用户名: 密码: 验证码:
微流控芯片电化学方法的研究及免疫传感器的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控芯片实验室又称芯片实验室或微流控芯片,是把一般实验室中所涉及的样品制备、反应、分离、检测及细胞培养分选、裂解等基本操作单元集成或基本集成到一块几平方厘米甚至更小的芯片上,由微通道形成网络,以可控流体贯穿整个系统,用以取代常规实验室的各种功能的一种技术平台。微流控芯片实验室的基本特征和最大优势是多种单元技术在整体可控的微小平台上灵活组合、规模集成。
     作为一种平台,芯片实验室的研究是以芯片毛细管电泳的形式开始的。20世纪90年代初,A. Manz和D. Harrison等进行了早期芯片电泳的开拓性研究,在往后的十多年中,微芯片电泳得到了广泛的关注。芯片毛细管电泳至今仍是芯片实验室中分离部分的主体。现在,作为微纳米技术的重要组成部分,芯片实验室所具有的多种单元技术灵活组合、整体可控和规模集成的特点,使其呈现出很多单一的单元技术无法比拟的特点,特别是它所体现的整体性和系统性,以及由此产生的难以估量的潜在能力。
     本论文在微流控芯片电化学方法的研究及免疫传感器的构建方面所做的工作如下:
     1、倾斜芯片法测定低速电渗流
     描述了一种测量低速电渗流的方法,这种方法是根据流体静力学压力的概念和进样区带的方法,倾斜芯片来实现的。当电渗流很小甚至接近于零时,在不倾斜的芯片中检测不到电渗流;但是由于流体静力学压力的存在,样品区带可以在倾斜的芯片中检测到。通过检测流体静力学压力引起的液流速度,可以计算出低速电渗流;并且,由于流体静力学压力的作用,导致了两种模式下迁移物质不同的表观迁移率。然后,就可以计算出芯片中未知的低速电渗流迁移率。我们分别在用牛血清白蛋白(BSA),肌红蛋白(MB),聚乙烯醇(PVA)修饰的芯片上使用了这种方法,得到的EOF值分别为1.73±0.03,1.21±0.05,0.34±0.04×10-4cm2V-1s-1。测得的结果与传统的方法吻合。
     2、聚合电解质层层组装修饰PDMS芯片微管道
     用聚合电解质层层组装修饰了PDMS微流控芯片,构建了在同一芯片上,通过改变电极的位置,构建了微芯片酶传感器,利用电化学检测进行H202分析的。该方法首先在PDMS表面用聚丙烯胺盐酸盐(poly(allylamine hydrochloride), PAH)涂层,使表面形成带正电的聚合物薄膜,在此薄膜上沉积带负电的聚苯乙烯磺酸盐(poly(styrensulfonate), PSS),再分别用PAH/PSS层层组装多层,随后在聚合电解质层层组装界面表面进行免疫反应,结合一抗,然后结合抗原,最后结合辣根过氧化酶(HRP)标记的二抗。经过处理后的微芯片在有H202经过时,通过辣根过氧化酶的酶解来检测H202的浓度。用聚合电解质修饰过的管道稳定性高、重现性好,很好地实现H202定性以及半定量的测定,并用于酶解的动力学行为的研究。
     3、微流体系重金属离子的电化学分析
     提出了一种微流控芯片柱端阳极溶出伏安法快速检测重金属离子的电化学检测的新方法。本方法将作为工作电极的碳纤维电极放置在PDMS微芯片管道末端,通过溶液在微管道中的流动,在电极上富集并溶出重金属离子,通过对应的溶出峰电位检测对应的重金属离子。通过在溶液中加入一定量的铋离子(Bi3+)溶液,形成碳纤维铋膜电极,能更有效的降低重金属离子的检测限,提高灵敏度。本方法兼具微芯片快速、试剂消耗量小、进样量小的特点和阳极溶出伏安法灵敏度高、检测限低、信噪比高的特点。本方法检测方便、快速,线性范围宽,重现性好。选择进样电压1200V,沉积电位-1.2V,富集时间120s作为最优条件,测得Cd2+和Zn2+的检测限分别为8.6ng/mL和7.6ng/mL。
     4、基于PDMS-金纳米粒子复合膜的微芯片构建同时检测两种心脏标志物的电化学免疫传感器
     基于微流控芯片构建了同时检测两种心脏标志物的电化学免疫传感器,提出了在微管道中,通过流动进样模式,同时检测两种心脏标志物cTnI和CRP的电化学免疫方法。该方法的定量是基于PDMS-金纳米粒子复合膜微反应器中的免疫反应。CdTe量子点和ZnSe量子点分别与二抗结合用于免疫反应。CdTe量子点和ZnSe量子点酸解后,通过阳极溶出伏安法测溶液中的Cd2+和Zn2+的量进而能得到标志物的量。该方法也可以同时检测临床血清样品中的cTnI和CRP。cTnl和CRP的线性范围分别为0.01-50ng/mL,0.5-200ng/mL,检测限分别约为5amol和307amol(30μL溶液)。我们用该方法检测了20个临床血清样品,该方法显示了一定的精确性,结果与传统方法相比没有明显差别。因此该方法可以成功用于临床检测两种心脏标志物。该方法精密度高、灵敏高、稳定性好,并且有amol的检测限。该方法将微流控芯片与电化学方法成功结合,是临床实验室中蛋白检测方法的有益补充。
The area of micro total analysis systems (μTAS), also called "lab on a chip", miniaturized or microfluidic analysis systems, is a rapidly developing field. During the last several years, we have witnessed a steady expansion in the number of publications made associated with this research field. Simultaneously, there is an obvious increase in the overall quality of the study performances, as numerous obstacles have been overcome and microfluidic devices are, nowadays, considered as a common aid to various applications in natural and life sciences. My purpose in this research was to well know the studies on electrochemical methods and designs of immunosensors in microfluidic chip.
