黄芩苷在动物体内的吸收和代谢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄芩苷为黄芩素的7-O-葡萄糖醛酸结合物,属于黄酮类化合物,是黄芩的主要有效成分,在临床上主要用于抗菌消炎和抗感染。黄芩苷可通过水解产生苷元黄芩素,亦具有抗炎和抗变态反应等多方面的作用。对黄芩苷体内的药代药动研究表明,黄芩苷在动物体内主要经历葡萄糖醛酸化和甲基化两条主要的代谢途径;可能由于检测手段的限制,关于黄芩苷在动物体内的吸收程度报道间差异较大,但多数研究认为,黄芩苷类似于其他黄酮类化合物,存在吸收差的问题,并认为黄芩苷只有通过肠茵群水解为黄芩素后才被吸收。近年来,随着国际上对黄芩药材的逐渐开发利用,对黄芩苷的研究以及认识也需进一步深入,有必要对黄芩苷的体内过程以及吸收机理进行再研究。这对正确评价动物实验数据并外推至人体,指导临床合理用药有重要意义。
     本论文拟采用多种检测手段 (液相色谱,气相色谱一质谱联用以及液相色谱-质谱联用技术),系统研究黄芩苷在动物体内的代谢过程和动力学过程,确定研究黄芩苷代谢和动力学合理的动物模型,阐明黄芩苷的吸收机理及与抗生素等抗菌制剂合用所产生可能的相互作用,阐明肝肠循环在黄芩苷吸收过程中的作用,为黄芩苷的剂型设计,为其他黄酮类化合物的结构改造提供依据和新思路,为临床合理用药提供参考。
     一、黄芩苷在不同动物体内的代谢
     以大鼠、犬、金黄地鼠、豚鼠、家兔以及人为实验对象,研究了黄芩苷及其苷元在动物体内的代谢途径,确定或推测了各代谢物的结构,阐明了黄芩苷代谢在动物及人体间的种属差异和种属相似性。在受试动物体内,共检测到8种代谢物,经与对照品或经酶水解后与对照品比较多级质谱及色谱信息,鉴定或推测为黄芩苷M1、黄芩苷的异构体6-O-葡萄糖醛酸结合物M2,6-O-葡萄糖-7-O-葡萄糖醛酸结合物M3、6-O-,7-O-葡萄糖醛酸结合物M4,6-OCH_3-7-O-葡萄糖醛酸结合物M5、葡萄糖结合物M6、黄芩苷苷元黄芩素M7和6-OCH_3-黄芩素M8。结果表明,黄芩苷在受试动物体内经历相似的代谢途径,主要与葡萄糖结合、与葡萄糖醛酸结合、甲基化和水解等代谢过程。其中,与葡萄糖结合为新发现的代谢途径,此代谢途径与葡萄糖醛酸化程度存在一定的种属差异。苷元黄芩素在各动物体内具有与黄芩苷相同的代谢途径。大鼠作为本论文的动物实验模型在代谢方面与人具有种属相似性。
     黄芩苷及其代谢物在排泄方面表现出一定的选择性,胆汁和尿样中葡萄糖醛酸结合物和甲基化结合物的水平较高,无相应的苷元黄芩素和甲基化苷元,而粪
Baicalin (baicalein 7-O-β-glucopyranuronoside, BG) is a bioactive flavonoid isolated from the root of Scutellaria baicalensis George, a medicinal herb that has been used since ancient times to treat inflammation, fever and allergic diseases. Baicalin was readily hydrolyzed by β-glucuronidase to free aglycone baicalein, which has similar pharmacology effects to baicalin. In previous studies on the metabolism, baicalin underwent two main metabolic pathways including glucuronidation and methylation. Due in part to difficulties in establishing a sensitive and specific assay for baicalin and its metabolites, the absorption data of baicalin differed with each other. Most studies suggested that the absorption of baicalin was poor because of its low hydrophilicity, which was always encountered in study of other flavonoids, and baicalin has been found absorbed from the gastrointestinal tract as its aglycone after the hydrolysis of intestinal bacteria. In recent years, baicalin has attracted increasing interest due to its various beneficial biological activities to human health, which made it necessary to further study the metabolism, disposition and pharmacokinetics of baicalin to elucidate its biological effects. It is important for rational evaluation of animal data as well as extrapolation to humans, and for guiding clinical use.
    The thesis aimed to investigate the fate of baicalin in vivo by applying liquid chromatography-mass spectrometry technique (LC/MS~n) with the aid of HPLC/UV and GC/MS, to establish the rational animal model for the study, to evaluate the contribution of enterohepatic recirculation to absorption, and to reveal the absorption mechanism of baicalin. It would offer some references and inspirations for drug design and dosage form modification.
    1. Baicalin metabolism in lab animals
    The metabolic profiles of BG and its aglycone in rats, dogs, golden hamsters, Guinea pigs, rabbit and human were investigated. The metabolites were identified and the species differences were interpreted among animals and humans. Totally 8 metabolites were measured in the tested animals, and were identified as baicalin (M1), baicalein 6-O-β-glucopyranuronoside glucuronide (M2), baicalein 6-O-glucoside-7-O-β-glucopyranuronoside (M3), baicalein 6,7-di-O-β-glucopyranuronoside (M4),
引文
1. Bodor N. Soft drug design: general principles and recent applications. Med Res Rev. 2000; 20:58-101
    
