低聚壳聚糖衍生物的制备及其修饰的磁共振成像造影剂体内外弛豫性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖是自然界中第二大类丰产资源甲壳素脱乙酰化的产物,也是食品工业中的重要原料之一。壳聚糖后加工产品的进一步开发与应用是避免自然资源浪费、扩大壳聚糖应用范围的途径之一,尤其是在具有高附加值的生物医药领域的拓展应用。临床常用的造影剂Gd-DTPA (马根维显,Magnevist(?))在生物体内的对比时间短、弛豫率低、无靶向性,具有一定的毒性,甚至会引起生物体肾细胞的纤维化。利用天然零毒性、可生物降解、具有良好生物相容性的低聚壳聚糖对商用造影剂进行修饰改性,以提高造影剂的弛豫率和体内安全性。本论文的研究内容主要分为以下3个部分:
     1.通过微波辅助双氧水降解法制备不同聚合度的水溶性低聚壳聚糖并合成了3种低聚壳聚糖衍生物。研究了低聚壳聚糖及其衍生物作为亲水药物载体模型的潜能。
     1.1通过核磁氢谱(1H NMR)、凝胶过滤色谱(GFC)、红外光谱(IR)等表征了低聚壳聚糖及其衍生物的结构。结果表明壳聚糖在降解过程中只是发生了β-1,4糖苷键的断裂,不存在开环等副反应。当降解得到的低聚壳聚糖的聚合度在20以下时,其分子量分布指数(PDI)大大降低。
     1.2研究了牛血清白蛋白(BSA)在低聚壳聚糖及其衍生物溶液中的紫外(UV)和荧光光谱。结果表明低聚壳聚糖及其衍生物与BSA结合的主要作用力是疏水和氢键作用。BSA的构象在低聚壳聚糖及其衍生物溶液的微环境中没有大的改变,天然活性没有受到影响,说明低聚壳聚糖及其衍生物具有成为良好的水溶性药物载体的潜力。
     1.3通过等温滴定微量热仪(ITC)研究了低聚壳聚糖及其衍生物与活性医药蛋白BSA之间的热力学作用。结果表明,低聚壳聚糖及其衍生物与BSA的作用过程均是放热的,且是自发进行的。低聚壳聚糖与BSA作用的主要驱动力是氢键。低聚壳聚糖衍生物与BSA作用的主要驱动力是氢键和疏水作用。这一结论与紫外和荧光光谱的结果一致。
     2.将不同聚合度的低聚壳聚糖对DTPA进行修饰得到新的配体(DTPA(低聚壳聚糖)),再分别与顺磁性Mn(Ⅱ)、Gd(Ⅲ)络合得到新型的功能配合物作为潜在的MRI造影剂,并研究了锰基和钆基配合物的体外弛豫性能。
     2.1通过反转恢复序列研究了DTPA(低聚壳聚糖)锰基和钆基配合物的纵向弛豫率。结果发现钆基配合物的弛豫率不仅高于商业化的造影剂Gd-DTPA,同时也高于锰基配合物。一定条件下配合物的纵向弛豫率均随着修饰的低聚壳聚糖聚合度的增加而增加。DTPA(低聚壳聚糖)锰基和钆基配合物在BSA溶液中的纵向弛豫率均略高于在水溶液中的弛豫率,说明配合物与BSA之间存在相互作用,除了自由态的配合物之外,还形成了配合物-BSA的复合模式。
     2.2通过多层自旋回波序列研究了DTPA(低聚壳聚糖)锰基和钆基配合物的体外T1加权成像。结果表明锰基和钆基配合物的体外T1加权成像所得到的FLASH图像的亮度和对比度与配合物的浓度有一定的线性相关性,同等浓度下DTPA(低聚壳聚糖)钆基配合物的体外成像效果最优。另外研究发现体外T1加权成像的效果与修饰的低聚壳聚糖的聚合度也有一定的关系。
     2.3通过ITC研究了DTPA(低聚壳聚糖)锰基和钆基配合物与BSA之间的热力学作用。结果表明这两类配合物与BSA之间的作用均是自发进行的,熵驱动的,且作用力以疏水作用为主。
     3.以DTPA(低聚壳聚糖)钆基配合物为主要研究对象,研究了其在小鼠体内的安全性和大鼠体内核磁成像情况。
     3.1小鼠急性毒性实验结果表明, DTPA(低聚壳聚糖)钆基配合物在注射入小鼠体内一星期后,小鼠仍健康存活,体重正常增加,未见明显的毒性反应。
     3.2小鼠骨髓中嗜多染红细胞(PCE)微核实验结果呈阴性,表明DTPA(低聚壳聚糖)钆基配合物对小鼠的染色体没有危害,没有致突变副作用。
     3.3金属Gd(Ⅲ)在小鼠体内的残留量分析结果表明,Gd(Ⅲ)在小鼠的肝脏和肾脏内的残留量是先增后减的趋势,一天后残留量逐渐减少。Gd(Ⅲ)在小鼠其它脏器内的残留量呈现逐渐降低的趋势,且残留量不大于Gd-DTPA。
     3.4大鼠体内核磁成像研究结果表明,DTPA(低聚壳聚糖)钆基配合物在大鼠体内的保留时间及靶向部位与修饰的低聚壳聚糖的聚合度有关。聚合度为11的低聚壳聚糖修饰的钆基配合物在大鼠肝脏部位的保留时间最长,并且在一定时间内信号强度不降低,有利于肝靶向成像。但是6聚合度的低聚壳聚糖修饰的钆基配合物在肝脏部位没有此效果,其会很快进入肾脏并代谢出体外。
Chitosan is the deacetylated product of chitin, which is the second largest high-yield resource in nature. Chitsan is one of the important raw materials in food industry. The further development and application of chitosan processing products is one of the ways to avoid wastage of natural resources and expand the application of chitosan, especially in the biomedical field with high value. The common contrast agent Gd-DTPA (Magnevist(?)) was found that the contrast time in body was short and the relaxivity was relatively low. In addition, Gd-DTPA is non-targeted and has toxicity, even lead to nephrogenic systemic fibrosis (NSF) of organism renal cells. The commercial contrast agent was modified with chitosan with low degree of polymerization, which was non-toxic, biodegradable and biocompatible. The final goal was to improve the relaxivity of contrast agent and the safety in body. The contents of this paper are divided into the following three parts.
     1. Water-soluble low molecular weight chitosan with various degrees of polymerization were prepared with the method of microwave-assisted hydrogen peroxide degradation. The three derivatives were also synthesized. The potential of low molecular weight chitosan and its derivatives as hydrophilic drug carrier model was studied.
     1.1The structures of low molecular weight chitosan and its derivatives were characterized through'H NMR, Gel filtration chromatography (GFC), IR, etc. The results showed that only β-1,4glucoside bond was fractured in the degradation process. There was no side reaction such as ring-opening. The polydispersity index was greatly lowed when the degree of polymerization of low molecular weight chitosan was below20.
     1.2The UV and fluorescence spectra of bovine serum albumin (BSA), which was in low molecular weight chitosan and its derivatives solution, were studied. The results showed that the main binding force was hydrophobic and hydrogen bonding effect. The conformation of BSA was not changed in the microenvironment of low molecular weight chitosan and its derivatives solution. Besides, the natural activity of BSA was not affected. It was concluded that they have the potential to be good hydrophilic drug carrier model.
     1.3The thermodynamic effect between low molecular weight chitosan and its derivatives and active pharmaceutical BSA was studied by isothermal titration calorimetry (ITC). The results indicated that the binding process was exothermic and spontaneous. The main binding force between low molecular weight chitosan and BSA was hydrogen bonding effect. The main binding force between its derivatives and BSA was hydrogen bonding and hydrophobic effect. The conclusion was consistent with the results of UV and fluorescence spectra.
