氢氧化镁阻燃剂的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢氧化镁作为添加型无机阻燃剂,具有热稳定性好、无毒、抑烟、高效促基材成炭的作用,且在不产生腐蚀性气体的同时还具有中和燃烧过程中产生的酸性和腐蚀性气体功能,作为一种环境友好型的绿色阻燃剂具有很好的市场前景。然而,氢氧化镁在高分子材料中的分散性和相容性较差,往往导致阻燃材料力学性能下降。因此,如何增加氢氧化镁与聚合物之间的相容性、减少其使用量成为亟待解决的问题。本文针对这些问题,采用以下方法对氢氧化镁进行了制备和改性。
     采用反向化学沉淀法、利用聚乙二醇(PEG1000)作为软模板在室温下制备了一维纳米Mg(OH)2粒子。获得针状形貌氢氧化镁的最佳PEG含量为4%,此时的氢氧化镁晶型完整,形貌规整而且分散性好,高分子型分散剂PEG1000的使用能够有效地控制氢氧化镁晶体的生长取向,并推测和探讨了此一维材料的形成机理。
     首次以水/环己烷/Triton X-100/正己醇四元油包水微乳液体系中的微乳液滴作为纳米微反应器,向增溶有镁离子的微乳液区通入氨气作为沉淀剂,制备了纳米氢氧化镁粒子。这些空间受限的纳米微反应器可用来控制氢氧化镁纳米粒子的成核、生长和结晶。调整水和表面活性剂的摩尔比(ω0)可以有效地控制微乳胶束的大小,从而达到控制纳米粒子粒径的目的,纳米粒子的平均粒径随ω0的增大而增大。微乳液法获得的纳米氢氧化镁粒子在有机相中的分散性和相容性都较化学沉淀法有了较大改善。
     通过在水热溶液中加入阳离子表面活性剂十六烷基三甲基溴化铵(CTAB),实现了在较低的水热温度下获得高分散片状超细氢氧化镁。用此法得到的超细氢氧化镁的平均粒径为400nm,厚度为60nm,最佳工艺条件为150℃,pH为8, Mg2+/CTAB摩尔比为80的条件下水热6h。令人关注的是:CTAB的加入可以明显地促进氢氧化镁在水热条件下的溶解-沉淀过程,在较低水热温度下,生成形貌规整、粒径分布窄、结晶性好的超细氢氧化镁粒子。并探讨了CTAB在水热过程中对产物氢氧化镁形貌的影响机理。
     通过对纳米氢氧化镁粒子进行油酸(OA)表面改性,然后在其表面接枝大分子聚甲基丙烯酸甲酯(PMMA)得到了疏水纳米氢氧化镁粒子。首先,通过油酸对氢氧化镁进行表面修饰,在其表面引入双键烯烃基团,利用分散聚合法在修饰过的氢氧化镁表面接枝上有机大分子PMMA。接枝改性后的氢氧化镁粒子分散性得到较大的提高,在有机相中的分散稳定性和相容性得到了很大的提高。
     在此基础上,为了从根本上解决氢氧化镁的分散及阻燃效率问题,研究了一步法原位合成PMMA/Mg(OH)2/MMT纳米复合材料的合成工艺及阻燃性能,借助蒙脱土(MMT)来提高氢氧化镁的阻燃效率。首次将微乳液法和分散聚合法相结合,利用微乳液法制备纳米氢氧化镁,并在同一体系中利用分散聚合法原位一步合成了PMMA/Mg(OH)2/MMT三相纳米复合材料。氢氧化镁纳米粒子蒙脱土纳米片层在基体材料中呈单分散状态,有效地解决了纳米粒子在高聚物基体中的团聚问题,基本保证了复合材料的透明性;复合材料阻燃性能也得到了很大提高,其热释放速率(HRR)和热释放速率峰值(PHRR)均明显降低,并在文中对阻燃机理进行了详细讨论。
Magnesium hydroxide, one of inorganic additive flame retardants, is a kind of promising green flame retardant and has attracted much attention because of its good thermal stability, nontoxicity, fume suppression, char-forming promotion, and no formation of acid and corrosive gas product during burning process. However, its poor dispersibility in and compatibility with polymer matrices would decrease the mechanical properties of the filled polymer. In this paper, therefore, the preparation and surface modification of ultrafine and nanometer magnesium hydroxide were investigated aiming at the problems above-mentioned.
     Magnesium hydroxide nanoneedles and nanorods were synthesized by reverse precipitation in the presence of polyethylene glycol (PEG1000) at ambient temperature. The experimental results showed that the growth of magnesium hydroxide crystals and dispersivity of nanoparticles were greatly influenced by polymer dispersant. The mechanism of the formation of magnesium hydroxide nanorods and nanoneedles was also proposed.
     Well-dispersed magnesium hydroxide nanoplatelets were first synthesized by simple water-in-oil (w/o) microemulsion process, blowing gaseous ammonia (NH3) into the microemulsion zones solubilized by magnesium chloride solution (MgCl2). The typical quaternary microemulsions of Triton X-100/cyclohexane/n-hexanol/water were used as space-confining microreactors for the nucleation, growth and crystallization of magnesium hydroxide nanoparticles. The mole ratio of water to surfactant (ω0) played an important role in the sizes of micelles and nanoparticles, increasing with the increase ofω0. The compatibility and dispersibility of nanoparticles obtained from reverse micelles were improved in organic phase.