    2. Wijnands WJA, Trooster JEG, Teunissen PC, et al. Ciprofloxacin does not impair the elimination of diazepam in humans. Drug Metab Dispos. 1990; 18: 954-957
    
    3. Osborne R, Joel S, Trew D, Slevin M. Morphine and metabolite behavior after different routes of morphine administration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmcol Res. 1992; 26: 317-329
    
    4. Svensson L. A prodrug approach to a long-acting β-2 agonist. Drug News Perspect. 1991; 4: 544-549
    
    5. Gunaratna C. Drug metabolism & pharmacokinetics in drug discovery: a primer for bioanalytical chemists, part I. Current Separations. 2000; 19: 17-23
    
    6. Obach RS, Baxter JG, Liston TE, et al. The prediction of human pharmacokintic parameters from pre-clinical and in vitro metabolism. J Pharmacol Exp Ther. 1997; 283: 46-58
    
    7. Gumbleton M, Sneader W. Pharmacokinetic considerations in rational drug design. Clin Pharmacokinet. 1994; 26: 161-168
    
    8. Gibson GG, Skett P, Introduction to drug metabolism, second edition, Blackie Academic & Professional, an imprint of Chapman & Hall. 1996, 35
    
    9. Tephly TR, Burchell B. UDP-glucuronosyltransferases a family of detoxifying enzymes. Trends Pharmacol Sci. 1990; 11: 276-279
    
    10. Dutton GJ. Glucuronidation of drugs and other compounds. CNC Press, Florida, 1980
    
    11. Veng PP, Miller R. Pharmacokinetics and bioavailability of cimetidine in humans. J Pharm Sci. 1980;69: 394
    
    12. Jonsson A, Rydberg T. Pharmacokinetics of glibenclamide and its metabolites in diabetic patients with impaired renal function. Eur J Clin Pharmacol. 1998; 53: 429-435
    
    13. Hellstern A, Hildebrand M, Humpel M, et al. Minimal biliary excretion and enterohepatic recirculation of lormetazepam in man as investigated by a new nasobiliary drainage technique. Int J Clin Pharmacol Ther Toxicol. 1990; 28: 256-261
    
    14. Melnik G, Schwesinger WH, Teng R, et al. Hepatobiliary elimination of trovafloxacin and metabolites following single oral doses in healthy volunteers. Eur J Clin Microbiol Infect Dis. 1998; 17:424-426
    
    15. Kuhnle G, Spencer JPE, Chowrinmootoo G, et al. Resveratrol is absorbed in the small intestine as resveratrol glucuronide. Biochem Biophys Res Commun. 2000; 272: 212-217
    16. Kroemer HK, Klotz U. Glucuronidation of drugs. Clin Pharmacokinet. 1992; 23: 292-310
    
    17. Nielsen SE, Dragsted LO. Column-switching HPLC assay for determination apigenin and acacetin in human urine with UV. J Chromatogr B. 1998; 713: 379-386
    
    18. Robert MS, Magnusson BM, Burczynski FJ, et al. Enterohepatic circulation. Clin Pharmacokinet. 2002; 41: 751-790
    
    19. Kotaki H, Yamamura Y, Tanimura Y, et al. Enterohepatic circulation of clioqinol in the rat. J Pharm Dyn. 1984; 7: 420-425
    
    20. Tsai TH, Shun AYC, et al. Enterohepatic circulation of chloramphenicol and its glucuronide in the rat by microdialysis using a hepatoduodenal shunt. Life Sci. 2000; 66: 363-370
    
    21. Marier JF, Vachon P, Gritsas A, et al. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J Pharmacol Exp Ther. 2002; 302: 369-373
    