     1. Low electroosmotic flow measurement by tilting microchip A novel method for low electroosmotic flow (EOF) rates measurement by tilting microchip which based upon the hydrostatic pressure conception and sampling zone method is described. Sampling zone could be detected in the tilting microchip but not in non-tilting one due to the hydrostatic pressure driven. The method is fulfilled to calculate low EOF rates by detecting the liquid flow velocity driven by hydrostatic pressure, and difference between the apparent mobility of the migrating analyte in two modes is caused by the effect of hydrostatic pressure. And then the EOF rates in unknown low EOF microchip can be calculated. Different microchannels modified with bovine serum albumin (BSA), myoglobin (MB) and polyvinyl alcohol (PVA) were used to verify the method, the EOF rate value was1.73±0.03,1.21±0.05,0.34±0.04×10-4cm2V-1s-1, respectively. The results obtained by the proposed method were agreed well with conventional methods.
     2. PDMS microchannel assembled layer-by-layer with polyelectrolye PDMS microchannel was assembled layer-by-layer with polyelectrolye. Microchip enzyme biosensor was designed to detecte H2O2by changing the position of the electrode on the same microchip. Poly(allylamine hydrochloride)(PAH) was firstly coated on the surface of PDMS microchannel to form polymer film. And then Poly(styrensulfonate)(PSS) was coated on the PAH polymer film. After that, PAH and PSS was coated exchanged to form [PAH/PSS]n polymer films. Immunoassay was performed on the polymer films. Microchannel coated with polyelectrolyes has the advantages of excellent stability and repeatability.
     3. MicroChannel flow injection square wave anodic stripping voltammetry for heavy metal ions with Carbon fiber electrode electrochemical analysis on microfluidic chip
     A novel method for fast detection for heavy metal ions on microfluidic chips is established in this article. In this experiment, carbon fiber electrode and bismuth-coated fiber electrode, placed at the end of the micro-channel, are used as working electrode respectively. Heavy metal ions are driven by flow injection mode, enriched on the working electrode and then oxidized back to ions in the stripping mode, which generates current peaks, proportional to the concentration of each ion. Bismuth-coated electrode is produced by adding Bi3+into the buffer solution, and Bi3+is reduced and enriched on the electrode, as the target ions. Bismuth-coated electrode produces lower detection limit and higher sensitivity. This method has both advantages of microchips and stripping voltammetry, such as fast detection and little reagent consumption on the microchip, high sensitivity and signal-to-noise ratio of the stripping voltammetry method. The optimized condition is as followed:separation voltage at1200V, deposition potential at-1.2V, deposition time at120s, and in this condition, the detection limits are8.6ng/mL and7.6ng/mL for Cd2+and Zn2+, respectively.
     4. A novel Electrochemical Immunosensor for Simultaneous Detection of Dual Cardiac Markers Based on PDMS-Gold Nanoparticles Composite Microfluidic
     Chip
     An effective and convenient electrochemical immunoassay for simultaneous detection of dual biomarkers cTnI and CRP in microchannel via flow injection mode was introduced. The quantitative methodology was based on ELISA in poly(dimethylsiloxane)-gold nanoparticles composite microreactors. CdTe and ZnSe quantum dots were bioconjugated with antibodies for sandwich immunoassay. After CdTe and ZnSe QDs were dissolved, Cd2+and Zn2+were detected by square wave anodic stripping voltammetry (SWASV) that the biomarkers could be quantified. This immunosensor allowed simultaneous detection of cTnl and CRP in clinical serum samples. The linear range of this assay was between0.01~50ng/mL and0.5-200ng/mL, and with the detection limits of~5amol and~307amol in30μL samples corresponding to cTnI and CRP, respectively.20clinical human serum samples were detected using the proposed method. The results indicated acceptable accuracy of this proposed method and no significant difference was observed among the results given by the proposed method and traditional methods. The sensor was successful applied in clinical serum samples for point-of-care monitoring of dual cardiac markers. The method has the advantage of good precision, high sensitivity, acceptable stability, and with the amol detection limits. This strategy demonstrated the successful integration of microfluidics with electrochemistry. The method can provide an interesting alternative tool for protein detection in clinical laboratory.
引文
[1]林炳承,秦建华.微流控芯片实验室.科学出版社,2006.
    [2]林炳承,秦建华.图解微流控芯片实验室.科学出版社,2008.
    [3]H. Andersson, A. Van den Berg, Lab-on-Chips for Cellomics; Kluwer Academic Publishers:Dordrecht,2004.
    [4]P. S. Dittrich, A. Manz, Nat. Rev. Drug Discuss 5 (2006) 210.
    [5]D. Mijatovic, J. C. T. Eijkel, A. van den Berg, Lab Chip 5 (2005) 492.
    [6]T. M. Squires, S. R. Quake, Rev. Mod. Phys.77 (2005) 977.
    [7]H. A. Stone, A. D.Strook, A. Ajdari, Annu. Rev. Fluid Mech.36 (2004) 381.
    [8]C. H. Ahn, J. W. Choi, G Beaucage, J. H. Nevin, J. B. Lee, A. Puntambek, J. Y. Lee, Proc. IEEE 92 (2004) 154.
    [9]P. S. Dittrich, A. Manz, Anal. Bioanal. Chem.382 (2005) 1771.
    [10]D. R. Reyes, D. Iossifidis, P. A. Auroux, A. Manz, Anal. Chem.74 (2002) 2623.
    [11]PA. Auroux, D. Iossifidis, D. R. Reyes, A. Manz, Anal. Chem.74 (2002) 2637.
    [12]T. Vilkner, D. Janasek, A. Manz, Anal. Chem.76 (2004) 3373.
