他汀对高糖情况下微血管纤溶酶原激活物抑制物-1产生的影响及其信号机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管病变是糖尿病最严重的并发症,大多数糖尿病患者死于心脑血管动脉粥样硬化和糖尿病肾病。糖尿病微血管病变患者发生心血管事件的风险显著增高,因此,对
     2型糖尿病微血管病变进行关注和研究,对于防治大血管事件,减少患者死亡率显得极为重要。纤溶蛋白溶解系统活性异常是糖尿病微血管并发症的因素之一,其中最重要的纤溶抑制物是纤溶酶原激活抑制物-1(plasminogen activator inhibitor, PAI-1)。PAI-1是联系着心脑血管疾病发生发展的重要分子。
     他汀除了降脂以外还具有其他方面的有益作用,如促纤溶、改善内皮功能及抗凝聚等作用。他汀是否对糖尿病微血管并发症患者的纤溶功能产生更多的获益作用,他汀又是通过什么机制产生促纤溶效应的,这些问题是本项研究的主要内容。
     目的:观察辛伐他汀对2型糖尿病(T2DM)有或无微血管并发症患者纤溶酶原激活物抑制物-1(PAI-1)水平的影响。
     方法:研究129例2型糖尿病,包括50例单纯糖尿病及79例糖尿病微血管并发症以及56例正常对照,ELISA法测定血浆PAI-1的水平,并随访糖尿病伴或不伴微血管并发症患者服用或不服用辛伐他汀3个月后PAI-1值的变化。并同时检测一般血脂、血糖生化指标。
     结果:与正常对照相比,糖尿病组PAI-1水平显著增高(P<0.01),糖尿病微血管并发症组PAI-1水平显著高于单纯糖尿病组(P<0.01)。具有1种微血管并发症与同时合并2种或以上微血管并发症的患者相比,PAI-1水平无差异。2型糖尿病患者辛伐他汀治疗3个月均比治疗前PAI-1水平显著降低,其中微血管并发症组服
     用他汀3个月后PAI-1值较未服他汀的微血管并发症组显著降低,并且降低程度大于他汀治疗的单纯糖尿病组。
     结论:2型糖尿病患者存在纤溶功能受损,其中合并微血管并发症者纤溶功能受损较单纯糖尿病更为严重。辛伐他汀显著改善了纤溶功能,微血管并发症患
     者服用辛伐他汀对纤溶功能的改善更为获益。
     目的比较酶消化法和组织块贴壁法分离成年大鼠心脏微血管内皮细胞的方法并进行改良,以获得较高纯度和活性的细胞。
     方法分别采用组织块贴壁法和酶消化法分离大鼠心脏微血管内皮细胞,并对方法进行改良。对分离传代的细胞进行表面特异性抗原CD31免疫荧光鉴定。
     结果两种方法都获得了心脏微血管内皮细胞,CD31鉴定细胞阳性率在95%以上。两种方法相比,酶消化法具有获得所需的细胞时间相对短,稳定可靠,细胞纯度高等特点。
     结论使用酶消化法可获得纯度高、状态良好的心脏微血管内皮细胞,该法培养的细胞可用于后续试验。
     目的:通过研究辛伐他汀和阿托伐他汀抑制高糖诱导心脏微血管内皮细胞(CMEC)PAI-1表达的影响,探讨他汀调控高糖诱导CMEC表达PAI-1的信号机制。
     方法:原代培养大鼠心脏微血管内皮细胞,在含糖5.7mM至23mM的培养基作用下,Real-time PCR法测定PAI-1mRNA的表达,ELISA和western blot法分别测定培养上清及内皮细胞PAI-1蛋白含量。Pull down法测定RhoA的活性,western blot测定IκBα的蛋白表达,凝胶电泳迁移率(EMSA)测定IκBα的活化,双荧光素酶报告基因测定IκBα的转录活性。
     结果:PAI-1mRNA及蛋白水平随着培养基糖浓度的升高而升高,但是辛伐他汀及阿托伐他汀能显著抑制该效应(P<0.01),并且抑制效应可被甲羟戊酸(MVA,100μm)及焦磷酸牛龙牛儿基牛龙牛儿酯(GGPP,10μm)逆转,而不能被焦磷酸法尼(FPP,10μm)所逆转。RhoA抑制剂C3胞外酶(5μg/mL)、RhoA激酶抑制剂Y-27632(10μm)、羟基法舒地尔(10μm)及NF-κB抑制剂BAY11-7082(5μm)可产生类似他汀对PAI-1的抑制效应。高糖诱导CMEC RhoA及NF-κB激活均被2种他汀显著抑制(P<0.01)。辛伐他汀与阿托伐他汀对高糖情况下PAI-1表达的抑制作用无差异。
     结论:辛伐他汀及阿托伐他汀抑制高糖诱导PAI-1表达的效应可能部分通过RhoA/ROCK-NF-κB旁路调控。辛伐他汀与阿托伐他汀对高糖诱导PAI-1表达的抑制程度无差异。代谢综合征病人可能因他汀的多向性作用而有更多获益。
Vascular diseases are the most serious complications of diabetes, most diabeticpatients died of cardiovascular and cerebrolvascular atherosclerosis and diabeticnephropathy. The risk of cardiovascular events is significantly higher in diabetic patients
     with microvascular complications. Therefore, it’s extremely important to call for morefocus and studies on microvascular complications of type2diabetes to prevent majorvascular events and induce mortality. The abnormity of fibrinolytic system plays animportant role in diabetic complications. The most important fibrinolytic inhibitor isplasminogen activator (PAI-1) which is linked to the onset and development ofcardiovascular and cerebrolvascular diseases.
     Statins has multifunctional benifits except lipid lowing such as fibrinolysis, improvingendothelial function and antithrombin effect, etc. Whether diabetic patients withmicrovascular complications could benefit more from statins treatment by improvingfibrinolysis and the mechanism of fibrinolytic effects of statins deserves further studies.That’s the main content of this study.
     Objective The aim of our study was to compare the effect of simvastatin on reducingplasma plasminogen activator inhibitor-1levels in diabetic patients with or withoutmicrovascular complications.