    22. Berthou E, Guillois B, Riche C, et al. Interspecies variation in caffeine metabolism related to cytochrome P450 enzymes. Xenohiotica. 1992; 22: 671-680
    
    23. Li XQ, Zhong DF, Huang HH, et al. Demethylation metabolism of roxithromycin in humans and rats. Acta Pharmacol Sin. 2001; 22: 469-474
    
    24. Eichelbaum M, Gross AS. The genetic polymorphism of debrisoqunine/sparteine metabolism-clinical aspects. Pharmacol Ther. 1990; 46: 377-394
    
    25. Gonzalez FJ, Meyer UA. Molecular genetics of the debrisoquine/sparteine polymorphism. Clin Pharmacol Ther. 1991; 50: 233-238
    
    26. Lou YC. Differences in drug metabolism polymorphism between Orientals and Caucassians. Drug Metabo Rev. 1990; 22: 451-475
    
    27. Gibson GG, Skett P. Introduction to Drug Metabolism. 2001; 3rd edition, P61
    
    28. Meyer UA, Skoda R, Zanger U. The genetic polymorphism of debrisoquine/sparteine metabolism: molecular mechanism. Pharmacogenetics of drug metabolism, eds Kalow W, New York. Pergamon Press. 1992; 609-623
    
    29. Wilkinson G, Guengerich F, Branch R. Genetic polymophism of S-mephentoin hydroxylation. Pharmacogenetics of drug metabolism. New York, Pergamon Press. 1992; 657-685
    
    30. Meyer UA. The molecular basis of genetic polymorphisms of drug metabolism. J Pharm Pharmacol. 1994; 46 (Suppl): 409-415
    
    31. Meyer UA. Genotype or phenotype: the definition of a pharmacogenetic polymorphism. Pharmacogenetics. 1991; 1: 66-67
    
    32. Coffman BL, Rios GR, King CD, et al. Human UGT2B7 catalyzes in morphine glucuronidation. Drug Metab Dispos. 1997; 25: 1-4
    33. Ruelius HW. Extrapolation from animals to man: predictions, pitfalls and perspectives. Xenobiotica. 1987; 17: 255-265
    
    34. Tam YK. Individual variation in first-pass metabolism. Clin Pharmacokinet Concepts. 1993; 25: 300-328
    
    35. Krishna DR, Klotz U. Extrahepatic metabolism of drugs in humans. Clin Pharmacokinet. 26: 144-160
    
    36. Naritomi Y, Terashita S, Kimura S, et al. Predication of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab Dispos. 2001; 29: 1316-1324
    
    37. Ilett KF, Tee LBG, Reeves PT, et al. Metabolism of drugs and other xenobiotics in the gut lumen wall. Pharmacol Ther. 1990; 32: 67-93
    
    38. Tabata k, Yamaoka K, Fukuyama T, et al. Evaluation of intestinal absorption into the portal system in enterohepatic circulation by measuring the difference in portal-venous blood concentrations of diclofenac. Pharm Res. 1995; 12: 880-883
    
    39. Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by human intestine. Clin Pharmacol Ther. 1996; 60: 14-24
    
    40. Hebert MF, Robert JP, Prueksaritanont T. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther. 1992; 52: 453-457
    
    41. Wu CY, Benet LZ, Hebert MF, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther. 1995; 58: 492-497
    
    42. Holtbecker N, Fromm MF, Kroemer HK, et al. The nifedipine-rifampin interaction: evidence for induction of gut wall metabolism. DrugMetab Dispos. 1996; 24: 1121-1123
    
    43. Piskula MK. Factors affecting flavonoids absorption. Biofactors. 2000; 12: 175-180
    
    44. Bramer SL, Au LS, Wientjes MG. Gastrointestinal and hepatic first-pass elimination of 2', 3'-dideoxyinosine in rats. J Pharmacol Exp Ther. 1993; 265: 731-738
    
    45. Suzuki T, Saitoh Y, Isozaki S. Drug absorption and metabolism study by use of portal vein indusion in the rat. Chem Pharm Bull. 1972; 20: 2731-2735
    
    46. Yano Y, Yamaoka H, Yasui H, et al. Analysis of arterial-venous blood concentration difference of drugs based on recirculatory theory with FILT. J Pharmacokinetic Biopharm. 1991; 19:71-85
    