     The high-dispersed lamellar ultrafine magnesium hydroxide was obtained at relatively low hydrothermal temperature in the presence of cationic surfactant, cetyl trimethyl ammonium bromide (CTAB). The procedure described in this study is attractive since proper amount of CTAB could promote the dissolution and precipitation of magnesium hydroxide in hydrothermal system, resulting in the well-defined morphology, narrow size distribution and good crystallinity of ultrafine particles. The method led to the production of particles with mean size of 400 nm and a diameter of 60 nm. The optimal conditions of preparation were hydrothermal treatment at 150°C for 6 h at pH 11 with Mg2+/CTAB molar ratio of 80. The influence mechanism of CTAB on morphology of magnesium hydroxide was discussed.
     Hydrophobic magnesium hydroxide nanoparticles were obtained by means of grafting poly(methyl methacrylate) (PMMA) onto the surface of nanoparticles after oleic acid (OA) modification. The functional double bonds were firstly introduced on the surface of nanoparticles by OA modification, followed by dispersion polymerization on the particles surface in ethanol solution to graft PMMA on the surface of modified magnesium hydroxide. The results showed that the organic macromolecule PMMA could be successfully grafted on the surface of OA-modified magnesium hydroxide nanoparticles, with the dispersibility and the compatibility of nanoparticles greatly improved in organic phase.
     In order to solve the problems of dispersibility and flame retardant efficiency of magnesium hydroxide, the in-situ synthetic technique and flame retardant propertie of PMMA/Mg(OH)2/MMT were further researched on the basis of the synthesis and modification of magnesium hydroxide, employing montmorillonite (MMT) to improve the flame efficiency of magnesium hydroxide. The microemulsions and dispersion polymerization were first combined together to synthesize ternary nanocomposite. The magnesium hydroxide nanoparticles and layers of MMT were monodispersed in the PMMA matrix, basically ensuring the transparence of nanocomposite. And the flame retardant efficiency was greatly improved, with the obviouse decrease of heat release rate (HRR) and peak of heat release rate (PHRR). The flame retardant mechanism was discussed in detail.
引文
[1]欧育湘,阻燃剂高分子材料,北京,国防工业出版社, 2001
    [2]欧育湘,房晓敏,国际阻燃剂市场和发展动向,现代化工, 2006, 26(5), 63-66
    [3]张军,纪奎江,夏延致,等,聚合物燃烧与阻燃技术,北京,化学工业出版社, 2005, 28-33
    [4]欧育湘,实用阻燃技术,北京,化学工业出版社, 2002, 133-174
    [5]王建祺,无卤阻燃聚合物基础与应用,北京,科学出版社, 2005, 5-7
    [6] Maclaury M.R., Holub F.F., Flame retardant compositions and coated article, US Patent 4,273,691; 1981
    [7] Harrell J.R., Muschiatti L.C., Ethylene copolymer compositions, US Patent 4,839,412; 1989
    [8] Opsahl A.W., Watson L.D., Ethylene copolymer compositions having improved fire retardancy, US Patent 4,851,463; 1989
    [9] Tai C.M., Li Robert K.Y., Studies on the impact fracture behaviour of flame retardant polymeric material, Mater Des., 2001, 22(1), 15-19
    [10] Qiu L.Z., Xie R.C., Ding P., et al., Preparation and characterization of Mg(OH)2nanoparticles and flame-retardant property of its nanocomposites with EVA, Compos. Struct., 2003, 62, 391-395
    [11] Xu H., Deng X.R., Preparation and properties of superfine Mg(OH)2 flame retardant, Trans. Nonferrous Met. Soc. China, 2006, 16, 488-492
    [12] Sain M., Park S.H., Suhara F., et al., Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide. Polym. Dagrad. Stab., 2004, 83(2), 363-367
    [13] Ranjit K.T., Klabunde K.J., Solvent effects in the hydrolysis of magnesium methoxide, and the production of nanocrystalline magnesium hydroxide: An aid in understanding the formation of porous inorganic materials, Chemistry of Materials, 2005, 17(1), 65-73
    [14] Kozlowski R, Wladika-Przybylak M., Garbarczyk J., The flame retardant for polypropylene using magnesium hydroxide with intumescent components, Molecular Crystals and Liquid Crystals Science and Technology, Section A: Molecular Crystals and Liquid Crystals, 2000, 354, 195-206
    [15] Cusack P.A., Cross M.S., Hornsby P.R., Effects of tin additives on the flammability and smoke emission characteristics of halogen-free ethylene-vinyl acetate copolymer, Polym. Dagrad. Stab., 2003, 79(2), 309-318
    [16] Shikawa T., Maki I., Koshizuka T., et al., Thermal degradation and flame retardancy of polycarbonate as a flame retardant polymer, Journal of the Society of Materials Science, 2004, 53(12), 1301-1308.