     Methods We enrolled129type2diabetic patients with (n=79) and without (n=50) diabetic microvascular complications and56control subjects. Plasma PAI-1levels weremeasured by ELISA before and after3months simvastatin treatment in18diabetic patientswith and17without microvascular complications. Common lipid and glucose metabolicparameters were also measured.
     Results Diabetic patients have higher PAI-1lever compared with matched healthysubjects, and those with microvascular complications exhibited significantly higher levelsof PAI-1than those without. Plasma PAI-1levels were significantly reduced after3monthstreatment of simvastatin. The degree of reduction of PAI-1in group of microvascularcomplications was greater than that of group of diabetes without microvascularcomplications.
     Conclusion Type2diabetes exhibited impaired fibrinolytic function, and more severeimpairment observed in group with microvascular complications. Therapy with simvastatinimproved fibrinolytic function,thus diabetic patients with microvascular complicationsbenefit more compared with those without microvascular complications.
     Objective This study was to compare two methods of isolating adult rat cardiacmicrovascular endothelial cells (CMEC) and improve the methods.
     Methods We use tissue adhere method and enzyme digestion procedure respectivelyto isolate CMEC. Immunofluorescence assay was used to identify specific expression ofCD31on the surface of CMEC.
     Results We isolated CMEC successfully by these two different methods. The positiverates of CD31were no less than95%. The method of enzyme digestion not only has theadvantage of shorter time to gain a certain amount of cells, it is also a stable procedure toget relatively higher purity of cells compared to tissue adhere method.
     Conclusion We recommend using the method of enzyme digestion to obtain highpurity CMEC in good condition.
     Objective The aim of this study was to investigate the possible proinflammatorysignaling pathways involved in statin inhibition of glucose-induced plasminogen activatorinhibitor-1(PAI-1) expression in cardiac microvascular endothelial cells (CMECs).
     Methods Primary rat CMECs were grown in the presence of5.7mmol/L or23mmol/L glucose. PAI-1mRNA and protein expression levels were measured by real-timePCR and ELISA, respectively. A pull-down assay was performed to determine RhoAactivity. IκBα protein expression was measured by western blotting, and NF-κBtranscription activity was determined by a dual luciferase reporter gene assay.
     Results PAI-1mRNA and protein expression levels were both increased with highglucose concentrations, but they were significantly suppressed by simvastatin andatorvastatin treatment (P<0.01) and the effects were reversed by mevalonate (MVA,100μM) and geranylgeranyl pyrophosphate (GGPP,10μM) but not farnesyl pyrophosphate(FPP,10μM). Such effects were similar to those of a RhoA inhibitor, C3exoenzyme (5μg/mL), inhibitors of RhoA kinase (ROCK), Y-27632(10μmol/L) and hydroxyfasudil (10μmol/L), and a NF-κB inhibitor, BAY11-7082(5μmol/L). High glucose-induced RhoAand NF-κB activations in CMECs were both significantly inhibited by statins (P<0.01).Simvastatin and atorvastatin equally suppress high glucose-induced PAI-1expression.
     Conclusion These effects of statins may occur partly by regulating theRhoA/ROCK-NF-κB pathway. The multifunctional roles of statins may be particularlybeneficial for patients with metabolic syndrome.
引文
1. Schramm TK, Gislason GH, K ber L, et al. Diabetes patients requiringglucose-lowering therapy and nondiabetics with a prior myocardial infarction carrythe same cardiovascular risk: a population study of3.3million people. Circulation,2008,15;117(15):1945-54.
    2. Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment ofhyperglycaemia on microvascular outcomes in type2diabetes: an analysis of theACCORD randomised trial. Lancet,2010,7;376(9739):419-30.
    3. Grant PJ. Diabetes mellitus as a prothrombotic condition. J Intern Med,2007,262(2):157-72.
    4. Tj rnlund-Wolf A, Brogren H, Lo EH, et al. Plasminogen activator inhibitor-1andthrombotic cerebrovascular diseases. Stroke,2012,43(10):2833-9.
    5. Cesari M, Pahor M, Incalzi RA. Plasminogen activator inhibitor-1(PAI-1): a keyfactor linking fibrinolysis and age-related subclinical and clinical conditions.Cardiovasc Ther,2010,28(5):e72-91.
    6. Kamgar M, Nobakhthaghighi N, Shamshirsaz AA, et al. Impaired fibrinolytic activityin type II diabetes: correlation with urinary albumin excretion and progression ofrenal disease. Kidney Int,2006,69(10):1899-903.
    7. Jax TW, Peters AJ, Plehn G, et al. Hemostatic risk factors in patients with coronaryartery disease and type2diabetes-a two year follow-up of243patients. CardiovascDiabetol,2009,7,8:48.
    8. Alessi MC, Juhan-Vague I. Contribution of PAI-1in cardiovascular pathology. ArchMal Coeur Vaiss.2004,97(6):673-8.
    9. Er en B, Sabovi M. In young post-myocardial infarction male patients elevatedplasminogen activator inhibitor-1correlates with insulin resistance and endothelialdysfunction. Heart Vessels,2012Sep22.
    10. de Vries FM, Denig P, Pouwels KB, et al. Primary prevention of major cardiovascularand cerebrovascular events with statins in diabetic patients: a meta-analysis. Drugs,2012,24;72(18):2365-73.
    11. Loirand G, Guérin P, Pacaud P. Rho kinases in cardiovascular physiology andpathophysiology. Circ Res,17;98(3):322-34,2006.
    12. Dong M, Yan BP, Yu CM. Current status of rho-associated kinases (ROCKs) incoronary atherosclerosis and vasospasm. Cardiovasc Hematol Agents Med Chem,7(4):322-30,2009.
    13. Zhou H, Li YJ. RhoA/Rho kinase: a novel therapeutic target in diabetic complications.Chin Med J,123(17):2461-6,2010.
    14. Ishibashi T, Nagata K, Ohkawara H, et al. Inhibition of Rho/Rho-kinase signalingdownregulates plasminogen activator inhibitor-1synthesis in cultured humanmonocytes. Biochim Biophys Acta,12;1590(1-3):123-30,2002.
    15. Shibata S, Nagase M, Fujita T. Fluvastatin ameliorates podocyte injury in proteinuricrats via modulation of excessive Rho signaling. J Am Soc Nephrol,17(3):754-64,2006.