    47. Effeney DJ, Pond SM, Lo MW, et al. A technique to study hepatic and intestinal drug metabolism separately in the dog. J Pharmacol Exp Ther. 1982; 221: 507-511
    48. Lo MW, Effeney D J, Pond SM, et al. Lack of gastrointestinal metabolism of propranolol in dogs after portacaval transposition. J Pharmacol Exp Ther. 1982; 221: 512-515
    49. Humphrey MJ, Smith DA. Role of metabolism and pharmacokinetic studies in the discovery of new drugs present and future perspectives. Xenobiotica. 1992; 22: 743-755
    50. Vogler B, Kloiber I, Roas G, et al. Combination of LC-MS and LC-NMR as tool for the structure determination of natural products. J Nat Prod. 1998; 61: 175-178
    51. Bringmann G, Messer K, Wohlfarth M, et al. HPLC-CD online coupling in combination with HPLC-NMR and HPLC-MS/MS for the determination of the full absolute stereostructure of new metabolites in plant extracts. Anal Chem. 1999; 71: 2678-2686
    52. Ekins S. Past, present, and future applications of precision-cut liver slices for in vitro xenobiotic metabolism. Drug Metab Rev. 1996; 28: 591-623
    53. Birkett DJ, Mackenzie PI, Veronese ME, et al. In vitro approaches can predict human drug metabolism. Trends Pharmacol Sci. 1993; 14: 292-294
    54. Rodrigues AD. Use of in vitro human metabolism studies in drug development. An industrial perspective. Biochem Pharmacol. 1994; 48: 2147-2156
    55. Wrighton SA, Ring BJ, VandenBranden M. The use of in vitro metabolism techniques in the planning and interpretation of drug safety studies. Toxicol Pathol. 1995; 23: 199-208
    56. Guillouzo A. Acquisition and use of human in vitro liver preparations. Cell Biol Toxicol. 1995; 11: 141-145
    57. Bader A, Zech K, Crome O, Christians U, Ringe B, Pichlmayr R, Sewing KF. Use of organotypical cultures of primary hepatocytes to analyse drug biotransformation in man and animals. Xenobiotica. 1994; 24: 623-633
    58.现代药理实验方法.张均田主编,北京医科大学中国协和医科大学联合出版社,1998,1637-1642
    59. Kirchner GI, Vidal C, Winkler M, et al. LC/ESI-MS allows simultaneous and specific quantification of SDZ RAD and Cyclosporine including groups of their metabolites in human blood. Ther Drug Monit. 1999; 21: 116-122
    60. Gelpi E. Biomedical and biochemical applications of liquid chromatography-mass spectrometry. J Chromatogr A. 1995; 703: 59-80
    61. Gaskell SJ, Electrospray: principles and practice. J Mass Spectrom. 1997; 32: 677-688
    62. Jaggi R, Addison RS, King AR, et al. Conjugation of desmethylnaproxen in the rat-A novel acylglucuronide-sulfate diconjugate as a major biliary metabolite. Drug Metab Dispos. 2002; 30: 161-166
    63. Zhong DF, Zhang SQ, Sun L, et al. Metabolism of roxithromycin in Phenobarbital-treated rat liver microsomes. Acta Pharmacol Sin. 2002; 23: 455-460
    64. Wieboldt R, Campbell DA, Henion J. Quantitative liquid chromatographic-tandem mass spectrometric determination of orlistat in plasma with a quadrupole ion trap. J Chromatogr B. 1998; 708: 121-129
    65. Sundstrom I, Hedeland M, Bondesson U, et al. Identification of glucuronide conjugates of ketobemidone and its phase Ⅰ metabolites in human urine utilizing accurate mass and tandem time-of-flight mass spectrometry. J Mass Spectrom. 2002; 37: 414-420
    66. Tong XC, Ira IE, Wang JY, et al. Characterization of a technique for rapid pharmacokinetic studies of multiple co-eluting compounds by LC/MS/MS. J Pharm Biomed Anal. 1999; 20: 773-784
    67. Olah TV, McLoughlin DA, Gilbert JD. The simultaneous determination of mixtures of drug candidates by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry as an in vivo drug screening procedure. Rapid Commun Mass Spectrom. 1997; 11: 17-23
    68. Amidon GL, Lennernas H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995; 12: 413-420