    [13]T. Vilkner, D. Janasek, A. Manz, Anal. Chem.78 (2006) 3887.
    [14]G. M. Whitesides, Nature 442 (2006) 368.
    [15]D. J. Harrison. A. Manz, Z. Fan, H. Luedi, H. M. Widmer, Anal. Chem.64 (1992) 1926.
    [16]D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser, A. Manz, Science 267(1993)895.
    [17]M. A. Roberts, J. S. Rossier, P. Bercier, H. Girault, Anal. Chem.69 (1997) 2035.
    [18]C. S. Effenhauser, G. J. M. Bruin, A. Paulus, M. Ehrat, Anal.Chem.69 (1997) 3451.
    [19]R. M. McCormick, R. J. Nelson, M. G. Alonso-Amigo, J. Benvegnu, H. H. Hooper, Anal. Chem.69 (1997) 2626.
    [20]L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, W. A. MacCrehan, Anal. Chem.64 (1997) 4783.
    [21]D. Qin, Y. Xia, G. M. Whitesides, Adv. Mater.8 (1996) 917.
    [22]D. C. Duffy, J. C. McDonald, O. J. A. Schuller, G. M. Whitesides, Anal. Chem. 70(1998)4974.
    [23]J. C. Mcdonale, G. M. Whitesides, Acc. Chem. Res.35 (2002) 491.
    [24]K. Lim, S. Kirn. J. H. Hahn, Sens. Actuators B 92 (2003) 208.
    [25]M. Khoo, C. Liu, The 30th Annual IEEE. Device Research Conference, Denver, CO2000,pp109-110.
    [26]M. A. Unger, H. Chou, T. Thorsen, A. Scherer, S. R. Quake, Science 288 (2000) 113.
    [27]S. R. Quake, A. Scherer, Science 290 (2000) 1536.
    [28]H. Chou, M. A. Unger, S. R. Quake, Biomed. Devices 3 (2001) 323.
    [29]K. W. Ro, K. Lim, H. Kim, J. H. Hahn, Electrophoresis 23(2002) 1129.
    [30]B. Wang, Z. Abdulali-Kanji, E. Dodwell, J. H. Horton, R. D. Oleschuk, Electrophoresis 24 (2003) 1442.
    [31]G. Ocvirk, M. Munroe, T. Tang, R. Oleschuk, K. Westra, D. J. Harrison, Electrophoresis 27 (2000) 107.
    [32]Y. H. Dou, N. Bao, J. J. Xu, H. Y. Chen, Electrophoresis 23 (2002) 3558.
    [33]G. Decher, Science 277 (1997) 1232.
    [34]G. Decher, Y. Lvov, J. Schmitt, Thin Solid Films 244 (1994) 772.
    [35]G. Decher, J. D. Hong, J. Schmitt, Thin Solid Films 210/211 (1992) 831.
    [36]S. T. Dubas, J. B. Schlenoff, J. Schmitt, Macromolecules 32 (1999) 8153.
    [37]M. Losche, J. Schmitt, G. Decher, W. G. Bouwman, K. Kjaer, Macromolecules 31(1998)8893.
    [38]R. Steitz, V. Leiner, R. Siebrecht, R. Klitzing, Colloids Surf. A 163 (2000) 63.
    [39]T. W. Graul, J. B. Schlenoff, Anal. Chem.77 (1999) 4007.
    [40]H. Katayama, Y. Ishihama, N. Asakawa, Anal. Chem.70 (1998) 2254.
    [41]H. Makamba, Y. Y. Hsieh, W. C. Sung, S. H. Chen, Anal. Chem.77 (2005) 3971.
    [42]W. Hellmich, J. Regtmeier, T. T. Duong, R. Ros, D. Anselmetti, A. Ros, Langmuir 21 (2005) 7551.
    [43]D. P. Wu, Y. Luo, X. M. Zhou, Z. P. Dai, B. C. Lin, Electrophoresis 26 (2005) 211.
    [44]J. Liu, T. Pan, A. T. Woolley, M. L. Lee, Anal. Chem.76 (2004) 6948.
    [45]X. G. Du, Z. L. Fang, Electrophoresis 26 (2005) 4625.
    [46]D. Xiao, T. V. Le, M. J. Wirth, Anal. Chem.76 (2004) 2055.
    [47]Y. H. Dou, N. Bao, J. J. Xu, F. Meng, H. Y. Chen, Electrophoresis 25 (2004) 3024.
    [48]S. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, N. L. Allbritton, Anal. Chem. 74(2002)4117.
    [49]T. Richey, H. Iwata, H. Oowaki, E. Uchida, S. Matsuda, Y. Ikada, Biomaterials 21 (2000) 1057.
    [50]S. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, N. L. Allbritton, N. L. Langmuir 20 (2004) 5569.
    [51]S. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, N. L. Allbritton, Anal. Chem. 76(2004) 1865.
    [52]Y. Wang, H. H. Lai, M. Bachman, C. E. Sims, G. P. Li, N. L. Allbritton, Anal. Chem.77 (2005) 7539.
    [53]M. Y. Balakirev, S. Porte, M. Vernaz-Gris, M. Berger, J. P. Arie, B. Fouque, F. Chatelain, Anal. Chem.77 (2005) 5474.
    [54]B. E. Slentz, N. A. Penner, F. E. Regnier, J. Chromatogr. A 948 (2002) 225.
    [55]A. Papra, A. Bernard, D. Juncker, N. B. Larsen, B. Michel, E. Delamarche, Langmuir 77 (2001) 4090.
    [56]J. Lahann, D. Klee, H. Thelen, H. Bienert, D. Vorwerk, H. Hocker, J. Mater. Sci. Mater. Med.10(1999)443.
    [57]J. Lahann, M. Balcelis, L. Hang, T. Rodon, K. P. Jensen, T. Langer, Anal. Chem. 75(2003)2117.