     2. The new ligand was modified with low molecular weight chitosan at various degrees of polymerization and then chelated with paramagnetic Mn(Ⅱ) as well as Gd(Ⅲ) to prepare new functional complexes as potential MRI contrast agents. The relaxation property of Mn(Ⅱ) and Gd(Ⅲ) complexes was studied.
     2.1The longitudinal relaxivity of Mn(Ⅱ) and Gd(Ⅲ) complexes modified with low molecular weight chitosan was measured with inversion recovery sequence. The results showed that the relaxivity of Gd(Ⅲ) complex was not only higher than that of commercial Gd-DTPA but also Mn(Ⅱ) complex. Under certain condition, the longitudinal relaxivity was increased with the increase of degree of polymerization of low molecular weight chitosan. The longitudinal relaxivity in BSA solution was higher than that in aqueous solution, which suggested that the interaction between the complexes and BSA occurred. The compound model of complexes-BSA was formed.
     2.2Ti-weighted imaging in vitro of Mn(Ⅱ) and Gd(Ⅲ) complex was measured with multislice spin echo sequence. It was found that there was a correlation between lightness and imaging contrast of FLASH images and the concentration of the complexes. The results of Ti-weighted imaging in vitro of Gd(Ⅲ) complex were optimal at the equivalent concentration. It was also found that the imaging result was related to the degree of polymerization of low molecular weight chitosan.
     2.3The thermodynamic effect between the Mn(Ⅱ) and Gd(Ⅲ) complexes and BSA was measured with ITC. The results showed that the binding process was both spontaneous and entropy-driven. The main binding force was hydrophobic effect.
     3. The Gd(Ⅲ) complex modified with low molecular weight chitosan was chosen as a main study object. The safety in mice and MR imaging in vivo in the rat of Gd(Ⅲ) complex were studied.
     3.1The results of acute toxicity study showed that the mice remained healthy one week after the injection of Gd(Ⅲ) complex, and normal weight was gained. There was no significant toxicity.
     3.2The micronucleus result of polychromatic erythrocyte (PCE) in mice marrow was negative, which indicated that there is no harm on mice chromosome. Gd(Ⅲ) complex would not lead to mutagenesis side effects.
     3.3The results of Gd(Ⅲ) residual analysis showed that Gd(Ⅲ) residue in mice liver and kidney was firstly increased and then decreased. The residues were promptly decreased after one day. However, Gd(Ⅲ) in other organs were gradually decreased, and Gd(Ⅲ) was metabolized out of the body.
     3.4The results of MR imaging in vivo showed that the length of retention time of Gd(Ⅲ) complex persisted in rat liver, and the target site were related to the degree of polymerization of low molecular weight chitosan for modification. The retention time of Gd(Ⅲ) complex modified with low molecular weight chitosan with11degree of polymerization in rat liver was longest and the signal strength was not reduced within a certain time, which was advantageous for liver target. However, the Gd(Ⅲ) complex modified with low molecular weight chitosan with6degree of polymerization had no effect in the rat liver, and it reached the kidney and metabolized out of the body.
引文
[1]陈小燕,高泽立.多糖的研究进展-多糖对机体免疫功能的影响[J].胃肠病学和肝病学杂志.2006,15(5):540-543.
    [2]韩宏义,白鹏,迟鹤.多糖的研究进展[J].农业科技与信息.2008,(4):79-80.
    [3]余强,聂少平,李文娟,等.黑灵芝多糖对D-半乳糖致衰老小鼠的作用研究[J].食品科学.2009,30(17):305-307.
    [4]迟玉森,庄桂东,黄福祥,等.海参多糖对小白鼠伤口愈合的影响[J].食品科学.2005,26(7):211-214.
    [5]蒋挺大.甲壳素[M].北京:化学工业出版社,2003:23-28.
    [6]郑建仙.功能性低聚糖[M].北京:化学工业出版社,2004:215-218.
    [7]Varum K. M., Ottoy M. H., Smidsrod O. Acid hydrolysis of chitosans. Carbohydrate Polymers.2001,46(1):89-98.
    [8]Francis Suh J. K., Matthew H. W. T. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering:A review[J]. Biomaterials.2000,21(24):2589-2598.
    [9]朱晓康.可食性纤维素-人体第六生命要素[J].山东食品发酵.1997,3:46-51.
    [10]吴海若,胡巧玲.壳聚糖及其衍生物在生物医用方面的研究进展[J].温州师范学院学报.2001,22(3):34-37.
    [11]陈世清.甲壳素/壳聚糖在工业水处理中的应用[J].工业水处理.1996,16(2):1-3.
    [12]王军,周本权,杨许召,等.低聚壳聚糖的制备及应用研究进展[J].日用化学工业.2010,40(2):124-128.
    [13]郭巧玲.低聚壳聚糖的生理活性及应用[J].漳州职业技术学院学报.2008,10(4):27-29.
    [14]严金龙,许琦,蔡照盛,等.甲壳低聚糖的制备、特性与应用研究进展[J].安徽化工.2005,(1):24-27.
    [15]Anvikul W., Uppanan P., Thavornyutikarn B. In vitro comparative hemostatic studies of chitin, chitosan and their derivatives. Journal of Applied Polymer Science.2006,102(1):445-451.
    [16]李继平,杨冬雪.止血性壳聚糖的制备及其凝血效果的研究[J].辽宁化工.2007,36(5):289-291.
    [17]孟哲,胡章记.壳聚糖的结构特性及其衍生物的应用[J].化学教育.2006,8:1-2.
    [18]夏文水,吴炎楠.甲壳低聚糖的抗菌作用及其在食品保藏中的应用[J].无锡轻工业大学学报.1998,17(4):10-14.
    [19]张程亮,孙纳.壳聚糖用于抗肿瘤治疗的研究进展[J].中国药房.2005,16(7):549-551.
    [20]杜昱光,白雪芳,金宗廉,等.壳寡糖抑制肿瘤作用的研究[J].中国海洋药物.2002,(2):18-21.
    [21]Tokoro A., Kobayashi M., Tatekawa N., et al. Protective effect of N-acetyl chitohexaose on Listeria monocytogens infection in Mice[J]. Microbiology and Immunology.1989,33(4):357-367.
    [22]匡银近,池伟林,覃彩芹.壳聚糖在食品工业中应用的研究进展[J].孝感学院学报.2006,26(3):30-35.
    [23]柴平海,张文清,金鑫荣.低聚壳聚糖功能性质及应用[J].大学化学.1999,14(2):36-38.
    [24]Jeon Y. J., Shahidi F., Kim S. E. K. Preparation of chitin and chitosan chitooligosaccharides and their application in physiological functional foods[J]. Food Reviews International.2000,16(2):159-176.
    [25]王月慧.壳聚糖的生理活性和在食品工业中的应用[J].山东食品发酵.2005.1:14-16.
    [26]张亦飞.壳聚糖果蔬保鲜剂的研究[J].食品工业科技.1996,4:13-15.
    [27]谢春晖,位思清,王兆升.壳聚糖涂膜保鲜冬枣的研究[J].山东农业大学学报:自然科学版.2010,41(1):45-50.
    [28]夏文水,王璋.壳聚糖澄清果汁作用的研究[J].无锡轻工业学院学报.1993,12(2):111-117.
    [29]Tripathi S., Mehrotra G. K., Dutta P. K. Preparation and hysicochemical evaluation of chitosan/poly(vinylalcohol)/pectintemary film for food-packaging applications[J]. Carbohydrate Polymers.2010,79(3):711-716.