    69. Lennernas H. Human jejunal effective permeability and its correlation with preclinical drug absorption models. J Pharm Pharmacol. 1997; 49: 627-638
    70. Dressman JB, Amidon GL, Repas C, et al. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998; 15: 11-22
    71. Poelma FGJ, Tukker JJ. Evaluation of the chronically isolated intrajejunal loop in the rat for the study of drug absorption kinetics. J Pharm Sci. 1987; 76: 433-436
    72. Lennemas H. Human intestinal permeability: an overview. J Pharm Sci. 1998; 87: 403-410
    73. Lipka E, Langguth HS, Mutschler E, et al. In vivo non-linear intestinal permeability of celiprolol and propranolol in conscious dogs. Evidence for intestinal secretion. Eur J Pharm Sci. 1998; 6:75-81
    74. Lennermas H. Human jejunal effective permeability and its correlation to preclinical drug absorption models. J Pharm Pharmacol. 1997; 49: 627-638
    75.张向荣,潘卫三.丹参酚酸A在大鼠小肠的吸收动力学研究.沈阳药科大学学报.2002;19:14-17
    76.任献忠,张钧寿,王恒斌.红霉素肠道吸收机理及最佳吸收部位研究.中国药科大学学报.1997;28:17-22
    77. Fagerholm U, Johansson M, Lennernas H. Comparison between permeability coefficients in rat and human jejunum. Pharm Res. 1996; 13: 1336-1342
    78. Lennernas H, Fagerholm M, Raab Y, et al. Regional rectal perfusion, a new in vivo approach to study rectal drug absorption in man. Pharm Res. 1995; 12: 426-432
    79. Osiecka I, Porter PA, Borchardt RT, et al. In vitro drug absorption models. Ⅰ. Bush border membrane vesicles, isolated mucosal cells and everted intestinal rings: characterization and salicylate accumulation. Pharm Res. 1985; 2: 284-293
    80. Uch AS, Hesse M, Dressman JB. Use of 1-methyl-pyrrolidone as a solubilizing agent for determining the uptake of poorly soluble drugs. Pharm Res. 1999; 16: 968-971
    81. Polentarutti BI, Peterson Al, Sjoberg AK, et al. Evaluation of viability of excised rat intestinal segments in the Ussing chamber: investigation of morphology, electrical parameters, and permeability constant. Pharm Res. 1999; 16: 446-454
    82. Ungell AL, Nylander S, Bergstrand S, et al. Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci. 1998; 87: 360-366
    83. Gan LSL, Thakker DR. Applications of Caco-2 model in the design and the development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv Drug Deliv Rev. 1997; 23: 77-98
    84. Raessi SD, Hidalgo IJ, Aquilar JS, et al. Interplay between CYP3A-mediated metabolism and polarized effiux of terfenading and its metabolites in intestinal Caco-2 (TC7) cell monolyers. Pharm Res. 1999; 16: 625-632
    85. Justesen U, Kruthsen Y, Leth T. Determination of plant polyphenols in Danish foodstuffs by HPLC/UV and LC-MS detection. Cancer Lett. 1997; 114: 165-167
    86. Boyle SP, Dobson VL, Duthie SJ, et al. Bioavailability and efficiency of rutin as and antioxidant: a human supplementation study. Eur J Clin Nutr. 2000; 54: 774-782
    87.车庆磊,吕欣然.葛根素的药理学和临床应用研究进展.中草药.1997;28:693-696
    88. Flora K, Hahn M, Rahn H, et al. Milk thisle (silybum marianum) for the therapy of live disease.Am J Gastroenterol. 1998; 93: 139-143
    89. Gabor M. Flavonoids and bioflavonoids. Elsevier, 1981, 363
    90. Rohdewald P. A review of the French maritime pine bark extract (Pynogenol), a herbal medication with a diverse clinical pharmacology. Int J Clin Pharmacol Ther. 2002; 40: 158-168
    91. Ravindranath MH, Muthugounder S, Presser N. Anticancer therapeutic potential of soy isoflavone, genistein. Adv Exp MedBiol. 2004; 546: 121-165
    92. Son YO, Lee KY, Kook SH, et al. Selective effects of quercetin on the cell growth and antioxidant defense system in normal versus transformed mouse hepatic cell lines. Eur J Pharmacol. 2004; 502: 195-204
    
