,Kudra T.Drying of photosynthetic bacteria in a vibrated fluid bed of solid carders[J].Drying Technology,1994,13(1-2):395-404.
    [32]Adamiec J,Kudra T,Strumillo Cz.Conservation of bio-active materials by dehydration[A].In:Mujumdar A S.Drying of Solids[M].Meerut-New Delhi,India:Sarita Prakashan,1990:361.
    [33]Tutova E G,Feldman R I,Meltser A V.Method of contact dewatering of capillary porous materials[P].Russian Patent No 1170245,1985.
    [34]TutovaEG,KutsPS,DushinVV,BogdanovVM,KrugiovNA,RusnakMN,Korolev V A.Method of treatment of fodder micro-biological preparations[P].Russian Patent No 685886,1979.
    [35]Stumillo C,Zibicinski I,Liu X D.Effect of particle structure on quality retention of biomaterials during thermal drying[J].Drying Technology,1996,14(9):1920-1944.
    [36]Stumillo C,Zibicinski I,Liu X D.Drying of themosensitive materials in vibrofluidized bed dryer[J].Proc.8th Polish Drying Symp,1994,2:306-314.
    [37]Sturton S L,Bilanski W K,Menzies D R.Drying of cereal grains with the desiccant bentonite[J].Canadian Agriculural Engineering,1981,23(2):101-103.
    [38]Yamaguehi S,Kawasaki H.Basic research for rice drying with silica gel[J].Drying Technology,1994,12(5):1053-1067.
    [39]Sotocinal S A,Alikhani Z,Raghavan G S V.Heating/drying using particulate medium:a review(part Ⅰ and Ⅱ)[J].Drying Technology,1997,15(2):441-475.
    [40]Pannu K S,Raghavan G S V.A continuous flow particulate medium grain processor[J].Can.Agricultural Engineering,1987,29(1):39-43.
    [41]Raghavan G S V,Pannu K S.Method and apparatus for drying and heat treating granular materials[P].US PatentNo 4597737,1986.
    [42]李心刚.固态食品常压吸附流化冷冻干燥与真空冷冻干燥分析比较及探索[J].承德石油高等专科学校校报,2001,3(1):43-45.
    [43]李心刚,胡桂秋.常压吸附流化冷冻干燥技术的研究与探索[J].化工技术经济,2002,20(4):42-41.
    [44]Wolff E,Gibert H.Atmospheric freeze drying[J].Drying Technology,1990,8(2):385-404.
    [45]Wolff E,Gibert H.Atmospheric freeze drying[J].Drying Technology,1990,8(2):385-428.
    [46]邵山,杨晓西,丁静,刘志伟.吸附式低温干燥过程干燥特性研究[J].天然气化工,1999,24(2):42-46.
    [47]卢学英,张惠群,刘曼华.多物料混合自动控制系统的设计与研究[J].仪器仪表学报,2003(4):389-391.
    [48]徐明生,上官新晨.葛粉与其他淀粉物理特性比较研究[J].中国粮油学报,2003(3):62-64.
    [49]姜绍通,黄静,潘丽军.糯玉米淀粉羧甲基化变性及其在食品中的应用研究[J].食品科学,2003(10):23-25.
    [50]王铁军.热敏性物料吸附干燥过程传热传质机理与营养成分退化动力学[D].华南理工大学硕士学位论文,2000.
    [51]Donsi G,Ferrari G,Olivieri L.Drying of Agricultural Products in a Two-Component Fluidized Bed[A].In:Bruin S.Preconeentration and Drying of Food Materials[M].Amsterdam:Elsevier Science Publishers B V,1988:277-286.
    [52]Mourad M,Hemati M,Laguede C.Drying of Corn Kernels in a Floatation Fluidized Bed-Influence of the Operating Conditions on Product Quality[A].In:Drying' 92[C].Amsterdam:Elsevier Seience PublishersB V,1992:1456-1464.
    [53]王成芝.谷物干燥原理与谷物干燥机设计[M].哈尔滨:哈尔滨出版社,1996.
    [54]Somkiat P,Paveena P,Somehart S.Heating process of soybean using hot-air and superheated-steam fluidized-bed dryers[J].Food Science and Technology,2006,39(7):770-778.
    [55]周惠明.谷物科学原理[M].北京:中国轻工业出版社,2003.