    [58]T. Yang, S. Jung, L. Hang, H. Mao, P. S. Cremer, Anal. Chem.73 (2001) 165.
    [59]H. Mao, T. Yang, P. S. Cremer, Anal. Chem.74 (2002) 379.
    [60]V. Linder, E. Verpoorte, W. Thormann, N. F. de Rooij, H. Sigrist, Anal. Chem. 73(2001)4181.
    [61]E. Eteshola, D. Leckband, Sens. Actuators B 72 (2001) 129.
    [62]G. T. Roman, T. Hlaus, K. J. Bass, T. G. Seelhammer, C. T. Culbertson, Anal. Chem.77 (2005) 1414.
    [63]D. Belder, M. Ludwig, Electrophoresis 24 (2003) 3595.
    [64]V. Dolnik Electrophoresis 25 (2004) 3589.
    [65]H. Makamba, J. H. Kim, K. Lim, N. Park, J. H. Hahn, Electrophoresis 24 (2003) 3607.
    [66]D. R. Reyes, D. Iossifidis, P. A. Auroux, A. Manz, Anal. Chem.74 (2002) 2623.
    [67]P. A. Auroux, D. Iossifidis, D. R. Reyes, A. Manz, Anal. Chem.74 (2002) 2637.
    [68]T. Vilkner, D. Janasek, A. Manz, Anal. Chem.76 (2004) 3373.
    [69]P. S. Dittrich, K. Tachikawa, A. Manz, Anal. Chem.78 (2006) 3887.
    [70]S. Belfer, R. Fainchtain, Y. Purinson, O. Kedem, J. Membr. Sci.172 (2000) 113.
    [71]D. P. Wu, Y. Luo, X. M. Zhou, Z. P. Dai, B. C. Lin, Electrophoresis 26 (2005) 211.
    [72]D. P. Wu, B. X. Zhao, Z. P. Dai, J. H. Qin, B. C. Lin, Lab Chip 6 (2006) 942.
    [73]J. W. Jorgenson, K. D. Lukacs, Anal. Chem.53 (1981) 1298.
    [74]J. W. Jorgenson, K. D. Lukacs, Science 222 (1983) 266.
    [75]K. D. Lukacs, J. W. Jorgenson, J. High Resolut. Chromatogr.8 (1985) 407.
    [76]C. L. Rice, R. Whitehead, J. Phys. Chem.69 (1965) 4017.
    [77]J. A. Taylor, E. S. Yeung, Anal. Chem.65 (1993) 2928.
    [78]T. Tsuda, M. Ikedo, G. Jones, R. Dadoo, R. N. Zare, J. Chromatogr.632 (1993) 201.
    [79]T. Tsuda, S. Kitagawa, R. Dadoo, R. N. Zare, Bunseki Kagaku 46 (1997) 409.
    [80]P. H. Paul, M. G. Garguilo, D. J. Rakestraw, Anal. Chem.70 (1998) 2459.
    [81]A. E. Herr, J. I. Molho, J. G. Santiago, M. G. Mungal, T. W. Kenny, M. G. Garguilo, Anal. Chem.72 (2000) 1053.
    [82]U. Tallarek, E. Rapp, T. Scheennen, E. Bayer, H. Van As, Anal. Chem.72 (2000) 2292.
    [83]D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S, Effenhauser, A. Manz, Science 261 (1993)895.
    [84]C. S. Effenhauser, G. J. M. Bruin, A. Paulus, Electrophoresis 18 (1997) 2203.
    [85]P. D. I. Fletcher, S. J. Haswell, V. N. Paunov, Analyst 124 (1999) 1273.
    [86]D. Figeys, D. Pinto, Anal. Chem.72 (2000) 330A.
    [87]J. H. Knox, K. A. McCormack, Chromatographia 38 (1994) 207.
    [88]J. K. Towns, F. E. Regnier, Anal. Chem.64 (1992) 2473.
    [89]T. T. Lee, R. Dadoo, R. N. Zare, Anal. Chem.66 (1994) 2694.
    [90]L. E. Locascio, C. E. Perso, C. S. Lee, J. Chromatogr. A 857 (1999) 275.
    [91]W. Wang, F. Zhou, L. Zhao, J. R. Zhang, J. J. Zhu, J. Chromatogr. A 1170 (2007) 1.
    [92]M. L. Chabinyc, D. T. Chin, J. C. McDonald, et al, Anal. Chem.73 (2001) 4491.
    [93]K. Uchiyama, H. Nakajima, T. Hobo, Anal. Bioanal. Chem.379 (2004) 375.
    [94]B. Ma, X. M. Zhou, G Wang, Z. P. Dai, J. H. Qin, B. C. Lin, Electrophoresis 28 (2007)2474.
    [95]H. Nakanishi, T. Nishimoto, A. Arai, H. Abe, M. Kanai, Y. Fujiyama, T. Yoshida, Electrophoresis 22 (2001) 230.
    [96]Q. L. Mao, J. Pawliszyn, Analyst 124 (1999) 637.
    [97]X. Y. Huang, J. C. Ren, Electrophoresis 26 (2005) 3595.
    [98]W. R. Vandaveer, S. A. Pasas-Farmer, D. J. Fischer, C. N. Frankenfeld, S. M. Lunte, Electrophoresis 25 (2004) 3528.
    [99]P. Ertl, C. A. Emrich, P. Singhal, R. A. Mathies, Anal. Chem.76 (2004) 3749.
    [100]C. C. Wu, T. Saito, T. Yasukawa, et al. Sens. Actuators B 125 (2007) 680.
    [101]A. A. Dawoud, T. Kawaguchi, R. Jankowiak, Electrochem. Commun.9 (2007) 1536.