    [30]Srinivasa P. C., Ramesh M. N., Kumar K. R. Properties of chitosan films prepared under different drying conditions[J]. Journal of Food Engineering.2004, 63(1):79-85.
    [31]张培培,唐忠锋.药物阿司匹林剂型的研究进展[J].中国现代应用药学杂志.2009,26(7):542-545.
    [32]何爱明,林世明.阿司匹林壳聚糖微球的研制及药动学参数测定[J].复旦学报.2007,34(3):463-464.
    [33]王亚红,曲小姝,祝波,等.壳聚糖及其衍生物在医药领域的应用[J].天津化工.2005,19(5):7-10.
    [34]Khor E., Lim L. Y. Implantable applications of chitin and chitosan[J]. Biomaterial.2003,24(13):2339-2349.
    [35]李润铭,邓顺周.甲壳素及壳聚糖在医药领域的研究进展[J].食品与药品.2007,9(50):50-53.
    [36]Knill C. J., kennedy J. F., Mistry J., et al. Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressings[J]. Carbohydrate Polymers.2004,55(1):65-76.
    [37]方华丰,周宜开,任恕.生物素化壳聚糖微球的体外抗癌活性[J].药学学报.2000,35(5):385-388.
    [38]Sandhya B., Tonni A. K. Low-cost adsorbents for heavy metals uptake from contaminated water:A review[J]. Journal of Hazardous Materials.2003,97(1-4): 219-243.
    [39]姜传福.壳聚糖在环境污染防止上的应用[J].锦州师范学院学报(自然科学版).2001,22(4):33-35.
    [40]崔淑玲.壳聚糖在纺织印染行业中的应用[J].染整技术.1999,21(2):16-18.
    [41]黄慧.壳聚糖絮凝剂对粉丝废水的絮凝研究效果[J].广西轻工业.2003,3(1):13-15.
    [42]盛封,相波.改性壳聚糖对处理污泥脱水性能影响的研究[J].工业用水与废水.2005,36(4):62-64.
    [43]Ahmad A L., Sumathi S., Hameed B. H. Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC[J]. Chemical Engineering Journal.2006,118(1-2):99-105.
    [44]Gotthardt U., Grambow H. J. Near-Isogenic Wheat Suspension Cultures: Establishment, Elicitor Induced Peroxidase Activity and Potential Use in the Study of Host/Pathogen-Interactions[J]. Journal of plant Physiology.1992, 139(6):650-665.
    [45]罗兵,孙海燕.壳聚糖对黄瓜幼苗冷害损伤的缓解效应[J].安徽农业科学.2006,34(16):4039-4040.
    [46]马承,罗庆熙.壳聚糖在农业领域中的应用[J].北方园艺.2008,(9):55-56.
    [47]舒肇.甲壳质及壳聚糖在园艺上的应用[J].西南园艺.2001,29(1):54-55.
    [48]裘迪红,吴汉民.甲壳低聚糖制备及在农业上的应用[J].宁波大学学报:理工版.2001,14(2):59-62.
    [49]万鹏,潘婉莲.甲壳素及其衍生物的应用开发[J].上海化工.2000,(5):32-35.
    [50]谭天伟.化妆品原料中的新宠-壳聚糖[J].精细与专用化学品,1999,(8):14.
    [51]张文清,柴平海,金鑫荣,等.壳聚糖及其衍生物在化妆品中的应用[J].高分子通报.1999,2:73-76.
    [52]刘晓,石瑛,白雪芳,等.甲壳低聚糖的酸水解[J].中国水产科学.2003,10(1):69-72.
    [53]覃彩芹,肖玲,杜予民,等.过氧化氢氧化降解壳聚糖的可控性研究[J].武汉大学学报.2000,46(2):196-198.
    [54]郑健仙.功能性低聚糖[M].北京:化学工业出版社,2004:215-264.
    [55]林正欢,夏峥嵘,李绵贵.低聚水溶性壳聚糖的制备研究[J].精细石油化工进展.2002,3(10):14-16.
    [56]王喆.低分子量壳聚糖的制备[D].长春:长春工业大学,2011.
    [57]Izume M., Ohtakara A. Preparation of D-glucosamine oligosaccharides by the enzymatic hydrolysis of chitosan[J]. Agricultural and Biological Chemistry. 1987,51(4):1189-1191.
    [58]Muzzarelli R. A. A., Peter M. G. (Eds). Chitin Handbook[M]. Grottammare: Atec Edizioni,1997:109-119.
    [59]Muraki E., Yaku F., Kojima H. Preparation and crystallization of D-glucosamine oligosaccharides with DP 6-8[J]. Carbohydrate Research.1993, (239):227-237.
    [60]何新益,夏文水.复合酶对壳聚糖的降解作用研究[J]. Food & Machinery. 2007,23 (3):32-35.
    [61]李鹏程,邢荣娥,刘松,等.微波降解的甲壳低聚糖化合物及其制备方法[P].中国专利:03138817.5,2004-2-11.
    [62]Czechowska-Biskup R., Rokita B., Lotfy S., et al. Degradation of chitosan and starch by 360-kHz ultrasound[J]. Carbohydrate Polymers.2005,60(2):175-184.
    [63]胡健,赵国骏,姜涌明等.γ射线辐照降解壳聚糖的研究[J].扬州大学学报(自然科学版).1999,2(2):51-54.
    [64]Andrady A. L., Torikal A., Takahiro Kobatake. Spectral Sensitivity of Chitosan Photodegradation[J]. Journal of Applied Polymer Science.1996,62(9): 1465-1471.
    [65]Wang S. M., Huang Q. Z., Wang Q. S. Study on the synergetic degradation of chitosan with ultraviolet light and hydrogen peroxide[J]. Carbohydrate Research. 2005,340(6):1143-1147.
    [66]张峰,殷佳敏,丁丽娟.超声波辅助降解壳聚糖的研究[J].高分子材料科学与工程.2004,20(1):221-223.
    [67]郝红元,张岐,葛庆凯.壳聚糖锰(Ⅱ)配位与氧化控制降解寡糖的分子量分布[J].无机化学学报.2004,20(9):1085-1088.
    [68]严俊.甲壳素的化学和应用[J].化学通报.1984,11:26-31.
    [69]蒋挺大.壳聚糖[M].北京:化学工业出版社,2001:48-50.
    [70]王周玉,蒋珍菊,李富生,等.水溶性N-酰化壳聚糖的合成与表征[J].四川工业学院学报.2004,23(1):73-75.
    [71]Hirano S., Moriyasu T. N-(carboxyacyl) chitosans[J]. Carbohydrate Research. 1981,92(2):323-327.
    [72]蒋珍菊.壳聚糖类肝素衍生物的合成及其抗凝血性能研究[D].四川:西南石油学院,2003.
    [73]蒋珍菊,王周玉,胡星琪.硫酸/氯磺酸混酸酯化壳聚糖的研究[J].化学研究 与应用.2005,17(3):347-349.
    [74]谭淑英,汪玉庭,唐玉蓉.壳聚糖乙酸酯冠醚对金属离子的吸附性能研究[J].环境科学.1999,20(3):59-62.
    [75]Jia Z. S., Shen D. F., Xu W. L. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan[J]. Carbohydrate Research.2001, 333(1):1-6.
    [76]Domard A., Rinaudo M., Terrassin C. New method for the quaternization of chitosan[J]. International Journal of Biological Macromolecules.1986,8(2): 105-107.
    [77]Yoo S. H., Lee J. S., Park S. Y., et al. Effect of selective oxidation of chitosan on physical and biological properties[J]. International Journal of Biological Macromolecules.2005,35(1-2):27-31.