    [56]Felipe C A S,Barrozo M A S.Drying of Soybean Seeds in a Concurrent Moving Bed:Heat and Mass Transfer and Quality Analysis[J].Drying Technology,2003,21(3):439-456.
    [57]D.B.布鲁克等著,周清澈译.谷物干燥[M].北京:中国农业机械出版社,1981.
    [58]刘德旺,乔春晓,曹崇文.粮食及农产品干燥成套设备和技术[M].北京:气象出版社,1998.
    [59]Francisco C K,Sherlie H W,Jose de B F.Drying soybean seed using air ambient temperature at low relative humidity[J].Revista Brasileira de Sementes,2006,28(2):77-83.
    [60]邵山.吸附干燥过程传热传质机理与杀菌动力学研究[D].广州:华南理工大学,1999.
    [61]Li Z Y,Noriyuki K,Fujio W,et al.Sorption Drynig of Soybean Seeds with Silical Gel[J].Drying Technology,2002,20(1):223-233.
    [62]Overhults D G,White G W,Hamilton H E,Ross I J.Drying Soybeans with Heated Air[J].Tranactions oftheASAE,1973:112-113.
    [63]Suarez C,Viollaz P,Chirife J.Kinetics of Soybean Drying[A].In Drying' 80[C].Washington:Hemisphere Publishing Corporation,1980,2:251-255.
    [64]Barrozo M A S,Murata V V,Costa S M.The Drying of Soybean Seeds in Concurrent Moving Bed Dryers[J].Drying Technology,1998,16(9&10):2033-2047.
    [65]薛惠岚,杨青.农产品干燥原理与技术[M].西安:陕西人民出版社,2002.7:10.
    [66]王彩云.大豆平衡含水率的试验研究[J].中国粮油学报,1999,14(3):60-62.
    [67]刘木华.水稻干燥品质的模拟和控制机理研究[D].北京:中国农业大学,2000.
    [68]Hatamipour M S,Mowla D.Experimental and Theoretical Investigation of Drying of Carrots in a Fluidized Bed with Energy Carrier[J].DryingTech,2003,21(1):83-103.
    [69]Hatamipour M S,Mowla D.Experimential Investigation of Drying Behavior of Carrots in a Fluidized Bed with Energy carrier[J].Eng.Life.Sci.,2003,3(1):43-49.
    [70]Hatamipour M S,Mowla D.Shrinkage of carrots during drying in an inert medium fluidized bed[J].J.Food Eng.,2002,55:247-252.
    [71]Myoung J,Whitaker T B.Numerical Analysis of Diffusion in a Porous Composite Sphere With Comeentde Shell[J].Transaction of ASAE,1971.
    [72]Troeger J M,Hukill M V.Mathematical Description of the Drying Rate of Fully Exposed Corn[J].Transaction of ASAE,1971.
    [73]Luikov A V.Heat and Mass Transfer in Capillary Porous Bodies[M].Oxford,New York,USA:Pergamon Press,1966:523.
    [74]Luikov AV,Mikhailov UA.Theory of Energy and Mass Transfer[M].New York,USA:Prentice-Hall Inc,Englewood Clifs,1961:324.
    [75]贺志刚.在线吸附式氢气干燥器的控制和模拟研究p].广州:华南理工大学,2001.
    [76]陈效峰.吸附干燥器和冷冻干燥器的应用及节能[J].电气工厂设计,1999,(1):38-42.
    [77]孔祥芝.气体的吸附分离与再生[G].低温工程,1999,(4):328-331.
    [78]张爱琴.膨润土干燥剂的研制及其吸附性能的研究[D].广西:广西大学,1999.
    [79]李心刚,李惟毅,金志军,马洪庆.常压下吸附-流化床冷冻干燥的研究[J].节能,2000,(2):8-10.
    [80]李心刚,李惟毅,金志军,马洪庆.固态食品常压吸附流化冷冻干燥的研究[J].天津化工,2000,(1):8-11.
    [81]侯红运.流化床吸附干燥性能试验研究[D].天津:天津科技大学,2007.
    [82]Somehart S,Thanit S,Somboon W,Wivat W.Fluidized bed drying of soybeans[J].Journal of Stored Produets Researeh,2001,37(2):133-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700