    16. Dunoyer-Geindre S, Fish RJ, Kruithof EK. Regulation of the endothelial plasminogenactivator system by fluvastatin. Role of Rho family proteins, actin polymerisation andp38MAP kinase. Thromb Haemost,105(3):461-72,2011.
    17. Rashid M, Tawara S, Fukumoto Y, et al. Importance of Rac1signaling pathwayinhibition in the pleiotropic effects of HMG-CoA reductase inhibitors. Circ J,73(2):361-70,2009.
    18. Turner SJ, Zhuang S, Zhang T, et al. Effects of lovastatin on Rho isoform expression,activity, and association with guanine nucleotide dissociation inhibitors. BiochemPharmacol,15;75(2):405-13,2008.
    19. Collins T, Cybulsky MI. NF-kappaB: pivotal mediator or innocent bystander inatherogenesis? J Clin Invest,107(3):255-64,2001.
    20. Iwasaki H, Okamoto R, Kato S, et al. High glucose induces plasminogen activatorinhibitor-1expression through Rho/Rho-kinase-mediated NF-kappaB activation inbovine aortic endothelial cells. Atherosclerosis,196(1):22-8,2008.
    21. Dichtl W, Dulak J, Frick M, et al. HMG-CoA reductase inhibitors regulateinflammatory transcription factors in human endothelial and vascular smooth musclecells. Arterioscler Thromb Vasc Biol,1;23(1):58-63,2003.
    22. Wiesbauer F, Kaun C, Zorn G, et al. HMG CoA reductase inhibitors affect thefibrinolytic system of human vascular cells in vitro: a comparative study usingdifferent statins. Br J Pharmacol,135(1):284-92,2002.
    1. Takada Y, Urano T, Watanabe I, et al. Changes in fibrinolytic parameters in malepatients with type2(non-insulin-dependent) diabetes mellitus. Thromb Res.1993,1;71(5):405-15.
    2. Soares AL, Sousa Mde O, Dusse LM, et al. Type2diabetes: assessment of endotheliallesion and fibrinolytic system markers. Blood Coagul Fibrinolysis.2007,18(5):395-9.
    3. Festa A, Williams K, Tracy RP, et al. Progression of plasminogen activator inhibitor-1and fibrinogen levels in relation to incident type2diabetes. Circulation.2006;11,113(14):1753–1759.
    4. de Vries FM, Denig P, Pouwels KB, et al. Primary prevention of major cardiovascularand cerebrovascular events with statins in diabetic patients: a meta-analysis. Drugs.2012,24;72(18):2365-73.
    5. Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention ofcardiovascular disease with atorvastatin in type2diabetes in the CollaborativeAtorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlledtrial. Lancet.2004,21-27;364(9435):685-96.
    6. Bonetti PO, Lerman LO, Napoli C, Lerman A. Statin effects beyond lipidlowering--are they clinically relevant? Eur Heart J.2003,24(3):225-48.
    7. Cesari M, Pahor M, Incalzi RA. Plasminogen activator inhibitor-1(PAI-1): a keyfactor linking fibrinolysis and age-related subclinical and clinical conditions.Cardiovasc Ther.2010,28(5):e72-91.
    8. Aso Y, Wakabayashi S, Yamamoto R, et al. Metabolic syndrome accompanied byhypercholesterolemia is strongly associated with proinflammatory state andimpairment of fibrinolysis in patients with type2diabetes: synergistic effects ofplasminogen activator inhibitor-1and thrombin-activatable fibrinolysis inhibitor.Diabetes Care.2005,28(9):2211-6.
    9. Mertens I, Verrijken A, Michiels JJ, et al. Among inflammation and coagulationmarkers, PAI-1is a true component of the metabolic syndrome. Int J Obes (Lond).2006,30(8):1308-14.
    10. Jax TW, Peters AJ, Plehn G, Schoebel FC. Relevance of hemostatic risk factors oncoronary morphology in patients with diabetes mellitus type2. Cardiovasc Diabetol.2009,6;8:24.
    11. Hess K, Marx N,Lehrke M. Cardiovascular disease and diabetes: the vulnerablepatient. Eur Heart J Suppl (2012)14(suppl B): B4-B13.
    12. Balasubramaniam K, Viswanathan GN, Marshall SM, Zaman AG. Increasedatherothrombotic burden in patients with diabetes mellitus and acute coronarysyndrome: a review of antiplatelet therapy. Cardiol Res Pract.2012;2012:909154.
    13. Kressel G, Trunz B, Bub A, et al. Systemic and vascular markers of inflammation inrelation to metabolic syndrome and insulin resistance in adults with elevatedatherosclerosis risk. Atherosclerosis.2009,202(1):263-71.
    14. Alessi MC, Juhan-Vague I. Contribution of PAI-1in cardiovascular pathology. ArchMal Coeur Vaiss.2004,97(6):673-8.
    15. Erem C, Hacihasano lu A, Celik S, et al.Coagulation and fibrinolysis parameters intype2diabetic patients with and without diabetic vascular complications. Med PrincPract.2005,14(1):22-30.
    16. Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment ofhyperglycaemia on microvascular outcomes in type2diabetes: an analysis of theACCORD randomised trial. Lancet.2010,7;376(9739):419-30.
    17. Girach A, Manner D, Porta M. Diabetic microvascular complications: can patients atrisk be identified? A review. Int J Clin Pract.2006,60(11):1471-83.
    18. Brazionis L, Rowley K, Jenkins A, et al. Plasminogen activator inhibitor-1activity intype2diabetes: a different relationship with coronary heart disease and diabeticretinopathy. Arterioscler Thromb Vasc Biol.2008,28(4):786-91.
    19. Kamgar M, Nobakhthaghighi N, Shamshirsaz AA, et al. Impaired fibrinolytic activityin type II diabetes: correlation with urinary albumin excretion and progression ofrenal disease. Kidney Int.2006,69(10):1899-903.
    20. Nicholas SB, Aguiniga E, Ren Y, et al. Plasminogen activator inhibitor-1deficiencyretards diabetic nephropathy. Kidney Int.2005,67(4):1297-307.