    [78]赵海峰,张敏卿,曾爱武.H2O2氧化降解壳聚糖研究[J].化工进展.2003,(2):160-164.
    [79]Li W., Li Z. Y., Hao W. S., et al. Chemical modification of Biopolymers-mechanism of model graft copolymerization of Chitosan[J]. Journal of Biomaterials Science Polymer Edition.1993,4(5):557-566.
    [80]Yazdani-Pedram M., Retuert J. Homogeneous grafting reaction of vinyl pyrrolidone onto chitosan[J]. Journal of Applied Polymer Science.1997,63(10): 1321-1326.
    [81]Lauffer R. B. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging:theory and design[J]. Chemical Reviews.1987,87(5): 901-927.
    [82]Aime S., Fasano M., Terreno E. Lanthanide (Ⅲ) chelates for NMR biomedical applications[J]. Chemical Society Reviews.1998,27(1):19-29.
    [83]Lauterbur P. C. Image formation by induced local interactions:examples employing nuclear magnetic resonance[J]. Nature.1973,242:190-191.
    [84]陈星荣,沈天真,段新祥.全身CT和MRI[M].第一版.上海:上海医科大学出版社,1993.
    [85]阮榕生.核磁共振技术在食品和生物体系中的应用[M].北京:中国轻工业出版社,2009.
    [86]Liang Z. P., Lauterbur P C. Principles of Magnetic Resonance Imaging[M]. First edition. New York:IEEE Press,2000.
    [87]Caravan P., Ellison J. J., McMurry T. J., et al. Gadolinium (Ⅲ) Chelates as MRI Contrast Agents:Structure, Dynamics, and Applications[J]. Chemical Reviews. 1999,99(9):2293-2352.
    [88]张华.现代有机波谱分析[M].第一版.北京:化学工业出版社,2005.
    [89]罗丽.新型多胺多酸配合物类磁共振成像造影剂的研究[D].西安:西北大学,2005.
    [90]罗毅,卓仁禧,史玉亭.磁共振成像造影剂研究的近况[J].国外医药(合成药生化药制剂分册).1995,16:200-208.
    [91]罗丽,郑书展,张世平,等.磁共振成像造影剂的研究进展[J].西北大学学报(自然科学网络版).2004,2(1]):1-10.
    [92]高修成,杨小庆.肝脏MRI造影剂Mn-DPDP临床应用研究进展[J].现代医学.2003,31(4):266-269.
    [93]鄢国平,卓仁禧.磁共振成像造影剂的研究进展[J].科学通报.2001,46(7):531-536.
    [94]王毅翔,沈天真,陈星荣.新型磁共振成像造影剂研究动态[J].国外医学临床放射学分册.1995,1:20-22.
    [95]陈龙华.磁共振成像对比剂增强理论与治疗[M].北京:人民卫生出版社,1995.
    [96]Chen Y. X., Gu H. X. Microwave assisted fast fabrication of Fe3O4-MWCNTs nanocomposites and their application as MRI contrast agents[J]. Materials Letters.2012,67:49-51.
    [97]Meade T. J., Taylor A. K., Bull S. R. New magnetic resonance contrast agents as biochemical reporters[J].Current Opinion in Neurobiology.2003,13(5): 597-602.
    [98]Bottrill M., Kwok L., Long N. J. Lanthanides in magnetic resonance imaging[J]. Chemical Society Reviews.2006,35(6):557-571.
    [99]Bartolini M. E., Pekar J., Chettle D. R., et al. An investigation of the toxicity of gadolinium based MRI contrast agents using neutron activation analysis[J]. Magnetic Resonance Imaging.2003,21(5):541-544.
    [100]Cacheris W. P., Quay S. C., Rocklage S. M. The relationship between thermodynamics and the toxicity of gadolinium complexes[J]. Magnetic Resonance Imaging.1990,8(4):467-481.
    [101]Rizkalla E. N., Choppin G. R., Cacheris W. Thermodynamics, PMR, and fluorescence studies for the complexation of trivalent lanthanides, Ca2+, Cu2+, and Zn2+ by diethylenetriaminepentaacetic acid bis(methylamide)[J]. Inorganic chemistry.1993,32(5):582-586.
    [102]Tweedle M. F., Runge V. M. "Gadoteridol" Drugs of the Future[J]. Drugs Future. 1992,17:187-190.
    [103]Torchilin V. P. Targeted Pharmaceutical Nanocarriers for Cancer Therapy and Imaging[J]. The AAPS Journal.2007,9(2):128-147.
    [104]Telgmann. L., Sperling M., Karst U. Determination of gadolinium-based MRI contrast agents in biological and environmental samples:A review[J]. Analytica Chimica Acta.2013,764:1-16.
    [105]Bousquet J. C., Saini S., Stark D. D., et al. Gd-DOTA:characterization of a new paramagnetic complex[J]. Radiology.1988,166:693-698.
    [106]Chang C. A. Magnetic resonance imaging contrast agents:design and physicochmical properties of gadodiamide[J]. Investigative Radiology.1993,28: 22-27.
    [107]Masui T., Saeed M., Wendland M. F., et al. Occlusive and reperfused myocardial infarcts:MR imaging differentiation with nonionic Gd-DTPA-BAM[J]. Radiology.1991,181:72-83.
    [108]Wedeking P., Sotak C. H., Telser J., et al. Quantitative dependence of MR signal intensity on tissue concentration of Gd(HP-DO3A) in the nephrectomized rat[J]. Magnetic Resonance Imaging.1992,10(1):97-108.
    [109]Cavagna F., Dapra M., Maggioni F., et al. Gd-BOPTA/Dimeg:Experimental disease imaging[J]. Magnetic Resonance in Medicine.1991,22(2):329-333.
    [110]Adzamli K., Periasamy M. P., Spiller M., et al. NMRD Assessment of Gd-DTPA-bis(methoxyethylamide) (Gd-DTPA-BMEA), a Nonionic MRI Agent[J]. Investigative Radiology.1999,34(6):410-414.
    [111]张善荣,任吉民,裴奉奎.磁共振成像造影剂的一些进展[J].化学进展.1995,7(2):98-112.
    [112]Van Beers B. E., Gallez B., Pringot J. Contrast-enhanced MR imaging of the liver[J]. Radiology.1997,203:297-306.
    [113]Van Beers B. E., Materne R., Lacrosse M., et al. MR imaging of hypervascular liver tumors:timing optimization during the arterial phase[J]. Journal of Magnetic Resonance Imaging.1999,9(4):562-567.
    [114]Kroft L. J. M., de Roos A. Blood pool contrast agents for cardiovascular MR imaging[J]. Journal of Magnetic Resonance Imaging.1999,10(3):395-403.
    [115]Wen J., Zhuo R. X., Wang L. Aromatic DTPA-Bis(amide) gadolinium complexes as hepatobiliary contrast agents for magnetic resonance imaging[J]. Chinese Jounal of Magnetic Resonance.1998,15(3):217-221.
    [116]Karabulut N., Elmas N. Contrast agents used in MR imaging of the liver[J]. Diagnostic and Interverventional Radiology.2006,12(1):22-30.
    [117]Zhao X., Zhuo R. X., Lu Z. R., et al. Synthesis, characterization and relaxivity of amphipathic chelates of DTPA derivatives with Gd3+, Yb2+ and Mn2+[J]. Polyhedron.1997,16(16):2755-2759.
    [118]Feng J. H., Sun G. Y.. Pei F. K., et al. Comparison between Gd-DTPA and Several Bisamide Derivatives as Potential MRI Contrast Agents[J]. Bioorganic & Medicinal Chemistry.2003,11(15):3359-3366.