    [102]M. Pumera, J. Wang, F. Opekar, I. Jelinek, J. Feldman, H. Lowe, S. Hardt, Anal. Chem.74(2002)1968.
    [103]R. Tantra, A. Manz, Anal. Chem.72 (2000) 2875.
    [104]R. Ferrigno, J. N. Lee, X. Y. Jiang, G. M. Whitesides, Anal. Chem.76 (2004) 2273.
    [105]J. Wang, M. Pumera, Anal. Chem.74 (2002) 5919.
    [106]H. B. Qiu, X. B. Yin, J. L. Yan, X. C. Zhao, X. R. Yang, E. K. Wang, Electrophoresis 26 (2005) 687.
    [107]Q. F. Xue, F. Foret, Y. M. Dunayevskiy, P. M. Zavracky, N. E. McGruer, B. L. Karger, Anal. Chem.69 (1997) 426.
    [108]D. Figeys, Y. B. Ning, R. Aebersold, Anal. Chem.69 (1997) 3153.
    [109]B. Zhang, H. Liu, B. L. Karger, F. Foret, Anal. Chem.71 (1999) 3258.
    [110]W. C. Sung, S. Y. Huang, P. C. Liao, G. B. Lee, C. W. Li, S. H. Chen, Electrophoresis 24 (2003) 3648.
    [111]W. Shui, Y. Yu, X. Xu, Z. Huang, G. Xu, P. Yang, Rapid Communications in Mass Spectrometry 17 (2003) 1541.
    [112]H. Wu, J. Zhai, Y. Tian, H. Lu, X. Wang, W. Jia, B. Liu, P. Yang, Y. Xu, H. Wang, Lab Chip 4 (2004) 588.
    [113]I. Moser, G. Jobst, P. Svasek, M. Varahram, G. Urban, Sens. Actuators, B 44 (1997)377.
    [114]K. Hayashi, Y. Iwasaki, R. Kurita, K. Sunagawa, O. Niwa, Electrochem. Commun. 5(2003) 1037.
    [115]贾宏新,吴志勇,方肇伦,分析化学10(2005)1489.
    [116]L. B. Koutny, D. Schmalzing, T. A. Taylor, M. Fuchs, Anal. Chem.68 (1996) 18.
    [117]N. Chiem, D. J. Harrison, Anal. Chem.69 (1997) 373.
    [118]D. Schmalzing, L. B. Koutny, T. A. Taylor, W. Nashabeh, M. Fuchs, J. Chromatogr. B 697 (1997) 175.
    [119]F. Heeren, E. Verpoorte, A. Manz, W. Thormann, Anal. Chem.68 (1996) 2044.
    [120]T. Lim, H. Ohta, T. Matsunaga, Anal. Chem.75 (2003) 3316.
    [121]J. Wang, A. Ibanez, M. P. Chatrathi,A. Escarpa, Anal. Chem.73 (2001) 5323.
    [122]E. M. Abad-Villar, J. Tanyanyiwa, M. T. Fernandez-Abedul, A. Costa-Garcia, P. C, Hauser, Anal. Chem.76 (2004) 1282.
    [123]S. B. Cheng, C. D. Skinner, J. Taylor, S. Attiya, W. ELee, G. Picelli, J. Harrison, Anal. Chem.73(2001)1472.
    [124]N. Christodoulides, M. Tran, P. N. Floriano, M. Rodriguez, A. Goodey, M. Ali, D. Neikirk, J. T. McDevitt, Anal. Chem.74 (2002) 3030.
    [125]P. Arenkov, A. Kukhtin, A. Gemmell, S. Voloshchuk, V. Chupeeva, A. Mirzabekov, Anal. Biochem.278 (2000) 123.
    [126]K. Sato, M. Yamanaka, H. Takahashi, M. Tokeshi, H. Kimura, T. Kitamori, Electrophoresis 23 (2002) 734.
    [127]A. Bernard, B. Michel, E. Delamarche, Anal. Chem.73 (2001) 8.
    [128]姜维平,许丹科,马立人,分析化学30(2002)784.
    [129]T. Deng, J. S. Li, H. Wang, R. Q. Yu, J. Immuno. Methods 299 (2005) 1.
    [130]W. Y. Cai, I. R. Gentle, G. Q. Lu, J. J. Zhu, A. M. Yu, Anal. Chem.80 (2008) 5401.
    [131]D. R. Shankaran, K. V. Gobi, T. Sakai, K. Matsumoto, K. Toko, N. Miura, Biosens. Bioelectron.20 (2005) 1750.
    [132]A. de Crombrugghe, S. Yunus, P. Bertrand, Surf. Interface Anal.40 (2008) 404.
    [133]G. Y. Shen, S. Z. Tan, H. G. Nie, G. L. Shen, R. Q. Yu, J. Immuno. Methods 313 (2006)11.
    [134]M. A. Rahman, M. J. A. Shiddiky, J. S. Park, Y. B. Shim, Biosens. Bioelectron.22 (2007) 2464.
    [135]Y. W. Jung, J. Y Jeong, B. H. Chung, Analyst 133 (2008) 697.
    [136]J. M. Fowler, M. C. Stuart, D. K. Wong, Anal. Chem.79 (2007) 350.
    [137]H. Wang, Y. L. Liu, Y. H. Yang, T. Deng, G. L. Shen, R. Q. Yu, Anal. Biochem. 324(2004)219.
    [138]R. J. Cui, H. C. Pan, J. J. Zhu, H. Y. Chen, Anal. Chem.79 (2007) 8494.
    [139]C. H. Wang, C. Yang, Y. Y. Song, W. Gao, X. H. Xia, Adv. Funct. Mater.15 (2005) 1267.
    [140]Y. Wang, W. P. Qian, Y. Tan, S. H. Ding, Biosens. Bioelectron.23 (2008) 1166.