    93. Haggag EG Abou-Moustafa MA, Boucher W, et al. The effect of a herbal water-extract on histamine release from mast cells and on allergic asthma. J Herb Pharmcother. 2003; 3: 41-54
    
    94. Shinohara Y. Neurology in the 21st century - the era of preventive neurology utilizing new diagnostic and therapeutic techniques. Rinsho Shinkeigaku. 2003; 43: 721-727
    
    95. Noroozi M, Angerson WJ, Lean ME. Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. Am J Clin Nutr. 1998; 67: 1210-1218
    
    96. Boyle SP, Dobson VL, Duthie SJ, et al. Bioavailability and efficiency of rutin as an antioxidant: a human supplementation study. Eur J Clin Nutr. 2000; 54: 774-782
    
    97. Ma SC, Du J, But PP, et al. Antiviral Chinese medicinal herbs against respiratory syncytial virus. J Ethnopharmacol. 2002; 79: 205-211
    
    98. Noroozi M, Burns J, Crozier A, et al. Prediction of dietary flavonol consumption from fasting plasma concentration or urinary excretion. Eur J Clin Nutr. 2000; 54: 143-149
    
    99. Vries JH, Hollman PC, Meyboom S, et al. Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempterol as biomarkers for dietary intake. Am J Clin Nutr. 1998; 68: 60-65
    
    100. Erlund I, Alfthan G Siren H, et al. Validated method for the quantitation of quercetin form human plasma using high-performance liquid chromatography with electrochemical detection. J Chromatogr B. 1999; 727: 179-189
    
    101.Ishii K, Furuta T, Kasuya Y. Mass spectrometric identification and high-performance liquid chromatographic determination of a flavonoid glycoside naringin in human urine. J Agric Food Chem. 2000; 48: 56-59
    
    102. Yasida T, Kano Y, Saito K, et al. Urinary and biliary metabolites of daidzin and daidzein in rats. Biol Pharm Bull. 1994; 17: 1369-1374
    
    103. Yasuda T, Mizunuma S, Kano Y, et al. Urinary and biliary metabolites of genistein in rats. Biol Pharm Bull. 1996; 19: 413-417
    
    104. Vaidyanathan JB, Walle T. Glucuronidation and sulfation of the tea flavonoid (-)-epicatechin by the human and rat enzymes. Drug Metab Dispos. 2002; 30: 897-903
    
    105. Doerge DR, Churchwell MI, Delclos KB. On-line sample preparation using restricted-access media in the analysis of the soy isoflavones, genistein and daidzein, in rat serum using liquid chromatography electrospray mass spectrometry. Rapid Commun Mass Spectrom. 2000; 14: 673-678
    
    106. Tkegami F, Matsunae K, Hisamttsu M, et al. Purification and properties of a plant β-D-glucuronidase form Scutellaria root. Biol Pharm Bull. 1995; 18: 1531-1534
    107. Kim DH, Kim SY, Park SY, et al. Metabolism of quercitrin by human intestinal bacteria and its relation to some biological activities. Biol Pharm Bull. 1999; 22: 749-751
    
    108. Murota K, Shimizu S, Chujo H, et al. Efficiency of absorption and metabolic conversion of quercetin and its glucosides in human intestinal cell line Caco-2. Arch Biochem Biophys. 2000; 384:391-397
    
    109. Choudury R, Chowrimootoo G, Srai K, et al. Interactions of the flavonoid naringenin in the gastrointestinal tract and the influence of glycosylation. Biochem Biophys Res Commun. 1999; 265:410-415
    
    110. Sato Y, Shibata H, Arakaki N, et al. 6, 7-dihydroxyflavone dramatically intensifies the susceptibility of methicinllin-resistant or -sensitive Staphylococcus aureus to beta-lactams. Antimicrob Agents Chemother. 2004; 48: 1357-1360
    
    111. Ishihara M, Homma M, Kuno E. Combination use of Kampo-medicines and drugs affecting intestinal bacterial flora. Yakugaku Zasshi. 2002; 122: 695-701
    
    112. Morand C, Manach C, Crespy V, et al. Respective bioavailability of quercetin aglycone and its glycosides in a rat model. Biofactors. 2000; 12: 169-174
    
    113. Hosny M, Dhar K, Rosazza JPN. Hydroxylations and methylations of quercetin, fisetin, and catechin by Streptomyces griseus. J Nat Prod. 2001; 64: 462-465
    
    114. Kulling SE, Honig DM, Metzler M. Oxidative metabolism of the soy isoflavones daidzein and genistein in humans in vitro and in vivo. J Agric Food Chem. 2001; 49: 3024-3033
    
    115. Kim JY, Lee S, Kim DH, et al. Effects of flavonoids isolated from Scutellariae on cytochrome P450 activities in human liver microsomes. J Toxicol Environ Health A. 2002; 65: 373-381.
    