    [119]丁雄军,卓仁禧,付功成.二乙三胺五乙酸吡哆醇酯配体及其钆配合物的合成、弛豫率和肝靶向性研究[J].高等学校化学学报.2002,23(1):49-52.
    [120]俞开潮,万福贤,杨献,等.靶向性磁共振成像造影剂的研究进展[J].化学试剂.2004,26(6):329-332.
    [121]Yu K. C., Hu H. B., Liu M. L., et al. NMR relaxivity and imaging of neutral macromolecular polyester gadolinium(III) complexes[J]. Chinese Journal Polymer Science.1999,17(5):471-475.
    [122]Yu K. C., Wang X. B., Ye C. H., et al. Synthesis, relaxivity and MRI enhancement of linear oligo-Gd(Ⅲ) complexes with poly(DTPA-ester) ligands derived from amino acids[J]. Chinese Journal of Chemistry.2001,19(8): 788-793.
    [123]Sajiki H., Ong K. Y. Synthesis of C2-symmetric (S,S)-1,4-dibenzyl-DTPA and 1,4-meso-dibenzyl-DTPA via chiral diamines[J]. Tetrahedron.1996,52(46): 145-147.
    [124]Wallace R. A., Haar Jr J. P., Miller D. B., et al. Synthesis and preliminary evaluation of MP-2269:A novel, nonaromatic small-molecule blood-pool MR contrast agent[J]. Magnetic Resonance in Medicine.1998,40(5):733-739.
    [125]Anelli P. L., Beltrami A., Uggeri F., et al. Chelating compounds, their chelates with paramagnetic metal ions, their preparation and use[P]. European patent:EP 0822180,2000.
    [126]Mcmurry T. J., Sajiki H., Scott D. M., et al. Diagnostic imaging contrast agents with extended blood retention[P]. US patent:WO 023526,1996.
    [127]Hernandez G., Bryant R. G., Tweedle M. F. Proton magnetic relaxation dispersion in aqueous glycerol solutions of Gd(DTPA)2- and Gd-DOTA-[J]. Inorganic Chemistry.1990,29(25):5109-5113.
    [128]Zhuo R. X., Wen J., Wang L. Synthesis and evaluation of aromatic DTPA bis(amide) gadolinium complexes as magnetic resonance imaging contrast agents[J]. Chemical Research in Chinese Universities.1997,13(2):150-160.
    [129]Ladd D. L., Hollister R., Peng X., et al. Polymeric gadolinium chelate magnetic resonance imaging contrast agents:design, synthesis, and properties[J]. Bioconjugate Chemistry.1999,10(3):361-370.
    [130]Bocjhorst K., Hoehin-Berlag M., Kocher M., et al. Proton relaxation enhancement in experimental brain tumors-In vivo NMR study of manganese(Ⅲ) TPPS in rat brain gliomas[J]. Magnetic Resonance Imaging.1990,8(4):499-504.
    [131]Younge S. W., Wright M., Sessler J. L., et al. Texaphyrin-lipophilic molecule-vesicle complexes, membrane incorporation of texaphyrins, and use in diagnosis and therapy[P]. PCT IntAppl WO.1997(46):262.
    [132]罗毅,梅二文,卓仁禧.水溶性金属卟啉肿瘤靶向磁共振成像造影剂的研究[J].高等学校化学学报.1995,16(10):1629-1639.
    [133]鄢国平,邹头君,邵春桃,等.含卟啉基团小分子钆配合物的合成与表征[J].武汉工程大学学报.2013,35(2):1-5.
    [134]Tang J. B., Sheng Y. Q., Hu H. J. Macromolecular MRI contrast agents: Structures, properties and applications[J]. Progress in Polymer Science.2013, 38(3-4):462-502.
    [135]Duarte M. G., Gil M. H., Peters J. A., et al. Synthesis, Characterization, and Relaxivity of Two Linear Gd(DTPA)-Polymer Conjugates[J]. Bioconjugate Chemistry.2001,12(2):170-177.
    [136]Li S. Y., Jiang J., Zou J. PEGylation of protein-based MRI contrast agents improves relaxivities and biocompatibilities[J]. Journal of Inorganic Biochemistry.2012,107(1):111-118.
    [137]Miyake Y., Kimura Y., Ishikawa S. Synthesis and functional evaluation of chiral dendrimer-triamine-coordinated Gd complexes as highly sensitive MRI contrast agents[J]. Tetrahedron Letters.2012,53(34):4580-4583.
    [138]梁晟斌,常飞,李建奇,等.大分子对磁共振造影剂配体改性的研究进展[J].高分子通报.2011,7:96-102.
    [139]Langereis S., de Lussanet Q. G., Van Genderen M. H. P., et al. Multivalent Contrast Agents Based on Gadolinium-Diethylenetriaminepentaacetic Acid-Terminated Poly(propylene imine) Dendrimers for Magnetic Resonance Imaging[J]. Macromolecules.2004,37(9):3084-3091.
    [140]Yan G. P.. Hu B., Liu M. L., et al. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents[J]. Journal of Pharmacy and Pharmacology.2005,57(3):351-357.
    [141]Konda S. D., Aref M., Wang S., et al. Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts[J]. Magnetic Resonance Materials in Physics, Biology and Medicine.2001.12(2-3):104-113.
    [142]Kaneshiro T. L., Jeong E. K., Morrell G., et al. Synthesis and Evaluation of Globular Gd-DOTA-Monoamide Conjugates with Precisely Controlled Nanosizes for Magnetic Resonance Angiography[J]. Biomacromolecules.2008, 9(10):2742-2748.
    [143]Siauve N., Clement O., Cuenod C. A., et al. Capillary leakage of a macromolecular MRI agent, carboxymethyldextran-Gd-DTPA, in the liver: Pharmacokinetics and imaging implications[J]. Magnetic Resonance Imaging. 1996,14(4):381-390.
    [144]Van Hecke P., Marchal G., Bosmans H., et al. NMR imaging study of the pharmacodynamics of polylysine-gadolinium-DTPA in the rabbit and the rat[J]. Magnetic Resonance Imaging.1991,9(3):313-321.
    [145]Shreve P., Aisen A. M. Monoclonal antibodies labeled with polymeric paramagnetic ion chelates[J]. Magnetic Resonance in Medicine.1986,3(2): 336-340.
    [146]Schmiedl U., Ogan M., Paajanen H., et al. Albumin labeled with Gd-DTPA as an intravascular, blood poolenhancing agent for MR imaging:Biodistribution and imaging studies[J]. Radiology.1987,162(2):205-210.
    [147]Laufer R. B., Brady T. J. Preparation and water relaxation properties of proteins labeled with paramagnetic metal chelates[J]. Magnetic Resonance Imaging.1985, 3(1):11-16.
    [148]Laufer R. B., Brady T. J., Brown R. D., et al. 1/T1 NMRD profiles of solutions of Mn2+ and Gd3+ protein-chetale conjugates[J]. Magnetic Resonance in Medicine. 1986,3(4):541-548.
    [149]Ostrowitzki S., Fick J., Roberts T. P. L., et al. Comparison of gadopentetate dimeglumine and albumin-(Gd-DTPA)30 for microvessel characterization in an intracranial glioma model[J]. Journal of Magnetic Resonance Imaging.1998, 8(4):799-801.
    [150]Brasch R. C. Rationable and applications for macromolecular Gd based contrast agents[J]. Magnetic Resonance in Medicine.1991, (22):282-287.
    [151]尤娜.以叶酸-BSA为载体的靶向性钆造影剂的制备及其体外弛豫和细胞摄 取研究[D].武汉:华中科技大学,2007.