    [141]G Lv, F. He, X. M. Wang, F. Gao, G. Zhang, T. Wang, H. Jiang, C. H. Wu, D. D. Guo, X. M. Li, B. A. Chen, Z. Z. Gu, Langmuir 24 (2008) 2151.
    [142]J. C. McDonald, S. J. Metallo, G. M. Whitesides, Anal. Chem.73 (2001) 5645.
    [143]E. Eteshola, D. Leckband, Sens. Actuators B 72 (2001) 129.
    [144]J. Yakovleva, R. Davidsson, A. Lobanova, M. Bengtsson, S. Eremin, T. Laurell, J. Emneus, Anal. Chem.74 (2002) 2994.
    [145]K. Sato, M. Tokeshi, T. Odake, H. Kimura, T. Ooi, M. Nakao, T. Kitamori, Anal. Chem.72 (2000) 1144.
    [146]K. Sato, M. Tokeshi, H. Kimura, T. Kitamori, Anal. Chem.73 (2001) 1213.
    [147]朱海霖,陈恒武,周永列,分析化学32(2004)841.
    [148]M. A. Hayes, N. A. Poison, A. N. Phayre, A. A. Garcia, Anal. Chem.73 (2001) 5986.
    [149]J. W. Choi, C. H. Ahn, S. Bhansali, H. T. Henderson, Sens. Actuators B 68 (2000) 34.
    [150]K. Kojima, A. Hiratsuka, H. Suzuki, K. Yano, K. Ikebukuro, I. Karube, Anal. Chem.75 (2003) 1116.
    [151]T. L. Yang, S. Y. Jung, H. B. Mao, P. S. Cremer, Anal. Chem.73 (2001) 165.
    [152]D. LStokes, G. D. Griffin, T. Vo-Dinh, J. Fresenius, Anal. Chem.369 (2001) 295.
    [153]M. G. Roper, J. G. Shackman, G. M. Dahlgren, R. T. Kennedy, Anal. Chem.75 (2003)4711.
    [154]N. H. Chiem, D. J. Harrison, Clin. Chem.44 (1998) 591.
    [155]J. S. Ko, H. C. Yoon, H. Yang, H. Pyo, K. H. Chung, S. J. Kim, Y. T. Kim, Lab Chip 3 (2003) 106.
    [156]M. Meusel, D. Trau, A. Katerkamp, F. Meier, R. Polzius, K. Cammann, Sens. Actuators B 51 (1998)249.
    [157]A. Bromberg, R. A. Mathies, Anal. Chem.75 (2003) 1188.
    [1]A. Manz, N. Graber, H. M. Widmer, Sens. Actuators B Bl (1-6) (1990) 244.
    [2]P. S. Dittrich, K. Tachikawa, A. Manz, Anal. Chem.78 (2006) 3887.
    [3]J. L. Pittman, H. J. Gessner, K. A. Frederick, E. M. Raby, J. B. Batts, S. D. Gilman, Anal. Chem.75 (2003) 3531.
    [4]R. L. Chien, J. C. Helmer, Anal. Chem.63 (1991) 1354.
    [5]J. L. Beckers, M. T. Ackermans, J. Chromatogr.629 (1993) 371.
    [6]W. Thormann, C. X. Zhang, J. Caslavska, P. Gebauer, R. A. Mosher, Anal. Chem. 70(1998)549.
    [7]J. P. Schaeper, M. J. Sepaniak, Electrophoresis 21 (2000) 1421.
    [8]T. Hirokawa, N. Ikuta, T. Yoshiyama, H. Okamoto, Electrophoresis 22 (2001) 3444.
    [9]W. Wang, F. Zhou, L. Zhao, J. R. Zhang, J. J. Zhu, J. Chromatogr. A 1170 (2007) 1.
    [10]C. T. Culbertson, R. S. Ramsey, J. M. Ramsey, Anal. Chem.72 (2000) 2285.
    [11]X. H. Huang, M. H. Gordon, R. N. Zare, Anal. Chem.60 (1988) 1837.
    [12]T. T. Lee, R. Dadoo, R. N. Zate, Anal. Chem.66 (1994) 2694.
    [13]Y. Y. Hsieh, Y. H. Lin, J. S. Yang, G. T. Wei, P. Tien, L. K. Chau, J. Chromatogr. A 952(2002)255.
    [14]D. P. Wu, Y. Luo, X. M. Zhou, Z. P. Dai, B. C. Lin, Electrophoresis 26 (2005) 211.
    [15]D. Dutta, D. T. Jr. Leighton, Anal. Chem.73 (2001) 504.
    [16]H. W. Gai, L. F. Yu, Z. P. Dai, Y. F. Ma, B. C. Lin, Electrophoresis 25 (2004) 1888.
    [17]W. Wang, L. Zhao, F. Zhou, J. R. Zhang, J. J. Zhu, H. Y. Chen, Electrophoresis 28(2007)2893.
    [18]Y. Luo, D. P. Wu, S. J. Zeng, H. W. Gai, Z. C. Long, Z. Shen, Z. P. Dai, J. H. Qin, B. C. Lin, Anal. Chem.78 (2006) 6074.
    [19]L. Zhang, X. F. Yin, Z. L. Fang, Lab Chip 6 (2006) 258.
    [20]W. Wang, F. Zhou, L. Zhao, J. R. Zhang, J. J. Zhu, Electrophoresis 29 (2008) 561.
    [21]J. J. Xu, N. Bao, X. H. Xia, Y. Peng, H. Y. Chen, Anal. Chem.76 (2004) 6902.
    [22]Y. H. Dou, N. Bao, J. J. Xu, F. Meng, H. Y. Chen, Electrophoresis 25 (2004) 3024.
    [23]M. A. Roberts, J. S. Rossier, P. Bercier, H. Girault, Anal. Chem.69(11) (1997) 2035.