    [17] Zhang S., Horrocks A.R., A review of flame retardant polypropylene fibres, Prog. Polym. Sci., 2003, 28, 1517-1538
    [18] Nass B., Schacker O., Schlosser E., Wanzke W., Phosphorus containing flame retardants-containing and material properties. In: Flame retardants 2002. London: Interscience Communications, 2002. 63-74
    [19] Anna P., Marosi G.Y., Bourbigot S., Le Bras M., Delobel R., Intumescent flame retardant systems of modified rheology, Polym. Degrad. Stab., 2002, 77(2),243-247
    [20] Chiu S.H., Wang W-K., Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer 1998, 39(10), 1951-1955
    [21] Lewin M., Synergistic and catalytic effects in flame retardancy of polymeric materials, J Fire Sci 1999, 17(1), 3–19
    [22] Landoni G., Fontani S., Cicchetti O., Self-extinguishing polymeric compositions. US Patent 4, 336, 182, 1982
    [23] Bertelli G., Locatelli R., Self-extinguishing polyolefin compositions., US Patent 4, 420, 577, 1983
    [24] Scarso L., Self-extinguishing polymeric products based on polyolefins., US Patent 4, 727, 102, 1988
    [25] Marciandi F., Self-extinguishing polymeric compositions., US Patent 4, 198, 49, 1980
    [26] Cullis C.F., Hirschler M.M,. Tao Q.M., Studies of the effects of phosphorus–nitrogen–bromine systems on the combustion of some thermoplastic polymers, Eur. Polym. J., 1991, 27(3), 281-289
    [27] Delobel R., Le Bras M., Ouassou N., Alistiqsa F., Thermal behaviour of ammonium polyphosphate–pentaerythritol and ammonium pyrophosphate–pentaerythritol intumescent additives in polypropylene formulations, J. Fire Sci., 1990, 8, 85-108
    [28] Delobel R., Ouassou N., Le B.M., Leroy J-M., Fire retardance of polypropylene: action of diammonium pyrophosphate-pentaerythritol intumescent mixture, Polym. Degrad. Stab., 1989, 23, 349-357
    [29] Delobel R., Ouassou N., Le Bras M., Leroy J.M., Fire retardance of polypropylene: action of diammonium pyrophosphate-pentaerythritol intumescent mixture, Polym Degrad Stab, 1989, 23(4), 349-357
    [30] Brad D.G, Moberly C.W, Norell J.R., Walters H.C., Intumescents: a noveleffective approach to flame retarding polypropylene, J Fire Retard Chem, 1977, 4, 150-164
    [31] Leeuwendal R., Shen K., Ferm D., New application developments in halogen-free flame retardant polyolefin and polyamide engineering plastics using firebrake zinc borates. Flame Retardants 2002, London: Interscience Communications, 2002, 95-106
    [32] Bourbigot S., Le Bras M., Leeuwendal R., Shen K., Schubert D., Recent advances in the use of zinc borates in flame retardancy of EVA, Polym Degrad Stab, 1999, 64(3), 419-425
    [33] Slusher C.C., Ogren E.A., Flame retardant modified asphaltbased material and products therefrom, US Patent 5, 516, 817, 1996
    [34] Costa L., Luda M.P., Trossarelli L., Mechanism of condensed phase action in flame retardants, Synergistic systems based on halogen–metal compounds. Polym Degrad Stab, 2000, 68(1),,67-74
    [35] Kutner A., Flame retardant polymers., US Patent 3, 717, 609, 1973
    [36] Wascott L.D., The Flame Retadant of Molybdenum Trioxide, J Anal. Appl. Pyrolysis, 1985, (8), 163
    [37] Kennelly. W.J., Malybdate as a Compoment of Low Smoke Highperformance Plasties, Fire Saf . Dev., 2000, 73-80
    [38]刘辉机,吴绍吟,含磷酸三甲苯脂、三氧化二锑和三氧化钼的高效低烟复合阻燃体系在聚氯乙烯电缆料的应用,中国塑料, 2002, (2), 72-74
    [39]张文钲,钼酸盐阻燃抑烟剂研发现状,中国钼业, 2003, 27(1), 7-9
    [40]亢庆卫,罗权焜,以三氧化二锑为协效剂的复合阻燃剂对MVQ硫化胶阻燃性能的影响,橡胶工业, 2004, 51(11), 651-655
    [41]胜伟民,李国雄,锑、锌、锡的氧化物对高分子物的阻燃效果,阻燃材料与技术, 1998 (4) , 8-10