    21. Economides PA, Caselli A, Tiani E, et al. The effects of atorvastatin on endothelialfunction in diabetic patients and subjects at risk for type2diabetes. J Clin EndocrinolMetab.2004,89(2):740-7.
    22. Kruithof EK. Regulation of plasminogen activator inhibitor type1gene expression byinflammatory mediators and statins. Thromb Haemost.2008;100:969–975.
    23. Bourcier T, Libby P. HMG CoA reductase inhibitors reduce plasminogen activatorinhibitor-1expression by human vascular smooth muscle and endothelial cells.Arterioscler Thromb Vasc Biol.2000,20(2):556-62.
    24. Wei J, Ma C, Wang X. Simvastatin inhibits tissue factor and plasminogen activatorinhibitor-1expression of glomerular mesangial cells in hypercholesterolemic rabbits.Biomed Res.2006;27:149–155.
    25. Tetik S, Ak K, Sahin Y, et al. Postoperative statin therapy attenuates the intensity ofsystemic inflammation and increases fibrinolysis after coronary artery bypass grafting.Clin Appl Thromb Hemost.2011,17(5):526-31.
    26. Krysiak R, Gdula-Dymek A, Bachowski R, Okopien B. Pleiotropic effects ofatorvastatin and fenofibrate in metabolic syndrome and different types of pre-diabetes.Diabetes Care.2010,33(10):2266-70.
    27. Tehrani S, Mobarrez F, Antovic A, et al. Atorvastatin has antithrombotic effects inpatients with type1diabetes and dyslipidemia. Thromb Res.2010,126(3):e225-31.
    28. Madan R, Gupt B, Saluja S, et al. Coagulation profile in diabetes and its associationwith diabetic microvascular complications. J Assoc Physicians India.2010,58:481-4.
    29. Preiss D, Seshasai SR, Welsh P, et al. Risk of incident diabetes with intensive-dosecompared with moderate-dose statin therapy: a meta-analysis. JAMA.2011,22;305(24):2556-64.
    30. Bellia A, Rizza S, Lombardo MF, et al. Deterioration of glucose homeostasis in type2diabetic patients one year after beginning of statins therapy. Atherosclerosis.2012,223(1):197-203.
    31. Her AY, Kim JY, Kang SM, et al. Effects of atorvastatin20mg, rosuvastatin10mg,and atorvastatin/ezetimibe5mg/5mg on lipoproteins and glucose metabolism. JCardiovasc Pharmacol Ther.2010,15(2):167-74.
    32. Bellia A, Rizza S, Galli A, et al. Early vascular and metabolic effects of rosuvastatincompared with simvastatin in patients with type2diabetes. Atherosclerosis.2010,210(1):199-201.
    33. Krysiak R, Gdula-Dymek A, Okopień B. Hemostatic effects of simvastatin in subjectswith impaired fasting glucose. Pharmacol Rep.2010,62(6):1090-8.
    34. Kater AL, Batista MC, Ferreira SR. Improved endothelial function with simvastatinbut unchanged insulin sensitivity with simvastatin or ezetimibe. Metabolism.2010,59(6):921-6.
    35. Colbert JD, Stone JA. Statin use and the risk of incident diabetes mellitus: a review ofthe literature. Can J Cardiol.2012,28(5):581-9.
    36. Zietz B, Leonhardt K, Sch ffler A. Candidate genes and polymorphism analysis intype2diabetes mellitus. Med Klin (Munich).2006,15;101(8):605-16.
    37. Funk M, Endler G, Exner M, et al. PAI-14G/5G insertion/deletion promoterpolymorphism and microvascular complications in type2diabetes mellitus. WienKlin Wochenschr.2005,117(19-20):707-10.
    38. Bosnyak Z, Forrest KY, Maser RE, et al. Do plasminogen activator inhibitor (PAI-1) ortissue plasminogen activator PAI-1complexes predict complications in Type1diabetes: the Pittsburgh Epidemiology of Diabetes Complications Study. Diabet Med.2003,20(2):147-51.
    39. Gorog DA. Prognostic value of plasma fibrinolysis activation markers incardiovascular disease. J Am Coll Cardiol.2010,15;55(24):2701-9.
    40. Al-Hamodi Z, Ismail IS, Saif-Ali R, et al. Association of plasminogen activatorinhibitor-1and tissue plasminogen activator with type2diabetes and metabolicsyndrome in Malaysian subjects. Cardiovasc Diabetol.2011,18;10:23.
    41. Sobel BE, Tilton L, Neimane D, Schnure J. Increased tissue-type plasminogenactivator: a facade in the fibrinolytic system in type2diabetes. Coron Artery Dis.2005,16(1):31-5.
    42. Iwasaki H, Okamoto R, Kato S, et al. High glucose induces plasminogen activatorinhibitor-1expression through Rho/Rho-kinase-mediated NF-kappaB activation inbovine aortic endothelial cells. Atherosclerosis.2008,196(1):22-8.
    43. Aarons CB, Cohen PA, Gower A, et al. Statins (HMG-CoA reductase inhibitors)decrease postoperative adhesions by increasing peritoneal fibrinolytic activity. AnnSurg.2007,245(2):176-84.
    44. Dichtl W, Dulak J, Frick M, et al. HMG-CoA reductase inhibitors regulateinflammatory transcription factors in human endothelial and vascular smooth musclecells. Arterioscler Thromb Vasc Biol.2003;23:58–63.
    45. Yener S, Comlekci A, Akinci B, et al. Soluble CD40ligand, plasminogen activatorinhibitor-1and thrombin-activatable fibrinolysis inhibitor-1-antigen in normotensivetype2diabetic subjects without diabetic complications. Effects of metformin androsiglitazone. Med Princ Pract.2009;18(4):266-71.
    46. Iwaki T, Urano T, Umemura K. PAI-1, progress in understanding the clinical problemand its aetiology. Br J Haematol.2012,157(3):291-8.
    [1] Nishida M, Carley WW, Gerritsen ME, et al. Isolation and characterization of humanand rat cardiac microvascular endothelial cells. Am J Physiol,1993,264(2Pt2):H639-652.