    [152]Dirksen A., Langereis S., de Waal B. F. M., et al. A supramolecular approach to multivalent target-specific MRI contrast agents for angiogenesis[J]. Chemical Communications.2005,22:2811-2813.
    [153]Langereis S., Dirksen A., Hackeng T. M., et al. Dendrimers and magnetic resonance imaging[J]. New Journal of Chemistry.2007,7(31):1152-1160.
    [154]Meyer D., Schaefer M., Chamon C., et al. Paramagnetic dextrans as magnetic resonance blood pool tracers[J]. Investigative Radiology.1994,29(2):90-92.
    [155]Casali C., Janier M., Canet E. Evaluation of Gd-DOTA-labeled dextran polymer as an intravascular MR contrast agent for myocardial perfusion[J]. Academic Radiology.1998,5(1):214-218.
    [156]Armitage F. E., Richardson D. E., Li K. C. P. Polymeric contrast agents for magnetic resonance imaging:synthesis and characterization of gadolinium diethylenetriaminepentaacetic acid conjugated to polysaccharides[J]. Bioconjugate Chemistry.1990,1(6):365-374.
    [157]Helbich T. H., Gossman A., Mareski P. A., et al. A new polysaccharide macromolecular contrast agent for MR imaging:biodistribution and imaging characteristics[J]. Journal of Magnetic Resonance Imaging.2000; 11(6): 694-701.
    [158]Sun G. Y., Feng J. H., Jing F. Y., et al. Synthesis and evaluation of novel polysaccharide-Gd-DTPA compounds as contrast agent for MRI[J]. Journal of Magnetism and Magnetic Materials.2003,265(2):123-129.
    [159]孙国英,冯江华,景凤英,等.以阿拉伯半乳聚糖为载体的磁共振成像造影剂的研究[J].高等学校化学学报.2002,23(10):1837-1841.
    [160]Andre J. P., Geraldes C. F. G. C., Martins J. A., et al. Lanthanide(Ⅲ) Complexes of DOTA-Glycoconjugates:A Potential New Class of Lectin-Mediated Medical Imaging Agents[J]. Chemistry-A European Journal.2004,10(22):5804-5816.
    [161]Zhuo R. X., Fu Y. J., Liao J. Synthesis, relaxivity and biodistribution of novel magnetic resonance imaging (MRI) contrast agents:polylysine (Gd-DTPA/DOTA) with pendent galactose moieties as hepatocytetargeting groups[J]. Chinese Chemical Letters.1997,8(2):157-160.
    [162]Takahashi M., Hara Y., Aoshima K., et al. Utilization of dendritic framework as a multivalent ligand:a functionalized gadolinium(Ⅲ) carrier with glycoside cluster periphery[J]. Tetrahedron Letters.2000,41(44):8485-8488.
    [163]Lindsay S. K., Emily A. W., Nicolynn E. D., et al. Multivalent protein polymer MRI contrast agents:Controlling relaxivity via modulation of amino acid sequence[J]. Biomacromolecules.2010,11(1):1429-1436.
    [164]Giuseppe D., Valeria M., Eliana G., et al. Exofacial protein thiols as a route for the internalization of Gd(Ⅲ) based complexes for magnetic resonance imaging cell labeling[J]. Journal of Medicinal Chemistry.2010,53(13):4877-4890.
    [165]Deutsch J, Gries H, Klieger E, et al. N-alkylated metal iron containing Polymer complexes, their preparation and diagnostic reagents containing them[P]. Ger. Patent:DE3701665,1988.
    [166]Schanitt-Willich H., Platzek J., Raduechel B., et al. Cascade polymer complexes for use in medical diagnostic[P]. Ger. Patent:DE19525924,1997.
    [167]章晓波.徐洵.荧光探针研究新进展[J].生物工程进展.2000,20(2):14-16.
    [168]宋春梅,张亮,梁晟斌,等.具有荧光探针的靶向肽/聚(醚-酰胺)制备及其肝癌细胞靶向性能研究[J].高分子学报.2010,7(7):892-296.
    [169]Nasongkla N., Bey E., Ren J., et al. Multifunctional Polymeric Micelles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems[J]. Nano Letters. 2006,6(11):2427-2430.
    [170]Borchard G., Lueβen H. L., de Boer A. G., et al. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption Ⅲ:Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro[J]. Journal of Controlled Release.1996,39(2-3):131-138.
    [171]Allen T. M., Cullis P. R. Drug Delivery Systems:Entering the Mainstream[J]. Science.2004,303(5665):1818-1822.
    [172]Akagi T., Baba M., Akashi M. Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments:Potential applications[J]. Polymer.2007,48(23):6729-6747.
    [173]Couvreur P., Kante B., Lenaerts V., et al. Tissue distribution of antitumor drugs associated with polyalkylcyanoacrylate nanoparticles[J]. Journal of Pharmaceutical Sciences.1980,69(2):199-202.
    [174]Yolles S., Eldridge J. E., Woodland J. H. R. Sustained delivery of drugs from polymer/drug mixtures[J]. Polymer News.1970, (1):9-18.
    [175]Verrecchia T., Spenlehaur G., Bazile D. V., et al. Non-stealth (poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers[J]. Journal of Controlled Release.1995,36(1-2): 49-61.
    [176]Kajihara M., Sugie T., Hojo T., et al. Development of a new drug delivery system for protein drugs using silicone(Ⅱ)[J]. Journal of Controlled Release. 2001,73(2-3):279-291.
    [177]Crommelin D. J., Storm G., Verrijk R., et al. Shifting paradigms: biopharmaceuticals versus low molecular weight drugs[J]. International Journal of Pharmaceutics.2003,266(1-2):3-16.
    [178]Darras V., Nelea M., Winnik F. M., et al. Chitosan modified with gadolinium diethylenetriaminepentaacetic acid for magnetic resonance imaging of DNA/chitosan nanoparticles[J]. Carbohydrate Polymers.2010,80(4): 1137-1146.
    [179]Ilyina A. V., Tikhonov V. E., Albulov A. I., et al. Enzymic preparation of acid-free-soluble chitosan[J]. Process Biochemistry.2000,35(6):563-568.
    [180]Muzzarelli R. A. A. In Natural chelating polymers:alginic acid, chitin and chitosan[M]. Oxford:Pergamoen Press,1973,83.
    [181]Tolaimate A., Desbrieres J., Rhazi M., et al. On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin[J]. Polymer.2000,41(7):2463-2469.
    [182]Paul W., Sharma C. P. Chitosan, a drug carrier for the 21th century:a review[J]. S. T. P. Pharma Sciences.2000,10(1):5-22.
    [183]Dupuis G., LeHoux J. G. Recovery of chitosan from aqueous acidic solutions by salting-out. Part 2:Use of salts of organic acids[J]. Carbohydrate Polymers. 2007,68(2):287-294.
    [184]Rinaudo M. Chitin and chitosan:Properties and applications[J]. Progress in Polymer Science.2006,31(7):603-632.
    [185]Chandy T., Sharma C. P. Chitosan-as a biomaterial[J]. Artificial cells, Blood Substitutes and Biotechnology.1990,18(1):1-24.
    [186]Agnihotri S. A., Mallikarjuna N. N., Aminabhavi T. M. Recet advances on chitosan-based micro- and nanoparticles in drug delivery[J]. Journal of Controlled Release.2004,100(1):5-28.
    [187]Mertins O., Lionzo M. I. Z., Micheletto Y. M. S., et al. Chitosan effect on the mesophase behavior of phosphatidylcholine supramolucular systems[J]. Materials Science and Egnineering:C.2009,29(2):463-469.