    [42]李巧玲,欧育湘,王亚昆,无卤阻燃剂的研究进展,化工进展, 1998, (5), 24-27
    [43]牟莉,张龙,环保型阻燃剂的研究进展,长春大学学报, 2004, 14(4), 79-81
    [44]贾修伟.纳米阻燃材料,北京,化学工业出版社, 2005
    [45]于永忠,吴启鸿,葛世成,阻燃材料手册,北京:群众出版社, 1997
    [46] Jeffery W., Kahiwagi T., Lichtenhan J., SAMPE J., 1997, 33(4), 40-46
    [47]何云南, ATH在无卤阻燃聚乙烯电缆料中的应用研究,高分子材料科学与工程, 1992, (6), 126-130
    [48]李学锋,陈绪煌,周密,氢氧化铝阻燃剂在高分子材料中的应用,中国塑料, 1999, 13(6), 80-85
    [49] Kunihik T., Science of flame retardant for polymer, J. Polymer, 2000, 49(4), 242-247
    [50] Norio T., J. Function of inorganic powder surface by the grafting of polymers, Polymer, 1996, 45(6), 421-426
    [51]邹燕,应用前景广阔的氢氧化镁,化工技术经济, 2002, 20(6), 16-19
    [52]胡庆福,刘鸿雁,王金阁,等,一步法制备氢氧化镁阻燃剂新工艺,现代化工, 1998, (3), 22-24
    [53]魏炳举,张万峰,一种极具发展前景的镁系列产品-氢氧化镁,海湖盐与化工, 2003, 32(1), 26-33
    [54]郭如新,氢氧化镁应用近期进展,海湖盐与化工, 2001, 30(4), 24-27
    [55]李志强,向兰,魏飞,阻燃级氢氧化镁的阻燃消烟机理及制备方法,海湖盐与化工, 2003, 33(2), 1-3
    [56] Chui S.H., Wang W.K., The dynamic flammability and toxicity of magnesium hydroxide filled intumescent fire retardant polypropylene, Journal of Applied Polymer Science, 1998, 67(6), 989-995
    [57] Larry K., Magnesium hydroxide: Halogen-free flame retardant and smoke suppressant for polypropylene, Plastics Compounding, 1985, 9(4), 40-44
    [58] Hornsby P.R., Watson C.L., Mechanism of smoke suppression and fire retardancy in polymers containing magnesium hydroxide filler, Plastics and Rubber Processing and Application, 1989, 11(1), 45-51
    [59] Hornsby P.R., Watson C.L., Study of the mechanism of flame retardance and smoke suppression in polymers filled with magnesium hydroxide filler, Degradant and Stability, 1990, 30(1), 73-87
    [60]周产力,氢氧化镁阻燃剂的现状及展望,无机盐工业, 2004, 36(3), 11-13
    [61]邱龙臻,吕建平,谢荣才,等,纳米氢氧化镁的结构表征和阻燃特性,半导体学报, 2003, 24(增刊), 81-84
    [62]张琦,胡伟康,田明,等,纳米氢氧化镁/橡胶复合材料的性能研究,橡胶工业, 2004, 51(1), 14-19
    [63]张秋艳,郭如新,国内从水镁石制取氢氧化镁阻燃剂近况,海湖盐与化工, 2002, 31(6), 34-37
    [64] James Innes, Ann Innes, In: Fire Retardant Chemicals Association 1998 Fall Conference on Flame Retardant Polymerics: Electrical/Electronic Appications, October 4~7, 1998, Double Tree Islander Hotel Newport, Rhode Island. 29-39
    [65]徐加艳,胡源,王清安,等,阻燃材料工业中的绿色化学与技术,高分子材料与工程, 2002, 18(1), 17-21
    [66]王志强,刘建平,沉淀法合成高纯超细氢氧化镁的研究,无机盐工业, 2001, 33(4), 3-4
    [67] Cunningham D.H., Vogel W., Kageyama H., et al., The Relationship between the Structure and Activity of Nanometer Size Gold When Supported on Mg(OH)2, 1998, 177(1), 1-10
    [68]易求实,反向沉淀法制备纳米Mg(OH)2阻燃剂的研究化学试剂, 2001, 23(4), 197-199, 228
    [69]周卫平,氢氧化镁阻燃剂的制备技术,无机盐工业, 1997, (4), 25-27
    [70]张海永,段雪,磁性纳米镁铝水滑石的合成及表征,应用化学, 2002, 19(8), 734-737
    [71] Li Y.D., Sui M., Ding Y., et al., Preparation of Mg(OH)2 Nanorods, Advanced Materials, 2000, 12 (11), 818-821
    [72]胡庆福,一步法制备氢氧化镁阻燃剂新工艺,现代化工, 1998, 18(3), 22-24
    [73] Hornsby P.R., Watson C.L., Interfacial modification of polypropylene composites filled with magnesium hydroxide, Journal of Materials Science, 1995, 30, 5347-5355
    [74] Monte, S,J., Society of Plastics Engineers, 36th Annual Technical Conference, 781, the Washington Hotel Washington, D.C. April, 1987, 24-27.
    [75] Manfred Weber, Mineral flame retardants-overview and future trends, Industrial Minerals, 2000(2), 19-28.
    [76]郑水林,粉体表面改性,北京,建材工业出版社, 1995
    [77]张斌,胡德生,不同偶联剂对水镁石填料表面的改性研究(Ⅰ) ,塑料工业, 1995, (5), 40-44.
    [78]杜高翔,郑水林,李杨,阻燃用氢氧化镁及水镁石粉体的表面改性研究现状,非金属矿, 2002, (25), 10-13
    [79] Tanmachi M., Ando Y., Magnisium hydroxide-based flame retardants and their manufacture. JP, 62-184707, 1987, 08 , 13
    [80]罗士平,李锦春,孙惠,等,氢氧化镁表面改性及其在EVA中的应用,江苏石油化工学院学报, 1998, 10(4), 4-7.