    [2] Suh SH, Vennekens R, Manolopoulos VG, et al. Characterisation of explantedendothelial cells from mouse aorta: electrophysiology and Ca2+signalling. PflugersArch.1999,438(5):612-20.
    [3] Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, andmechanisms. Circ Res,2007,100(2):158-173.
    [4]司徒镇强,吴军正,细胞培养.第2版.世界图书出版公司,2007, P118.
    [5]滕丽新,刘胜学,谢庭菊,等,大鼠心肌微血管内皮细胞的分离培养和鉴定.重庆医学,2010,39(4):403-405.
    [6]张涛,滕可导,田启超,等,乳鼠心肌膜微血管内皮细胞的体外培养.解剖学报,2008,39(1):121-123.
    [7] Ho FM, Lin WW, Chen BC, et al. High glucose-induced apoptosis in human vascularendothelial cells is mediated through NF-kappaB and c-Jun NH2-terminal kinase
    pathway and prevented by PI3K/Akt/eNOS pathway. Cell Signal,2006,18(3):
    391-399.
    1. Luscher TF, Creager MA, Beckman JA, Cosentino F. Diabetes and vascular disease:Pathophysiology, clinical consequences, and medical therapy: Part II. Circulation,2003,30;108(13):1655-61.
    2. Kruithof EK. Regulation of plasminogen activator inhibitor type1gene expression byinflammatory mediators and statins. Thromb Haemost,2008,100(6):969–975.
    3. Naya M, Tsukamoto T, Inubushi M, et al. Elevated plasma plasminogen activatorinhibitor type-1is an independent predictor of coronary microvascular dysfunction inhypertension. Circ J,2007,71(3):348-53.
    4. Topol EJ, Yadav JS. Recognition of the importance of embolization in atheroscleroticvascular disease. Circulation,2000,8;101(5):570-80.
    5. Krysiak R, Gdula-Dymek A, Okopień B. Hemostatic effects of simvastatin in subjectswith impaired fasting glucose. Pharmacol Rep,2010,62(6):1090-8.
    6. Tetik S, Ak K, Sahin Y, et al. Postoperative statin therapy attenuates the intensity ofsystemic inflammation and increases fibrinolysis after coronary artery bypass grafting.Clin Appl Thromb Hemost,2011,17(5):526-31.
    7. Walter T, Szabo S, Suselbeck T, et al. Effect of atorvastatin on haemostasis,fibrinolysis and inflammation in normocholesterolaemic patients with coronary arterydisease: a post hoc analysis of data from a prospective, randomized, double-blindstudy. Clin Drug Investig,2010,30(7):453-60.
    8. Nishida M, Carley WW, Gerritsen ME, et al. Isolation and characterization of humanand rat cardiac microvascular endothelial cells. Am J Physiol,1993,264(2Pt2):H639-52.
    9. Sadeghi MM, Collinge M, Pardi R, Bender JR. Simvastatin modulatescytokine-mediated endothelial cell adhesion molecule induction: involvement of aninhibitory G protein. J Immunol,2000,1;165(5):2712-8.
    10. Mukai Y, Wang CY, Rikitake Y, Liao JK. Phosphatidylinositol3-kinase/protein kinaseAkt negatively regulates plasminogen activator inhibitor type1expression in vascularendothelial cells. Am J Physiol Heart Circ Physiol,2007,292(4): H1937–H1942.
    11. Martínez-Sales V, Vila V, Ferrando M, Reganon E. Atorvastatin neutralises thethrombin-induced tissue factor expresion in endothelial cells via geranylgeranylpyrophosphate. Cytotechnology,2011,63(1):1-5.
    12. Lee KM, Lee HJ, Kim MK, et al. Cilostazol inhibits high glucose-and angiotensinII-induced type1plasminogen activator inhibitor expression in artery wall andneointimal region after vascular injury. Atherosclerosis,2009,207(2):391-8.
    13. Nakayama N, Nakamura T, Okada H, et al. Modulators of induction of plasminogenactivator inhibitor type-1in HepG2cells by transforming growth factor-β. CoronArtery Dis,2011,22(7):468-78.
    14. Velusamy T, Jain SK. Effects of high glucose and ketosis (acetoacetate,ss-hydroxybutyrate) on PAI-1secretion in human umbilical vascular endothelial cells.Clin Appl Thromb Hemost,2011,17(3):288-92.
    15. Iwasaki H, Okamoto R, Kato S, et al. High glucose induces plasminogen activatorinhibitor-1expression through Rho/Rho-kinase-mediated NF-kappaB activation inbovine aortic endothelial cells. Atherosclerosis,2008,196(1):22-8.
    16. Rikitake Y, Liao JK. Rho-kinase mediates hyperglycemia-induced plasminogenactivator inhibitor-1expression in vascular endothelial cells. Circulation,2005,21;111(24):3261-8.
    17. Tousoulis D, Antoniades C, Bosinakou E, et al. Effects of atorvastatin on reactivehyperaemia and the thrombosis-fibrinolysis system in patients with heart failure.Heart,2005,91(1):27–31.
    18. Ludwig S, Dharmalingam S, Erickson-Nesmith S, et al. Impact of simvastatin onhemostatic and fibrinolytic regulators in type2diabetes mellitus1. Diabetes Res ClinPract,2005,70(2):110–8.
    19. Wiesbauer F, Kaun C, Zorn G, et al. HMG CoA reductase inhibitors affect thefibrinolytic system of human vascular cells in vitro: a comparative study usingdifferent statins. Br J Pharmacol,2002,135(1):284-92.
    20. Laumen H, Skurk T, Hauner H. The HMG-CoA reductase inhibitor rosuvastatininhibits plasminogen activator inhibitor-1expression and secretion in humanadipocytes. Atherosclerosis,2008,196(2):565-73.
    21. Ishibashi T, Nagata K, Ohkawara H, et al. Inhibition of Rho/Rho-kinase signalingdownregulates plasminogen activator inhibitor-1synthesis in cultured humanmonocytes. Biochim Biophys Acta,2002,12;1590(1-3):123-30.
    22. Dichtl W, Dulak J, Frick M, et al. HMG-CoA reductase inhibitors regulateinflammatory transcription factors in human endothelial and vascular smooth musclecells. Arterioscler Thromb Vasc Biol,2003,1;23(1):58-63.