    [24]W. Wang, L. Zhao, L. P. Jiang, J. R. Zhang, J. J. Zhu, H. Y. Chen, Electrophoresis 27 (2006) 5132.
    [25]W. Wang, L. Zhao, J. R. Zhang, X. M. Wang, J. J. Zhu, H. Y. Chen, J. Chromatogr. A 1136 (2006) 111.
    [1]G. M. Whitesides, Nature 442 (2006) 368.
    [2]P. Yager, T. Edwards, E. Fu, K. Helton, et al., Nature 442 (2006) 412.
    [3]D. Janasek, J. Franzke, A. Manz, Nature 442 (2006) 374.
    [4]P. S. Dittrich, K. Tachikawa, A. Manz, Anal. Chem.78 (2006) 3887.
    [5]J. C. McDonald, G. M. Whitesides, Acc. Chem. Res.35 (2002) 491.
    [6]G. Ocvirk, M. Munroe, T. Tang, R. Oleschuk, et al., Electrophoresis 21 (2000) 107.
    [7]H. Katayama, Y. Ishihama, N. Asakawa, Anal. Chem.70 (1998) 2254.
    [8]H. Katayama, Y Ishihama, N. Asakawa, Anal. Chem.70 (1998) 5272.
    [9]H. Makamba, J. H. Kim, L.K. wanseop, N. Park, et al., Electrophoresis 24 (2003) 3607.
    [10]S. Hu, X. Ren, M. Bachman, C. E. Sims, et al., Anal. Chem.74 (2002) 4117.
    [11]S. Hu, X. Ren, M. Bachman, C. E. Sims, et al., Anal. Chem.76 (2004) 1865.
    [12]D. Xiao, T. V. Le, M. J. Wirth, Anal. Chem.76 (2004) 2055.
    [13]G. T. Roman, T. Hlaus, K. J. Bass, T. G. Seelhammer, et al., Anal. Chem.77 (2005) 1414.
    [14]G. D. Sui, J. Wang, C. C. Lee, W. Lu, et al., Anal. Chem.78 (2006) 5543.
    [15]Y. Luo, B. Huang, H. Wu, R. N. Zare, et al., Anal. Chem.78 (2006) 4588.
    [16]Y. H. Dou, N. Bao, J. J. Xu, H. Y. Chen, Electrophoresis 23 (2002) 3558.
    [17]Y. H. Dou, N. Bao, J. J. Xu, F. Meng, et al., Electrophoresis 25 (2004) 3024.
    [18]G. Decher, Science 277 (1997) 1232.
    [19]G. Decher, Y. Lvov, J. Schmitt, Thin Solid Films 244 (1994) 772.
    [20]G. Decher, J. D. Hong, J. Schmitt, Thin Solid Films 210/211 (1992) 831.
    [21]H. Katayama, Y. Ishihama, N. Asakawa, Anal. Chem.70 (1998) 2254.
    [22]H. Katayama, Y. Ishihama, N. Asakawa, Anal. Chem.70 (1998) 5272.
    [23]T. W. Graul, J. B. Schlenoff, Anal. Chem.77 (1999) 4007.
    [24]S. L. R. Barker, M. J. Tarlov, H. Canavan, J. J. Hickman, L. E. Locascio, Anal. Chem.72 (2000) 4899.
    [25]H. Makamba, Y. Y. Hsieh, W. C. Sung, S. H. Chen, Anal. Chem.77 (2005) 3971.
    [26]W. Hellmich, J. Regtmeier, T. T. Duong, R. Ros, D. Anselmetti, A. Ros, Langmuir21 (2005)7551.
    [27]D. P. Wu, Y. Luo, X. M. Zhou, Z. P. Dai, B. C. Lin, Electrophoresis 26 (2005) 211.
    [28]J. Liu, T. Pan, A. T. Woolley, M. L. Lee, Anal. Chem.76 (2004) 6948.
    [29]X. G. Du, Z. L. Fang, Electrophoresis 26 (2005) 4625.
    [30]D. Xiao, T. V. Le, M. J. Wirth, Anal. Chem.76 (2004) 2055.
    [31]Y. H. Dou, N. Bao, J. J. Xu, F. Meng, H. Y. Chen, Electrophoresis 25 (2004) 3024.
    [32]F. Caruso, K Niikura, D. N. Furlong, Y. Okahata, Langmuir 13 (1997) 3427.
    [1]P. Liang, Y. Qin, B. Hu, C. X. Li, T. Y. Peng, Z. C. Jiang, Fresenius J Anal. Chem. 368 (2000) 638.
    [2]E. Melek, M. Tuzen, M. Soylak, Anal. Chim. Acta 578 (2006) 213.
    [3]D. T. Reardan, C. F. Meares, D. A. Goodwin, et al, Nature 316 (1985) 265.
    [4]J. Wang, Stripping Analysis; VCH Publishers:Deerfield Beach,1985.
    [5]E. P. Achterberg, C. Braungardt, Anal. Chim. Acta 400 (1999) 381.
    [6]G E. Batley, Mar. Chem.12 (1983) 107.
    [7]J. Florence, Electroanal. Chem.27 (1970) 273.
    [8]J. Golas, J. Osteryoung, Anal. Chim. Acta 181 (1986) 211.
    [9]R. R. De Vitre, M. L.Tercier, M. Tsacopoulos, J. Buffle, Anal. Chim. Acta 249 (1991)419.
    [10]J. Wang, B.Tian, Anal. Chem.65 (1993) 1529.
    [11]M. A.Nolan, S. P. Kounaves, Anal. Chem.71 (1999) 3567.
    [12]X. A. Li, D. M. Zhou, J. J. Xu, H. Y. Chen, Talanta 71 (2007) 1130.