    [81] Zhang Y., Yang J., Peng Z., et al., Effect of silicone oil on the mechanical properties of highly filled HDPE composites, Polymers and Polymer Composites, 2000, 8(7), 471-476
    [82] Rothon R.N., Hornsby P.R., Flame retardant effects of magnesium hydroxide, 1996, 54(2-3), 383-385
    [83]黄宏海,田明,陈中强,等,界面改性对高填充Mg(OH)2 /EVA复合材料结构与性能的影响, 2003, 31(12), 8-12
    [84]冯嘉春,陈鸣才,稀土偶联剂(REC)对PP/Mg(OH)2体系性能的影响,中国塑料, 2000, (10), 15-17
    [85] Okada A., Kawasumi M., Usuki A., et al., Synthesis and properties of nylon-6/clayhybrids. In: Schaefer DW, Mark JE, editors. Polymer based molecular composites. MRS Symposium Proceedings, Pittsburgh, 1990, 171,45-50
    [86] Giannelis E.P., Polymer layered silicate nanocomposites, Adv. Mater., 1996, 8, 29-35
    [87] Giannelis E.P., Krishnamoorti R., Manias E., Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes, Adv. Polym. Sci., 1999, 138, 107-147
    [88] LeBaron P.C, Wang Z, Pinnavaia T.J., Polymer-layered silicate nanocomposites: an overview, Appl. Clay. Sci., 1999, 15, 11-29
    [89] Vaia R.A., Price G., Ruth P.N., Nguyen H.T., Lichtenhan J., Polymer/layered silicate nanocomposites as high performance ablative materials, Appl. Clay. Sci, 1999, 15, 67-92
    [90] Biswas M., Sinha Ray S., Recent progress in synthesis and evaluation of polymer–montmorillonite nanocomposites, Adv Polym Sci 2001, 155, 167-221
    [91] Giannelis EP. Polymer-layered silicate nanocomposites: synthesis, properties and applications. Appl Organomet Chem 1998, 12, 675-680
    [92] Xu R., Manias E., Snyder A.J., Runt J., New biomedical poly(urethane uera)-layered silicate nanocomposites, Macromolecules 2001, 34, 337-339
    [93] Bharadwaj R.K., Modeling the barrier properties of polymerlayered silicate nanocomposites, Macromolecules 2001, 34, 1989-1992
    [94] Messersmith P.B., Giannelis E.P., Synthesis and barrier properties of poly(1-caprolactone)-layered silicate nanocomposites, J Polym Sci, Part A: Polym Chem 1995, 33, 1047-1057
    [95] Yano K., Usuki A., Okada A., et al., Synthesis and properties of polyimide–clay hybrid, J Polym Sci, Part A: Polym Chem 1993, 31, 2493-2498
    [96] Kojima Y, Usuki A, Kawasumi M, et al., Mechanical properties of nylon 6–clay hybrid, J Mater Res 1993, 8, 1179-1184
    [97] Gilman J.W., Kashiwagi T., Lichtenhan J.D., Flammability studies of polymer-layered silicate nanocomposites, SAMPE J 1997, 33, 40-45
    [98] Gilman J.W., Flammability and thermal stability studies of polymer-layered silicate (clay) nanocomposites, Appl. Clay Sci., 1999, 15, 31-49
    [99] Dabrowski F., Le Bras M., Bourbigot S., et al., PA-6 montmorillonite nanocomposite in intumescent fire retarded EVA, Proceedings of the Eurofillers’99, Lyon-Villeurbanne, France, 6-9 September 1999
    [100] Bourbigot S., Le Bras M., Dabrowski F., et al., PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations, Fire Mater., 2000, 24, 201-208
    [101] Gilman J.W., Jackson C.L., Morgan A.B., et al., Flammability properties of polymer-layered silicate nanocomposites, Propylene and polystyrene nanocomposite, Chem. Mater., 2000, 12, 1866-1873
    [102] Sinha Ray S., Yamada K., Okamoto M., et al., New polylactide/layered silicate nanocomposite: a novel biodegradable material, Nano Lett. 2002, 2, 1093-1096
    [103] Vaia R.A., Ishii H., Giannelis E.P., Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates, Chem. Mater., 1993, 5, 1694-1696
    [104]赵竹第,李强,欧玉春,等,尼龙-6/蒙脱土纳米复合材料的制备、结构与力学性能的研究,高分子学报, 1997, (5), 519-523
    [105]王新宇,漆宗能,王佛松,聚合物-层状硅酸盐纳米复合材料制备及应用,工程塑料应用, 1999, 27 (2), 1-5
    [106] Srikhirin T., Moet A., Lando J.B., Polydiacetylene-inorganic clay nanocomposites, Polym. Adv. Technol., 1998, 9, 491-503
    [107] Kawasumi M., Okada A., Preparation and mechanical properties of polypropylene-clay hybrids, Macromolecules, 1997, (30), 6333-6338
    [108] Vaia R.A., Giannelis E.P., New polymer electrolyte nanocomposites melt intercalation of poly(ethylene oxide) in mica-type silicates, Adv. Mater., 1995, 7(2), 154-156
    [109] Vaia R.A., Ishii H., Synthesis and properties of two-dimensional nanostructuresby direct intercalation of polymer melts in layered silicates, Chem. M ater., 1993, (5), 1694-1696
    [110] Okada A., Kawasui M., Synthesis and characterization of a nylon6-clay hybrid, Polym. Prepr, 1987, 28, 447-448
    [111] Giannelis E.P., Polymer layered silicate nanocomposites, Adv. Mater., 1996, 8(1), 29-35