    23. Jeong IK, Oh DH, Park SJ, et al. Inhibition of NF-κB prevents high glucose-inducedproliferation and plasminogen activator inhibitor-1expression in vascular smoothmuscle cells. Exp Mol Med,2011,31;43(12):684-92.
    24. Liao JK, Seto M, Noma K. Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol,2007,50:17–24.
    25. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell,2008,8;132(3):344-62.
    26. He F, Peng J, Deng XL, et al. RhoA and NF-κB are involved inlipopolysaccharide-induced brain microvascular cell line hyperpermeability.Neuroscience,2011,11;188:35-47.
    27. He Y, Xu H, Liang L, et al. Antiinflammatory effect of Rho kinase blockade viainhibition of NF-kappaB activation in rheumatoid arthritis. Arthritis Rheum,2008,58(11):3366-76.
    28. Cirillo P, Pacileo M, De Rosa S, et al. HMG-CoA reductase inhibitors reducenicotine-induced expression of cellular adhesion molecules in cultured humancoronary endothelial cells. J Vasc Res,2007,44(6):460-70.
    29. Maeda A, Yano T, Itoh Y, et al. Down-regulation of RhoA is involved in the cytotoxicaction of lipophilic statins in HepG2cells. Atherosclerosis,2010,208(1):112-8.
    30. Rattan R, Giri S, Singh AK, Singh I. Rho A negatively regulates cytokine-mediatedinducible nitric oxide synthase expression in brain-derived transformed cell lines:negative regulation of IKKalpha. Free Radic Biol Med,2003,1;35(9):1037-50.
    31. Riganti C, Doublier S, Costamagna C, et al. Activation of nuclear factor-kappa Bpathway by simvastatin and RhoA silencing increases doxorubicin cytotoxicity inhuman colon cancer HT29cells. Mol Pharmacol,2008,74(2):476-84.
    32. Rashid M, Tawara S, Fukumoto Y, et al. Importance of Rac1signaling pathwayinhibition in the pleiotropic effects of HMG-CoA reductase inhibitors. Circ J,2009,73(2):361-70.
    33. Dunoyer-Geindre S, Fish RJ, Kruithof EK. Regulation of the endothelial plasminogenactivator system by fluvastatin. Role of Rho family proteins, actin polymerisation andp38MAP kinase. Thromb Haemost,2011,105(3):461-72.
    1. Ostadal P, Alan D, Vejvoda J. Statins in the first-line therapy of acute coronarysyndrome-similar to aspirin? Exp Clin Cardiol.2005,10(1):9-16.
    2.徐萍,齐晓云,李春华等。急性心肌梗死患者直接介入治疗后无再流与血浆组织因子及其途径抑制物的关系。《中华心血管病杂志》2008年,第11期,1013-1015页。
    3. Cortellaro M, Cofrancesco E, Arbustini E, et al. Atorvastatin and thrombogenicity ofthe carotid atherosclerotic plaque: the ATROCAP study Thromb Haemost,88(1)(2002), p41–47
    4. Martínez-Sales V, Vila V, Ferrando M, Reganon E. Atorvastatin neutralises thethrombin-induced tissue factor expresion in endothelial cells via geranylgeranylpyrophosphate. Cytotechnology.2011Jan;63(1):1-5.
    5. Casani L, Sanchez-Gomez S, Vilahur G, Badimon L. Pravastatin reducesthrombogenicity by mechanisms beyond plasma cholesterol lowering. ThrombHaemost.2005Nov;94(5):1035-41.
    6. Undas A, Brummel KE, Musial J, Mann KG, Szczeklik A. Simvastatin depresses bloodclotting by inhibiting activation of prothrombin, factor V, and factor XIII and byenhancing factor Va inactivation. Circulation.2001May8;103(18):2248-53.
    7. Krysiak R, Okopień B, Herman Z. Effects of HMG-CoA reductase inhibitors oncoagulation and fibrinolysis processes. Drugs.2003;63(17):1821-54.
    8. Huber K, et al. Plasminogen activator inhibitor type-1in cardiovascular disease. Statusreport2001. Thromb. Res.2001;103(Suppl1):S7–S19.
    9. Nordt TK, et al. Plasminogen activator inhibitor type-1(PAI-1) and its role incardiovascular disease. Thromb. Haemost.1999;82(Suppl1):14–18.
    10. Eto M, Luscher TF. Modulation of coagulation and fibrinolytic pathways by statins.Endothelium.2003;10(1):35-41.
    11. Wiesbauer F, Kaun C, Zorn G, et al. HMG CoA reductase inhibitors affect thefibrinolytic system of human vascular cells in vitro: a comparative study usingdifferent statins. Br J Pharmacol.2002Jan;135(1):284-92.
    12. Essig M, et al.3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors increasefibrinolytic activity in rat aortic endothelial cells. Role of geranylgeranylation andRho proteins. Circ. Res.1998;83:683–690.
    13.威廉姆斯血液学第8版P1610-1649。
    14. Heeschen C, Dimmeler S, Hamm CW, et al. Soluble CD40ligand in acute coronarysyndromes. N Engl J Med348:1104.2003. Varo N, de lemos JA, Libby P, et al.Soluble CD40L: Risk prediction after acute coronary syndromes. Circulation2003,108:1049.
    15. Sanguigni V, Pignatelli P, Lenti L, et al. Short-term treatment with atorvastatin reducesplatelet CD40ligand and thrombin generation in hypercholesterolemic patients.Circulation.2005Feb1;111(4):412-9.
    16. Hamada M, Sugimoto M, Matsui H, et al. Antithrombotic properties of pravastatinreducing intra-thrombus fibrin deposition under high shear blood flow conditions.Thromb Haemost.2011Feb;105(2):313-20.
    17. Puccetti L, Santilli F, Pasqui AL, et al. Effects of atorvastatin and rosuvastatin onthromboxane-dependent platelet activation and oxidative stress inhypercholesterolemia. Atherosclerosis.2011Jan;214(1):122-8.
    18. Obi C, Wysokinski W, Karnicki K, et al. Inhibition of platelet-rich arterial thrombus invivo: acute antithrombotic effect of intravenous HMG-CoA reductase therapy.Arterioscler Thromb Vasc Biol.2009Sep;29(9):1271-6.