    [13]N. Bao, J. J. Xu, Y. H. Dou, Y. Cai, H. Y. Chen, X. H. Xia, J. Chrom. A.1041 (2004) 245.
    [14]J. Wang, J. M. Lu, S. B. Hocevar, P. A. M. Farias, Anal. Chem.72 (2000) 3218.
    [1]The World Health Report 2004-Changing History. World Health Organization. 2004. pp.120-4. ISBN 92-4-156265-X.
    [2]D. A. Morrowa, E. M. Antman, Clin. Chem.55 (2009) 5.
    [3]D. Peetz, G. Hafner, K. J. Lackner, Clin. Chem.48 (2002) 1110.
    [4]T. B. Ledue, N. Rifai, Clin. Chem.49 (2003) 1258.
    [5]P. S. Dittrich, K. Tachikawa, A. Manz, Anal. Chem.78 (2006) 3887.
    [6]E. Fitzpatrick, S. McBride, J. Yavelow, S. Najmi, P. Zanzucchi, R. Wieder, Clin. Chem.52(2006)1080.
    [7]E. Gizeli, C. R. Lowe, Curr. Opin. Biotechnol.7 (1996) 66.
    [8]J. Wang, Biosens. Bioelectron.21 (2006) 1887.
    [9]O. A. Sadik, A. O. Aluoch, A. L. Zhou, Biosens. Bioelectron.24 (2009) 2749.
    [10]M. J. Pugia, G. Blankenstein,.R. P. Peters, J. A. Profitt, K. K.adel, T. Willms, et al, Clin. Chem.51 (2005) 1923.
    [11]M. Inganas, H. Derand, A. Eckersten, G. Ekstrand, A. K. Honerud, G. Jesson, et al, Clin. Chem.51 (2005) 1985.
    [12]S. Haeberle, R. Zengerle, Lab Chip 7 (2007) 1094.
    [13]S. K Sia, L. J. Kricka, Lab Chip 8 (2008) 1982.
    [14]T. G. Henares, F. Mizutani, H. Hisamoto, Anal. Chim. Acta.611 (2008) 17.
    [15]J. A. Hansen, R. Mukhopadhyay, J. O. Hansen, K. V. Gothelf, J. Am. Chem. Soc. 128 (2006) 3860.
    [16]J. A. Hansen, J. Wang, A. N. Kawde, Y. Xiang, K. V. Gothelf, G. Collins, J. Am. Chem. Soc.128 (2006) 2228.
    [17]G. D. Liu, J. Wang, J. Kim, M. R. Jan, Anal. Chem.76 (2004) 7126.
    [18]J. Wang, G. D. Liu, A. Merkoci, J. Am. Chem. Soc.125 (2003) 3214.
    [19]A. de la Escosura-Muniz, A. Ambrosi, A. Merkoci, Trends. Analyt. Chem.27 (2008) 568.
    [20]X. L. Xu, S. Zhang, H. Chen, J. Kong, Talanta 80 (2009) 8.
    [21]A. Bange, H. B. Halsall, W. R. Heineman, Biosens. Bioelectron.20 (2005) 2488.
    [22]Q. Zhang, J. J. Xu, Y. Liu, H. Y. Chen, Lab Chip 8 (2008) 352.
    [23]J. J. Xu, N. Bao, X. H. Xia, Y. Peng, H. Y. Chen, Anal. Chem.76 (2004) 6902.
    [24]H. F. Qian, C. Q. Dong, J. F. Weng, J. C. Ren, Small 2 (2006) 747.
    [25]H. Zhang, D. Y. Wang, B. Yang, H. Mohwald, J. Am. Chem. Soc.128 (2006) 10171.
    [26]H. F. Qian, X. Qiu, L. Li, J. C. Ren, J. Phys. Chem. B 110 (2006) 9034.
    [27]A. Shavel, N. Gaponik, A. Eychmuller, J. Phys. Chem. B 108 (2004) 5905.
    [28]Z. Zhelev, R. Bakalova, H. Ohba, R. Jose, Y. Imai, Y. Baba, Anal. Chem.78 (2006)321.
    [29]Z. Zhelev, H. Ohba, R. Bakalova, R. Jose, S. Fukuoka, T. Nagase, et al, Chem. Commun.15 (2005) 1980.
    [30]S. P. Wang, N. Mamedova, N. A. Kotov, W. Chen, J. Studer, Nano. Lett.2 (2002) 817.
    [31]R. J. Cui, H. C. Pan, J. J. Zhu, H. Y. Chen, Anal. Chem.79 (2007) 8494.
    [32]J. Wang, Stripping Analysis. VCH Publishers:Deerfield Beach.1985.
    [33]X. A. Li, D. M. Zhou, J. J. Xu, H. Y. Chen, Talanta 71 (2007) 1130.
    [34]Z. H. Nie, C. A. Nijhuis, J. L. Gong, X. Chen, A. Kumachev, A. W. Martinez, et al, Lab Chip 10(2010)477.
    [35]J. B. Jia, B. Q. Wang, A. G. Wu, G. J. Cheng, Z. Li, S. J. Dong, Anal. Chem.74 (2002)2217.
    [36]L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Kail, F. Hook, Langmuir 19 (2003) 10414.
    [37]T. Powell, J. Y. Yoon, Biotechnol. Prog.22 (2006) 106.
    [38]V. Carralero, M. L. Mena, A. Gonzalez-Cortes, P. Yanez-Sedeno, J. M. Pingarron, Biosens. Bioelectron.22 (2006) 730.
    [39]C. X. Guo, P. Boullanger, L. Jiang, T. Liu, Biosens. Bioelectron.22 (2007) 1830.
    [40]S. H. Chen, R. Yuan, Y. Q. Chai, L. Y. Zhang, N. Wang, X. L. Li, Biosens. Bioelectron.22 (2007) 1268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700