    [188]Hori M., Onishi H., Machida Y. Evaluation of Eudragit-caoted chitosan microparticles as an oral immune delivery system[J]. International Journal of Pharmaceutics.2005,297(1-2):223-234.
    [189]Wu J., Luan M., Zhao J. Trypsin immobilization by direct adsorption on metal ion chelated macroporous chitosan-silica gel beads[J]. International Journal of Biological Macromolucules.2006,39(4-5):185-191.
    [190]Artursson P., Lindmark T., Davis, S. S., et al. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2)[J]. Pharmaceutical Research.1994,11(9):1358-1361.
    [191]Mao H. Q., Roy K., Troung-Le V. L., et al. Chitosan-DNA nanoparticles as gene carriers:synthesis, characterization and transfection efficiency[J]. Journal of Controlled Release.2001,70(3):399-421.
    [192]Liu W. G., Zhang X., Sun S. J., et al. N-alkylated chitosan as a potential nonviral vector for gene transfection[J]. Bioconjugate Chemistry.2003,14(4):782-789.
    [193]Calvo P., Remunan-Lopez C., Vila-Jato J. L., et al. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers[J]. Journal of Applied Polymer Science.1997,63(1):125-132.
    [194]Hu Y., Jiang X. Q., Ding Y., et al. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles[J]. Biomaterials.2002,23(15): 3193-3201.
    [195]Dureja H., Tiwary A. K., Gupta S. Simulation of skin permeability in chitosan membranes[J]. International Journal of Pharmaceutics.2001,213(1-2):193-198.
    [196]Roy K., Mao H. Q., Huang S. K., et al. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy[J]. Nature Medicine.1999,5(4):387-391.
    [197]Zhu A. P., Yuan L. H., Chen, T., et al. Interactions between N-succinyl-chitosan and bovine serum albumin[J]. Carbohydrate Polymers.2007,69(2):363-370.
    [198]van de Weert M., Hennink W. E., Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles[J]. Pharmaceutical Research.2000, 17(10):1159-1167.
    [199]Rao M. S., Chander R., Sharma A. Development of self-stable intermediate-moisture meat products using active edible chitosancoating and irradiation[J]. Journal of Food Science.2005,70(7):325-331.
    [200]Kasaai M. R. A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy[J]. Carbohydrate Polymers.2008,71(4):497-508.
    [201]Guo Z. Y., Xing R. E., Liu S., et al. The influence of molecular weight of quaternized chitosan on antifungal activity[J]. Carbohydrate Polymers.2008, 71(4):694-697.
    [202]Tsai G. J., Zhang S. L., Shieh P. L. Antimicrobial Activity of a Low-Molecular-Weight Chitosan Obtained from Cellulase Digestion of Chitosan[J]. Journal of Food Protection.2004,67(2):396-398.
    [203]He X. M., Carter, D. C. Atomic structure and chemistry of human serum albumin[J]. Nature.1992, (358):209-215.
    [204]孙涛,银旭红,甘建红,等.不同取代度N-马来酰低聚壳聚糖的抗氧化活性的研究[J].天然产物研究与开发.2010,22:890-893.
    [205]高怀生,黄是是,张世达,等.壳聚糖的结构分析[J].天津化工.1996,4:21-22.
    [206]Kandori K., Uoya Y., Ishikawa T. Effects of Acetonitrile on Adsorption Behavior of Bovine Serum Albumin onto Synthetic Calcium Hydroxyapatite Particles[J]. Journal of Colloid Interface Science.2002,252(2):269-275.
    [207]Gao H., Wang Y. N., Fan Y. G., et al. Interactions of some modified mono-and bis-β-cyclodextrins with bovine serum albumin[J]. Bioorganic & Medicinal Chemistry.2006,14(1):131-137.
    [208]Mounsey J. S., Kennedy B. T. O., Fenelon M. A., et al. The effect of heating on β-lactoglobulin-chitosan mixtures as influenced by pH and ionic strength[J]. Food Hydrocolloids.2008,22(1):65-73.
    [209]Bao X. Y., Zhu Z. W., Li N.Q., et al. Electrochemical studies of rutin interacting with hemoglobin and determination of hemoglobin[J]. Talanta.2001,54(4): 591-596.
    [210]陈新谦,金有豫.新编药物学[M].北京:科学出版社,1990.
    [211]Kasai, S., Horie, T., Mizuma, T., et al. Fluorescence energy transfer study of the relationship between the lone tryptophan residue and drug binding sites in human serum albumin[J]. Journal of Pharmaceutical Sciences.1987,76(5):387-392.
    [212]Walton A. G., Maenpa F. C. Application of fluorescence spectroscopy to the study of proteins at interfaces [J]. Journal of Colloid and Interface Science.1979, 72(2):265-278.
    [213]Santos H. A., Manzanares J. A., Murtomaki L., et al. Thermodynamic analysis of binding between drugs and glycosaminoglycans by isothermal titration calorimetry and fluorescence spectroscopy. European Journal of Pharmaceutical Sciences.2007,32(2):105-114.
    [214]Ross P. D., Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability[J]. Biochemistry.1981.20(11):3096-3102.
    [215]Girard M., Turgeon S. L., Gauthier S. F. Thermodynamic Parameters of β-Lactoglobulin-Pectin Complexes Assessed by Isothermal Titration Calorimetry[J]. Journal of Agriculture and Food Chemistry.2003,51(15): 4450-4455
    [216]Guzey D., McClements D. J. Characterization of β-lactoglobulin-chitosan interactions in aqueous solutions:A calorimetry, light scattering, electrophoretic mobility and solubility study[J]. Food Hydrocolloids.2006,20(1):124-131.
    [217]Velazquez-Campoy A., Freire E. ITC in the post-genomic era...? Priceless[J]. Biophysical Chemistry.2005,115(2-3):115-124.
    [218]Frisoni G. B., Fox N. C., Jack C. R., et al. The clinical use of structural MRI in Alzheimer disease[J]. Nature Reviews Neurology.2010,6:67-77.
    [219]Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents[J]. Chemical Society Reviews.2006.35(6):512-523.
    [220]Johnson N. J. J., Oakden W., Stanisz G. J., et al. Size-Tunable, Ultrasmall NaGdF4 Nanoparticles:Insights into Their T1 MRI Contrast Enhancement[J]. Chemistry of Materials.2011,23(16):3714-3722.
    [221]Caravan P., Ellison J. J., McMurry T. J., et al. Gadolinium(Ⅲ) chelates as MRI contrast agents:structure, dynamics, and applications[J]. Chemical Reviews. 1999,99(9):2293-352.
    [222]Chen K. J., Wolahan S. M., Wang H., et al. A small MRI contrast agent library of gadolinium(Ⅲ)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity[J]. Biomaterials.2011,32(8):2160-2165.
    [223]Zhang W., Chen Y., Guo D. J., et al. The synthesis of a D-glucosamine contrast agent, Gd-DTPA-DG, and its application in cancer molecular imaging with MRI[J]. European Journal of Radiology.2011,79(3):369-374.
    [224]Kobayashi H., Sato N., Hiraga A., et al.3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties[J]. Magnetic Resonance in Medicine.2001,45(3):454-460.
    [225]Schwickert H. C., Stiskal M., van Dijke C. F., et al. Tumor angiography using high-resolution, three dimensional magnetic resonance imaging:Comparison of gadopentetate dimeglumine and a macromolecular blood-pool contrast agent[J]. Academic Radiology.1995,2(10):851-858.
    [226]Lew S.. Brooks M. V. Nephrogenic systemic fibrosis:clinical review and education for nurse practitioners[J]. The Journal for Nurse Practitioners.2009, 5(5):344-349.