    19. Chou TC, Lin YF, Wu WC, Chu KM. Enhanced nitric oxide and cyclic GMPformation plays a role in the anti-platelet activity of simvastatin. Br J Pharmacol.2008;153:1281–1287.
    20. Ali FY, Armstrong PC, Dhanji AR, et al. Antiplatelet actions of statins and fibrates aremediated by PPARs. Arterioscler Thromb Vasc Biol.2009May;29(5):706-11.
    21. Lee YM, Chen WF, Chou DS, et al. Cyclic nucleotides and mitogen-activated proteinkinases: regulation of simvastatin in platelet activation. J Biomed Sci.2010Jun4;17:45.
    22. Laufs U, Gertz K, Huang P, et al. Atorvastatin upregulates type III nitric oxidesynthase in thrombocytes, decreases platelet activation, and protects from cerebralischemia in normocholesterolemic mice. Stroke2000;31:2442–2449.
    23. Aikawa M, Rabkin E, Sugiyama S, et al. An HMG-CoA reductase inhibitor,cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinasesand tissue factor in vivo and in vitro. Circulation2001;103:276–283.
    24. Potaczek DP, Undas A, Iwaniec T, Szczeklik A. The angiotensinconverting enzymegene insertion/deletion polymorphism and effects of quinapril and atorvastatins onhaemostatic parameters in patients with coronary artery disease. Thromb Haemost2005;94:224–5.
    25. Van der Loo B, Spring S, Koppensteiner R. High-dose atorvastatin treatment inpatients with peripheral arterial disease: effects on platelet aggregation, bloodrheology and plasma homocysteine. Clin Hemorheol Microcirc.2011;47(4):241-51.
    26. Colli S, Werba JP, Tremoli E. Statins in atherothrombosis. Semin Vasc Med.2004Nov;4(4):407-15.
    27. Gelosa P, Cimino M, Pignieri A, et al. The role of HMG-CoA reductase inhibition inendothelial dysfunction and inflammation. Vasc Health Risk Manage,2007,3(5),p567–577.
    28. Notarbartolo A, Davì G, Averna M, et al. Inhibition of thromboxane biosynthesis andplatelet function by simvastatin in type IIa hypercholesterolemia. Arterioscler ThrombVasc Biol.1995Feb;15(2):247-51.
    29. Efthimiadis Ap, Psirropoulos D, Efthimiadis I, et al. Action of statins uponthrombogenesis, fibrinolysis and inflammation. HIPPOKRATIA.2002,6,4:186-192.
    30. Bolaman Z, Kadikoylu G, Ozgel N, Yenisey C. Effects of atorvastatin on coagulationparameters and homocysteine in patients with primary hypercholesterolemia. J NatlMed Assoc.2006Aug;98(8):1273-7.
    31. Tailor A, Lefer DJ, Granger DN. HMG-CoA reductase inhibitor attenuates plateletadhesion in intestinal venules of hypercholesterolemic mice. Am J Physiol Heart CircPhysiol.2004Apr;286(4):H1402-7.
    32. Kadikoylu G, Yukselen V, Yavasoglu I, Bolaman Z. Hemostatic effects of atorvastatinversus simvastatin. Ann Pharmacother.2003Apr;37(4):478-84.
    33. Undas A, Siudak Z, Brummel-Ziedins K, et al. Prothrombinase formation at the site ofmicrovascular injury and aspirin resistance: the effect of simvastatin. Thromb Res.2010March;125(3):283–285.
    34. Walter T, Szabo S, Suselbeck T, et al. Effect of atorvastatin on haemostasis,fibrinolysis and inflammation in normocholesterolaemic patients with coronary arterydisease: a post hoc analysis of data from a prospective, randomized, double-blindstudy. Clin Drug Investig.2010;30(7):453-60.
    35. Undas A, Brummel-Ziedins KE, Potaczek DP, et al. Atorvastatin and quinapril inhibitblood coagulation in patients with coronary artery disease following28days oftherapy. J Thromb Haemost.2006Nov;4(11):2397-404.
    36. Undas A, Celinska-L wenhoff M, Domagala TB, et al. Early antithrombotic andanti-inflammatory effects of simvastatin versus fenofibrate in patients withhypercholesterolemia. Thromb Haemost.2005Jul;94(1):193-9.
    37. Vasilieva E, Kasyanova O, Shpektor A. The antiplatelet effect of atorvastatin inpatients with acute coronary syndrome depends on the hs-CRP level. Acute Card Care.2008;10(3):181-4.
    38. Tousoulis D, Bosinakou E, Kotsopoulou M, et al. Effects of early administration ofatorvastatin treatment on thrombotic process in normocholesterolemic patients withunstable angina. Int J Cardiol.2006Jan26;106(3):333-7.
    39. Pastuszczak M, Kotlarz A, Mostowik M, et al. Prior simvastatin treatment isassociated with reduced thrombin generation and platelet activation in patients withacute ST-segment elevation myocardial infarction. Thromb Res.2010May;125(5):382-6.
    40. Tetik S, Ak K, Sahin Y, et al. Postoperative statin therapy attenuates the intensity ofsystemic inflammation and increases fibrinolysis after coronary artery bypass grafting.Clin Appl Thromb Hemost.2011Oct;17(5):526-31.
    41. Singh N, Patel P, Wyckoff T, Augoustides JG. Progress in perioperative medicine:focus on statins. J Cardiothorac Vasc Anesth.2010Oct;24(5):892-6. Epub2010Aug11.
    42. Sch fer A, Fraccarollo D, Eigenthaler M, et al. Rosuvastatin reduces platelet activationin heart failure: role of NO bioavailability. Arterioscler Thromb Vasc Biol.2005May;25(5):1071-7.
    43. Tousoulis D, Antoniades C, Bosinakou E, et al. Effects of atorvastatin on reactivehyperaemia and the thrombosis-fibrinolysis system in patients with heart failure.Heart.2005Jan;91(1):27-31.
    44. Chello M, Spadaccio C, Patti G, et al. Simvastatin reduces platelet-endocardiumadhesion in atrial fibrillation. Atherosclerosis.2008Apr;197(2):588-95.