    [112] Hasegawa N., Hirotaka O., Masaya K., Arimistu U., Preparation and properties of polystyrene-clay hybrids, J. Appl. Polymer Sci., 1999, 74, 3359-3364
    [113]刘向峰,张军,陆晓东,等,原位聚合法PS/蒙脱土复合材料燃烧性能的研究,中国塑料, 2002, (12), 23-26
    [114] Gilman J.W., Kashiwagi T., Lichtenhan J.D., Nanocomposites: A revolutionary new flame retardant approach, SAMPE, 1997, 33(4), 40-46
    [115] Porter D., Metcalfe E., ThomasM J.K., Nanocomposite fire retardants-a review, Fire Mater., 2000, 24, 45-52
    [116] Michael A., Philippe D., Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng., 2000, 28, 1-63
    [117] Hoffmann U, Endell K, Wilm D., et al., Kristallstruktur und Quellung von Montmorillonit, Z. Kristallogr, 1933, A86, 340
    [118] Marshall C.E., Layer lattices and base-exchange, Krist Z., 1935, A91, 433
    [119] Hendricks S.B., Lattice structure of clay minerals and some proper-. ties of claysJ, Geology, 1942, 42B, 219
    [120] Zanetti M, Lomakin S, Camino G. Polymer Layered Silicate Nanocomposites, Mcromol. Mater. Eng., 2000, 279, 1-9
    [121] Ray S.S., Okamoto M., Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci., 2003, 28, 1539-1641
    [122] Lan T., Kaviratna P.D., Pinnavia T.J., Mechanism of clay tactoid in epoxy-clay nanocomposites, Chem. Mater., 1995, 7(11), 2144-2150
    [123] Pinnavaia T.J., Beall G.W., Polymer-clay nanocomposites, Chichester: JohnWiley & Sons Ltd., 2000
    [124] Giannelis E P, Krishnamoorti R, Manias E. Polymer-silicate nanocomposites: Model systems for confined polymers and polymer brushes, Advances in polymer Science, 1999, 138, 108-128
    [125] Rosei F., Nanostructrued surfaces: challenges and frontiers in nanotechnology, J. Phys.: Condens. Matter, 2004, 16, S1373-S1436
    [126] Barth J.V., Costantini G., Kern K., Engineering atomic and molecularnanostructures at surfaces, Nature, 2005, 437, 671-679
    [127] Li Y.D., Sui M., Ding Y., et al., Preparation of Mg(OH)2 nanorods, Adv. Mater., 2000,12, 818-821
    [128] Lv J.P., Qiu L.Z., Qu B.J., Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method, J. Cryst. Growth, 2004, 267, 676-684
    [129] Guo L., Ji Y.L., Xu H.B., Regularly shaped, single-crystalline ZnO nanorods with Wurtzite Structure, J. Am. Chem. Soc., 2002, 124, 14864-14965
    [130] Sun Y.G., Xia Y.N., Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process, Adv. Mater., 2002, 14, 833-837
    [131] Yan L., Zhuang J., Sun X.M., et al., Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Mater. Chem. Phys. 2001, 76, 119-122
    [132] Fan W.L., Sun S.X., Song X.Y., et al., Controlled synthesis of single-crystalline Mg(OH)2 nanotubes and nanorods via a solvothermal process, J. Solid State Chem., 2004, 177, 2329-2338
    [133] Fan W.L., Sun S.X., You L.P., et al., Solvothermal synthesis of Mg(OH)2 nanotubes using Mg10(OH)18Cl2·5H2O nanowires as precursors, J. Mater. Chem., 2003, 13, 3062-3065
    [134] Wu H.Q., Shao M.W., Gu J.S., et al., Microwave-assisted synthesis of fibre-like Mg(OH)2 nanoparticles in aqueous solution at room temperature, Mater. Lett., 2004, 58, 2166-2169
    [135] Sharifi F., Azaiez J., Vortex dynamics of fiber-laden free shear flows, J. Non-Newtonian Fluid Mech., 2005, 127, 73-87
    [136] G?schel U., Lutz W., Davidson N.C., The influence of a polymeric nucleating additive on the crystallisation in glass fibre reinforced polyamide 6 composites, Compos. Sci. Technol., 2007, 67, 2606-2615
    [137] Phillips V.A., Kolbe J.L., Opperhauser H., Effect of pH on the growth ofMg(OH)2 crystals in an aqueous environment at 60°C, J. Cryst. Growth, 1977, 41, 228-234
    [138] Du J.M., Liu Z.M., Wu W.Z., et al., Preparation of single-crystal copper ferrite nanorods and nanodisks, Mater. Res. Bull., 2005, 40, 928-935
    [139] Zhang M., Wang Z.H., Xi G.C., et al., Large-scale synthesis of antimony nanobelt bundles, J. Cryst. Growth, 2004, 268, 215-221
    [140] Yates M.Z., Ott K.C., Birnbaum E.R., et al., Hydrothermal synthesis of molecular sieve fibers: using microemulsions to control crystal morphology, Angew. Chem. Int. Ed., 2002, 41, 476-478
    [141] Henrist C., Mathieu J.P., Vogels C., et al., Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution, J. Cryst. Growth, 2003, 249, 321-330
    [142] Saravanan L., Subramanian S., Surface chemical studies on the competitive adsorption of poly(ethylene glycol) and ammonium poly(methacrylate) onto alumina, J. Colloid Interf. Sci., 2005, 284, 363-377
    [143] Qiu L.Z., Xie R.C., Ding P., et al., Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA, Compos. Struct., 2003, 62, 391-395