    116. Evans AM. Influence of dietary components on the gastrointestinal metabolism and transport of drugs. Ther Drug Monit. 2000; 22: 131-136
    
    117. Gee JM, Johnson IT. Polyphenolic compounds: interactions with the gut and implications for human health. Current Med Chem. 2001; 8: 1245-1255
    
    118. Day AJ, Bao Y, Morgan MR. Conjugation positions of quercetin glucuronides and effect on biological activity. Free Radic Biol Med. 2000; 29: 1234-1243
    
    119. Kim DH, Jung EA, Sohng IS. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch Pharm Res. 1998; 21: 17-23
    
    120. Wittig J, Herderich M, Graefe EU, et al. Identification of quercetin glucuronides in humjan plasma by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2001; 753: 237-243
    
    121. Walle T, Otake Y, Brubaker JA, et al. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br J Clin Pharmacol. 2001; 51: 143-146
    122. Yamamoto N, Moon JH, Tsushida T, et al. Inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation in human low-density lipoprotein. Arch Biochem Biophys. 1999; 372: 347-354
    123.朱英.国内黄芩甙的研究概况.中国中西医结合杂志.1993;13:567-569
    124. Shen, YC, Chiou, WF, Chou, YC. Mechanism in mediating the anti-inflammatory effects of baicalin and baicalein in human leukocytes. Eur J. Pharmacol. 2003; 465: 171-181
    125. Nakajima, T., Inanishi, M. Inhibitory effect of baicalein, a flavonoid in scutellaria root, on eotaxin production by human dermal fibroblasts. Planta Med. 2001; 67: 132-135
    126. Zuo F, Zhou ZM, Zhang Q, et al. Pharmacokinetic study on the multi-constituents of Huangqin-Tang decoction in rats. Biol Pharm Bull. 2003; 26: 911-919
    127.陈发奎,郭允珍.牛黄解毒片的三维高效液相色谱法鉴定和指标成分的定量.药学学报.1993;28:57-61
    128. Graefe EU, Veit M. Urinary metabolites of flavonoids and hydroxycinnamic acids in humans after application of a crude extract from Equisetum arvense. Phytomed. 1999; 6: 239-246
    129.毛凤斐,屠锡德,朱家壁.黄芩苷大鼠小肠吸收的研究.南京药学院学报.1984;1:62-66
    130. Wu JM, Chen DW, Zhang RH. Study on the bioavailability of baicalin-phospholipid complex by using HPLC. Biomed Chromatogr. 1999; 13: 493-495
    131. Wakui Y, Yanagisawa E, Ishibashi E, et al. Determination of baicalin and baicalein in rat plasma by high-performance liquid chromatography with electrochemical detection. J Chromatogr. 1992: 575:131-136
    132. Lai MY, Hsiu SL, Hou YC, et al. Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats. J Pharm Pharmacol. 2003; 55: 205-209
    133. Akao T, Kawabata K, Yanagisawa E, et al. Baicalin, the predominant flavone glucuronide of Scutellariae radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form. J Pharm Pharmacol. 2000; 52: 1563-1568
    134. Zuo F, Zhou ZM, Yan MZ, et al. Metabolism of constituents in Huangqin-Tang, a prescription in traditional Chinese medicine, by human intestinal flora. Biol Pharm Bull. 2002; 25: 558-563
    135. Abe KI, Inoue O, Yumioka E. Biliary excretion of metabolites of baicalin and baicalein in rats. Chem Pharm Bull. 1990; 38: 208-211
    136.车庆明,黄新立,李艳梅.黄芩苷的药物代谢产物研究.中国中药杂志.2001;26:768-769
    137. Zhou YJ, Che QM, Xu SX, Sun QS. Metabolites of baicalein in human urine. Pharmazie. 2000; 55: 626-627
    138. Muto R, Motozuka T, Nakano M, et al. The chemical structure of new substance as the metabolite of baicalin and time profiles for the plasma concentration after oral administration of sho-saiko-to in human. Yakugaku Zasshi. 1998; 118: 79-87
    139. Lai MY, Hsiu SL, Chen CC, et al. Urinary pharmacokinetics of baicalein, wogonin and their glycosides after oral administration of Scutellariae Radix in humans. Biol Pharm Bull. 2003; 26: 79-83
    140.徐凯建,张惠君等.双黄连气雾剂稳定性的研究.中国中药杂志.1992;17:157-159
    141.于波涛,张志荣,刘文胜,等.黄芩苷的稳定性研究.中草药.2002;33:218-220
    142. Spahn-Langguth H. Aktive and reaktive glucuronide. In: Dengler HJ, Mutschler E, eds. Fremdstoffmetabolismus und klinische pharmacology. Stuttgart, Jena, New York: Gustav Fischer Verlag, 1994, 29-50