    45. Asahi M, Thomas S, Yoshimura Si, et al. Protective Effects of Statins after EmbolicFocal Cerebral Ischemia in Endothelial Nitric Oxide Synthase Knockout Mice. JCereb Blood Flow Metab.2005June;25(6):722–729.
    46. Hackam DG, Woodward M, Newby LK, et al. Statins and intracerebral hemorrhage:collaborative systematic review and meta-analysis. Circulation.2011Nov15;124(20):2233-42.
    47. Goicoechea M, de Vinuesa SG, Lahera V, et al. Effects of atorvastatin on inflammatoryand fibrinolytic parameters in patients with chronic kidney disease. J Am Soc Nephrol.2006Dec;17(12Suppl3):S231-5.
    48. Li L, Sun T, Zhang P, et al. Statins for primary prevention of venous thromboembolism.Cochrane Database Syst Rev.2011Dec7;12: CD008203.
    49. Tehrani S, Mobarrez F, Antovic A, et al. Atorvastatin has antithrombotic effects inpatients with type1diabetes and dyslipidemia. Thromb Res.2010Sep;126(3):e225-31.
    50. Krysiak R, Gdula-Dymek A, Okopień B. Hemostatic effects of simvastatin in subjectswith impaired fasting glucose. Pharmacol Rep.2010Nov-Dec;62(6):1090-8.
    51. Koci I, Racek-Król B, Wapniarska I, et al. Antiplatelet effect of statins is augmentedin diabetic rabbits. Pharmacol Rep.2010Mar-Apr;62(2):410-3.
    52. Sch fer A, Fraccarollo D, Vogt C, et al. Improved endothelial function and reducedplatelet activation by chronic HMG-CoA-reductase inhibition with rosuvastatin in ratswith streptozotocin-induced diabetes mellitus. Biochem Pharmacol.2007May1;73(9):1367-75.
    53. Agarwal V, Phung OJ, Tongbram V, et al. Statin use and the prevention of venousthromboembolism: a meta-analysis. Int J Clin Pract.2010Sep;64(10):1375-83.
    54. Squizzato A, Romualdi E, Ageno W. Why should statins prevent venousthromboembolism? A systematic literature search and a call for action. Journal ofThrombosis and Haemostasis,2006Sep;4(9):1925-7.
    55. Rodriguez AL, Wojcik BM, Wrobleski SK, et al. Statins, inflammation and deep veinthrombosis: a systematic review. J Thromb Thrombolysis.2012May;33(4):371-82.
    56. Sakamoto K, Osaki M, Hozumi A, et al. Simvastatin suppressesdexamethasone-induced secretion of plasminogen activator inhibitor-1in human bonemarrow adipocytes. BMC Musculoskelet Disord.2011Apr27;12(1):82.
    57. Lai WT, Lee KT, Chu CS, et al. Influence of withdrawal of statin treatment onproinflammatory response and fibrinolytic activity in humans: an effect independenton cholesterol elevation. Int J Cardiol.2005Feb28;98(3):459-64.
    58. Matthias Endres, Ulrich Laufs. Effects of Statins on Endothelium and SignalingMechanisms. Stroke.2004;35:2708.
    59. Zhou Q, Liao JK.Circ J. Pleiotropic effects of statins.-Basic research and clinicalperspectives.2010;74(5):818-26.
    60. Ishibashi T, Nagata K, Ohkawara H, et al. Inhibition of Rho/Rho-kinase signalingdownregulates plasminogen activator inhibitor-1synthesis in cultured humanmonocytes. Biochim Biophys Acta.2002Jun12;1590(1-3):123-30.
    61. Egbert K. O. Kruithof. Regulation of plasminogen activator inhibitor type1geneexpression by inflammatory mediators and statins. Thromb Haemost2008;100:969–975.
    62. Dunoyer-Geindre S, Fish RJ, Kruithof EK. Regulation of the endothelial plasminogenactivator system by fluvastatin. Role of Rho family proteins, actin polymerisation andp38MAP kinase.2011, Thromb Haemost.105(3):461-72.
    63. Kunieda Y, Nakagawa K, Nishimura H, et al. HMG CoA reductase inhibitorsuppresses the expression of tissue factor and plasminogen activator inhibitor-1induced by angiotensin II in cultured rat aortic endothelial cells. Thromb Res.2003Jun1;110(4):227-34.
    64. Rikitake Y, Liao JK. Rho-Kinase Mediates Hyperglycemia-Induced PlasminogenActivator Inhibitor-1Expression in Vascular Endothelial Cells. Circulation.2005;111:3261-3268.
    65. Takemoto M, Sun J, Hiroki J, et al. Rho-kinase mediates hypoxia-induceddownregulation of endothelial nitric oxide synthase. Circulation2002;106:57–62.
    66. Mukai Y, Wang CY, Rikitake Y, Liao JK. Phosphatidylinositol3-kinase/protein kinaseAkt negatively regulates plasminogen activator inhibitor type1expression in vascularendothelial cells. Am J Physiol Heart Circ Physiol.2007April;292(4):H1937–H1942.
    67. Masato Eto, Toshiyuki Kozai, Francesco Cosentino, et al. Statin Prevents Tissue FactorExpression in Human Endothelial Cells. Role of Rho/Rho-Kinase and Akt Pathways.Circulation.2002;105:1756.
    68. Iwasaki H, Okamoto R, Kato S, et al. High glucose induces plasminogen activatorinhibitor-1expression through Rho/Rho-kinase-mediated NF-kappaB activation inbovine aortic endothelial cells. Atherosclerosis.2008Jan;196(1):22-8.
    69. Ulfhammer E, Larsson P, Karlsson L, et al. TNF-alpha mediated suppression of tissuetype plasminogen activator expression in vascular endothelial cells is NF-kappaB-andp38MAPK-dependent. J Thromb Haemost.2006Aug;4(8):1781-9.
    70. Laumen H, Skurk T, Hauner H. The HMG-CoA reductase inhibitor rosuvastatininhibits plasminogen activator inhibitor-1expression and secretion in humanadipocytes. Atherosclerosis.2008Feb;196(2):565-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700