    [1] Henrist C., Mathieu J.P., Vogels C., et al., Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution, J. Cryst. Growth, 2003, 249, 321-330
    [2] Krishnamoorti R., Yurekli K., Rheology of polymer layered silicate nanocomposites, Curr. Opin. Colloid Interface Sci., 2001, 6, 464-470
    [3] Qiu L.Z., Xie R.C., Ding P., et al., Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA, Compos. Struct., 2003, 62, 391-395
    [4] Gui H., Zhang X.H., Liu Y.Q., et al., Effect of dispersion of nano-magnesium hydroxide on the flammability of flame retardant ternary composites, Compos. Sci. Technol., 2007, 67, 974-980
    [5] Garti N., Spernath A., Aserin A., et al., Nano-sized self-assemblies of nonionic surfactants as solubilization reservoirs and microreactors for food systems, SoftMatter., 2005, 1, 206-218
    [6] Boutonnet M., Kizling J., Stenins P., et al., The preparation of monodisperse colloidal metal particles from microemulsions, Colloids Surf., 1982, 5, 209-216
    [7] Rymes J., Ehret G., Hilaire L., et al., Microemusions in the preparation of highly active combustion catalysts, Catalysis Today, 2002, 75, 297-303
    [8]何平,沈兴海,高宏成,γ射线辐照法在微乳液体系中制备贵金属纳米颗粒与贵金属原子簇.见:房喻,魏俊发编,应用化学新进展,西安:陕西师范大学出版社, 2003, B15
    [9] Liu Y.K., Yin C.R., Wang W.Z, et al., Synthesis of cadmium oxide nanowires by calcining precursorsprepared in a novel inverse microemulsion, J. Mater. Sci. Lett., 2002, 21, 137-139
    [10]郭广生,顾福博,王志华,等, La2(CO3)3纳米线的微乳液法制备与表征,无机化学学报, 2004, 20, 860-862
    [11] Qiu S.Q., Dong J.X., Chen G.X., Preparation of Cu Nanoparticles from Water-in-Oil Microemulsions, J. Colloid Interf. Sci., 1999, 216, 230-234
    [12] Maen M.H., Eva R., Juan H.V., A novel method for the preparation of silver chloride nanoparticles starting from their solid powder using microemulsions, J. Colloid Interf. Sci., 2005, 288, 457-467
    [13] Xiang J.H., Yu S.H., Liu B.H., et al., Shape controlled synthesis of PbS nanocrystals by a solvothermal-microemulsion approach, Inorganic Chemistry Communications 2004, 7, 572-575
    [14] Charinpanitkula T., Chanagula A., Dutt J., et al., Effects of cosurfactant on ZnS nanoparticle synthesis in microemulsion, Sci. Technol. Adv. Mat., 2005, 6, 266-271
    [15] Chen D.L., Gao L., Novel synthesis of well-dispersed crystalline SnO2 nanoparticles by water-in-oil microemulsion-assisted hydrothermal process, J. Colloid Interf. Sci., 2004, 279, 137-142
    [16] Zhan Z.L., Song W.H., Jiang D.G., Preparation of nanometer-sized In2O3 particlesby a reverse microemulsion method, J. Colloid Interf. Sci., 2004, 271, 366-371
    [17] Tueros M.J., Baum L.A., Borzi R.A., et al., Characterization of nanosized maghemite particles prepared by microemulsion using an ionic surfactant, Hyperfine Interactions, 2003, 148/149, 103-108
    [18] Mori Y., Okastu Y., Tsujimoto Y., Titanium dioxide nanoparticles produced in water-in-oil emulsion, J. Nanopart. Res., 2001, 3, 219-225
    [19] Kang S.H., Hirasawa I., Kim W.S., et al., Morphological control of calcium carbonate crystallized in reverse micelle system with anionic surfactants SDS and AOT, J. Colloid Interf. Sci., 2005, 288, 496-502
    [20] Nanni A., Dei L., Ca(OH)2 Nanoparticles from W/O Microemulsions, Langmuir, 2003, 19, 933-938
    [21]李长青, Bi2O3和Bi2Sn2O7粉体的微乳液法制备、表征及其性质的研究,福州大学, 2004
    [22]陈龙武,甘礼华,岳天仪,等,微乳液反应法制备氧化铝(含水)超细微粒,高等化学学报, 1995, 16(1), 13-16
    [23]陈龙武,甘礼华,岳天仪,等,微乳液反应法制备α-Fe2O3超细粒子的研究,物理化学学报, 1994, 10(8), 750-753
    [24] Lim B.P., Wang J., Ng S.C., et al., A bicontinuous microemulsion route to zinc oxide powder, Ceram. Int., 1998, 24, 205-209
    [25] Qiu S.Q., Dong J.X., Chen G.X., Synthesis of CeF3 nanoparticles from water-in-oil microemulsions, Powder Technol., 2000, 113, 9-13
    [26] Adair J.H., Li T., Kido T., et al., Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles, Materials Science and Engineering, 1998, 23, 158-159
    [27] Burshtain D., Zeiri L., Efrima S., Control of colloid growth and size distribution by adsorption-silver nanoparticles and adsorbed anisate, Langmuir, 1999, 15, 3050-3055
    [28] Pauling L., The principles determining the structure of complex ionic crystals, J.Am. Chem. Soc., 1929, 51(8), 1010-1026
    [29] Wu Q.L., Xiang L., Jin Y., Influence of CaCl2 on the hydrothermal modification of Mg(OH)2, Powder Technology 2006, 165(2), 100-104
    [30] Zhang F.Z., Zhang H., Su Z.X., Surface treatment of magnesium hydroxide to improve its dispersion in organic phase by the ultrasonic technique, Appl. Surf. Sci., 2007, 253, 7393-7397