    143. Velic I, Metzler M, Hege HG, et al. Separation and identification of phase Ⅰ and phase Ⅱ [~(14)C]-antipyrine metabolites in rat and dog urine. J Chromatogr B. 1995; 666: 139
    144. Cuyckens F, Rozenberg R, Hoffmann ED, et al. Structure characterization of fiavonoid O-diglycosides by positive and negative nano-electrospray ionization ion trap mass spectrometry, J Mass Spectrom. 2001; 36: 1203-1210
    145. Doerge DR, Churchwell MI, Delclos KB. On-line sample preparation using restricted-access media in the analysis of the soy isoflavones, genistein and daidzein, in rat serum using liquid chromatography electrospray mass spectrometry. Rapid Commun Mass Spectrom. 2000; 14: 673-678
    146. Holder GL, Churchwell MI, et al. Quantification of soy isoflavones, genistein and daidzein, and conjugated in rat blood using LC/ES-MS. J Agric Food Chem. 1999; 47:3764-3770
    147. Voirin B. UV spectral differentiation of 5-hydroxy- and 5-hydroxy-3-methoxyflavones with mono-(4'), substituted a rings. Phytochem. 1983; 22: 2107-2145
    148. Jaeger W, Zembsch B, Wolschann P, et al. Metabolism of the anticancer drug flavopiridol, a new inhibitor of cyclin dependent kinase in rat liver. Life Sci. 1998; 62: 1861-1873
    149. Zhang K, Zuo Y. GC-MS determination of flavonoids and phenolic and benzoic acids in human plasma after consumption of cranberry juice. J Agric Food Chem. 2004; 52: 222-227
    150. Wang YH, Chao PDL, Hsiu SL, et al. Lethal quercetin-digoxin interaction in pigs. Life Sci. 2004; 74: 1191-1197
    151. Maliakal PP, Coville PF, Wanwimolruk S. Tea consumption modulates hepatic drug metabolizing enzymes in Wistar rats. J Pharm Pharmacol. 2000; 53: 569-577
    152. Guerra MC, Speroni E, Broccoli M, et al. Comparison between Chinese medical herb Pueraria lobata crude extract and its main isoflavone puerarin antioxidant properties and effects on rat liver CYP-catalysed drug metabolites. Life Sci. 2000; 67: 2997-3006
    153.侯艳宁,朱秀媛,程桂芳.黄芩甙对小鼠肝细胞色素P450及其亚家族的诱导.解放军药 学学报.2000;16:68-71
    154. Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951, 193: 265-275
    155. Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. Ⅰ. Evidence for its hemoprotein nature. J Biol Chem. 1964, 239: 2370-2378
    156. Mabry TJ, Markham KR. The flavonoids. Harborne JB, Mabry TJ and Mabry H (Eds), 1975, Academic Press, New York, p.78
    157. Ma YL, Li QM, Heuvel VD, et al. Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid Commun Mass Spectrom. 1997; 11: 1357-1364
    158. Kirima K, Tsuchiya K, Yoshizumi M, et al. Electron paramagnetic resonance study on free radical scavenging and/or generating activity of dopamine-4-O-sulfate. Chem Pharm Bull. 2001; 49: 576-580
    159. Shah VP, Midha KK, Dighe S, et al. Analytical methods validation: bioavailability, bioequivalence, and pharmacokinetic studies. J Pharm Sci. 1992; 81: 309-312
    160. Causon R. Validation of chromatographic methods in biomedical analysis-viewpoint and discussion. J Chromatogr B. 1997; 689: 175-180
    161.钟大放.以加权最小二乘法建立生物分析标准曲线的若干问题.药物分析杂志.1996;16:343-346
    162. Kinouchi T, Kataoka K, Miyanishi K. Biological activities of the intestinal microflora in mice treated with antibiotics or untreated and the effects of the microflora on absorption and metabolic activation of orally administered glutathione conjugates of k-region epoxides of 1-nitropyrene. Carcinogenisis. 1993; 14: 869-874
    163. Lennemas H, Ahrenstedt O, Ungell AL. Intestinal drug absorption during induced net water absorption on man: a mechanistic study using antipyrine, atenolol ad enalaprilat. Br J Clin Pharmacol. 1994; 37: 589-596
    164.胡一桥,郑梁元,钱陈钦等.离子型药物酚红的小肠吸收研究.中国药科大学学报.1996;27:355-359
    165. Horton TL, Pollack GM. Enterohepatic recirculation and renal metabolism of morphine. J Pharm Sci. 1991; 80: 1147-1152
    166. Mehta R, Champney WS. 30S ribosomal subunit assembly is a target for inhibition by aminoglycosides in Escherichia coll. Antimicrob Agents Chemother 2002; 46: 1546-1549

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700