    [227]Na H. B., Song I. C., Hyeon T. Inorganic nanoparticles for MRI contrast agents[J]. Advanced Materials.2009,21(21):2133-2148.
    [228]Kobayashi H., Kawamoto S., Saga T., et al. Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents[J]. Magnetic Resonance in Medicine.2001, 46(4):781-788.
    [229]Yan G. P., Bottle S. E., Zhuo R. X., et al. Evaluation of dendritic gadolinium complexes as MRI contrast agents[J]. Journal of Bioactive and Compatible Polymers.2004, (19):453-465.
    [230]Aime S., Castelli D. D., Crich S. G., et al. Pushing the Sensitivity Envelope of Lanthanide-Based Magnetic Resonance Imaging (MRI) Contrast Agents for Molecular Imaging Applications[J]. Accounts of Chemical Research.2009, 42(7):822-831.
    [231]Karfeld L. S., Bull S. R., Davis N. E., et al. Use of a genetically engineered protein for the design of a multivalent MRI contrast agent[J]. Bioconjugate Chemistry.2007,18(6):1697-1700.
    [232]Artemov D., Bhujwalla Z. M., Bulte J. W. M. Magnetic resonance imaging of cell surface receptors using targeted contrast agents[J]. Current Pharmaceutical Biotechnology.2004,5(6):485-494.
    [233]Aime S., Cabella C., Colombatto S., et al. Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations[J]. Journal of Magnetic Resonance Imaging.2002,16(4):394-406.
    [234]Dirksen A., Langereis S., de Waal B. F. M., et al. Design and synthesis of a bimodal target-specific contrast agent for angiogenesis[J]. Organic Letters.2004, 6(26):4857-4860.
    [235]Lepage M., Dow W. C., Melchior M., et al. Noninvasive detection of matrix metalloproteinase activity in vivo using a novel magnetic resonance imaging contrast agent with a solubility switch[J]. Molecular Imaging.2007,6(6): 393-403.
    [236]Na H. B., Hyeon T. Nanostructured T1 MRI contrast agents[J]. Journal of Materials Chemistry.2009,19(35):6267-6273.
    [237]Rongved P., Klaveness J. Water-soluble polysaccharides as carriers of paramagnetic contrast agents for magnetic resonance imaging:Synthesis and relaxation properties[J]. Carbohydrate Research.1991,214(2):315-323.
    [238]Corsi D. M., Vander Elst L., Muller R. N., et al. Inulin as a carrier for contrast agents in magnetic resonance imaging[J]. Chemistry-A European Journal.2001, 7(1):64-71.
    [239]Qin C. Q., Li H. R., Xiao Q., et al. Water-solubility of chitosan and its antimicrobial activity[J]. Carbohydrate Polymers.2006,63(3):367-374.
    [240]Ravi Kumar M. N. V. A review of chitin and chitosan applications[J]. Reactive and Functional Polymers.2000,46(1):1-27.
    [241]Pillai C. K. S., Paul W., Sharma C. P. Chitin and chitosan polymers:Chemistry, solubility and fiber formation[J]. Progress in Polymer Science.2009,34(7): 641-678.
    [242]Tsai G. J., Zhang S. L., Shieh P. L. Antimicrobial activity of a low-molecular-weight chitosan obtained from cellulase digestion of chitosan[J]. Journal of Food Protection.2004,67(2):396-398.
    [243]Huang Y., Zhang X. Y., Zhang Q., et al. Evaluation of DTPA manganese (II) complexes modified by narrow molecular weight distribution of chitosan oligosaccharides as potential MRI contrast agents[J]. Magnetic Resonance Imaging.2011,29(4):554-560.
    [244]Oksendal A. N., Hals P. A. Biodistribution and toxicity of MR imaging contrast media[J]. Journal of Magnetic Resonance Imaging.1993.3(1):157-165.
    [245]Sun G. Y., Feng J. H., Jing F. Y., et al. Synthesis and evaluation of novel polysaccharide-Gd-DTPA compounds as contrast agent for MRI[J]. Journal of Magnetism and Magnetic Materials.2003,265(2):123-129.
    [246]Matsumoto K., Yakumaru H., Narazaki M., et al. Modification of nitroxyl contrast agents with multiple spins and their proton T1 relaxivity[J]. Magnetic Resonance Imaging.2008.26(1):117-121.
    [247]Sherry A. D., Brown R. D., Geraldes C. F. G. C., et al. Synthesis and Characterization of the Gadolinium(3+) Complex of DOTA-Propylamide:A Model DOTA-Protein Conjugate [J]. Inorganic Chemistry.1989,28(3):620-622.
    [248]Taylor K. M. L., Rieter W. J., Lin W. Manganese-Based Nanoscale Metal#Organic Frameworks for Magnetic Resonance Imaging[J]. Journal of American Chemical Society.2008,130(44):14358-14359.
    [249]Lebduskova P., Kotek J., Hermann P., et al. A gadolinium (Ⅲ) complex of a carboxylic-phosphorus acid derivative of diethylenetriamine covalently bound to inulin, a potential macromolecular MRI contrast agent[J]. Bioconjugate Chemistry.2004,15(4):881-889.
    [250]Armitage F. E., Richardson D. E., Li K. C. P. Polymeric contrast agents for magnetic resonance imaging:synthesis and characterization of gadolinium diethylenetriaminepentaacetic acid conjugated to polysaccharides[J]. Bioconjugate Chemistry.1990,1(6):365-374.
    [251]Wiener E., Brechbiel M. W., Brothers H., et al. Dendrimer-based metal chelates: A new class of magnetic resonance imaging contrast agents[J]. Magnetic Resonance in Medicine.1994,31(1):1-8.
    [252]Langereis S., Dirksen A., Hackeng T. M., et al. Dendrimers and magnetic resonance imaging [J]. New Journal of Chemistry.2007,31(7):1152-1160.
    [253]Sun G. Y., Feng J. H., Jing F. Y., et al. Arabinogalactan as a Carrier for Contrast Agent in Magnetic Resonance Imaging[J]. Chemical Journal of Chinese Universities.2002,23(10):1837-1841.
    [254]Reuben J. Gadolinium(Ⅲ) as a paramagnetic probe for proton relaxation studies of biological macromolecules. Binding to bovine serum albumin[J]. Biochemistry.1971,10(15):2834-2838.
    [255]Li X. Y., Li X. J., Zhang S. R., et al. NMR relaxation studies of Gd-DTPA in human serum albumin solution[J]. Polyhedron.1999,18(5):695-697.
    [256]王彦卿,张红梅,张根成.硅钨杂多酸与牛血红蛋白相互作用的研究[J].无机化学学报.2006,22(5):895-899.
    [257]周立国.药物毒理学[M].北京:中国医药科技出版社,2003.
    [258]刘利兵.实验基础医学[M].西安:第四军医大学出版社,2009.
    [259]Li W. S., Li Z. F., Jing F. Y., et al. Synthesis and evaluation of Gd-DTPA-labeled arabinogalactans as potential MRI contrast agents[J]. Carbohydrate Research. 2008,343(4):685-694.
    [260]Fossheim S. L., Kellar K. E., Mansson S., et al. Investigation of lanthanide-based starch particles as a model system for liver contrast agents[J]. Journal of Magnetic Resonance Imaging.1999,9(2):295-303.
    [261]Feng J. H., Sun G. Y., Pei F. K., et al. Comparison between GdDTPA and two gadolinium polyoxometalates as potential MRI contrast agents[J]. Journal of Inorganic Biochemistry.2002,92(3-4):193-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700