    [31] Che J.F., Xiao Y.H., Wang X., et al., Grafting polymerization of polyacetal onto nano-silica surface via bridging isocyanate, Surf. Coat. Technol., 2007, 201, 4578-4584
    [1] Mo R.F., Jin G.Q., Guo X.Y., Morphology evolution of tungsten trioxide nanorods prepared by an additive-free hydrothermal route, Materials Letters, 2007, 61(18), 3787-3790
    [2] Wu Q.L., Xiang L., Jin Y., Influence of CaCl2 on the hydrothermal modification of Mg(OH)2, Powder Technology 2006, 165(2), 100-104
    [3] Li X.L., Li W.J., Chen X.Y., et al., Hydrothermal synthesis and characterizationof orchid-like MnO2 nanostructures, Journal of Crystal Growth, 2006, 297(2), 387-389
    [4] Jia B.P., Gao L., Synthesis and characterization of single crystalline PbO nanorods via a facile hydrothermal method. Materials Chemistry and Physics, 2006, 100(2-3), 351-354
    [5] Wu J.B., Zhang H., Ma X.Y., et al., Synthesis and characterization of single crystalline MnOOH and MnO2 nanorods by means of the hydrothermal process assisted with CTAB. Materials Letters, 2006, 60(29-30), 3895-3898
    [6] Wu H.J., Xiang L., Jin Y.C., et al., Preparation of highly-dispersed Mg(OH)2 powders and influence factors, J. Inorg. Mater., 2004, 19, 1181-1185
    [7] Chen Z.H., Xiang L., Zhang Y.C., et al., Preparation of highly dispersed Mg(OH)2 nano-plates via double injection-hydrothermal method, Chinese J. Inorg. Chem. 2006, 22, 1062-1066
    [8] Xiang L., Yin Y.P., Jin Y., Hydrothermal preparation of nickel hydroxide coated iron oxide particles, Materials Letters, 2005, 59(17), 2223-2228
    [9] K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Prog. Cryst. Growth Charact., 2007, 53, 117-166
    [10] Henrist C., Mathieu J.P., Vogels C., et al., Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution, J. Cryst. Growth, 2003, 249, 321-330
    [11] Lv J.P., Qiu L.Z., Qu B.J., Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method, J. Cryst. Growth, 2004, 267, 676-684
    [12] Xiang L., Jin Y.C., Jin Y., Hydrothermal modification of Mg(OH)2 particles in NaOH solution, The Chinese Journal of Process Engineering, 2003, 43(2), 116-120
    [13]向兰,金永成,金勇.氢氧化镁的结晶习性研究,无机化学学报, 2003, 19(8), 837-841
    [14] Zhong W.Z., Hua S.K., The Morphology of Crystal Growth, Science Press, Beijing, 1999, 230-257
    [15] Pauling L., The principles determining the structure of complex ionic crystals, J. Am. Chem. Soc., 1929, 51(8), 1010-1026
    [1] Rothon R.N., Hornsby P.R., Flame retardant effects of magnesium hydroxide, Polym. Dagrad. Stab., 1996, 54, 383-385
    [2] Ou Y.C., Yu Z.Z., Effects of interfacial adhesion on microdamage and rheological behaviour of glass bead filled nylon 6, Polym. Int., 1995, 37, 113-117
    [3] Zhang Y., Yang J.H., Peng Z.L., et al., Effect of silicone oil on the mechanical properties of highly filled HDPE composites, Polym. Polym. Comp., 2000, 8, 471-476
    [4] Chang S.Q., Xie T.X., Yang G.S., Effects of polystyrene-encapsulated magnesium hydroxide on rheological and flame-retarding properties of HIPS composites, Polym. Dagrad. Stab., 2006, 91, 3266-3273
    [5] Che J.F., Xiao Y.H., Wang X., et al., Grafting polymerization of polyacetal onto nano-silica surface via bridging isocyanate, Surf. Coat. Tech., 2007, 201, 4578-4584
    [6] Zhu A.P., Shi Z.H., Cai A.Y., et al., Synthesis of core-shell PMMA-SiO2 nanoparticles with suspension-dispersion-polymerization in an aqueous system and its effect on mechanical properties of PVC composites, Polym. Test., 2008, 27, 540-547
    [7] Choi H.J., Park B.J., Cho M.S., et al., Core-shell structured poly(methyl methacrylate) coated carbonyl iron particles and their magnetorheological characteristics, J. Magn. Magn. Mater., 2007, 310, 2835-2837
    [8] Zhang S.W., Zhou S.X., Weng Y.M., et al., Synthesis of SiO2/polystyrene nanocomposite particles via miniemulsion polymerization, Langmuir, 2005, 21, 2124-2128
    [9] Yu D.G., An J.H., Titanium dioxide core/polymer shell hybrid composite particles prepared by two-step dispersion polymerization, Colloids Surf. A: Physicochem. Eng. Aspects, 2004, 237, 87-93
    [10] Zeng Z., Yu J., Guo Z.X., Preparation of functionalized core-shell alumina/polystyrene composite nanoparticles encapsulation of alumina viaemulsion polymerization, Macromol. Chem. Phys., 2005, 206, 1558-1567
    [11] Seul S.D., Lee S.R., Kim Y.H., Poly(methyl methacrylate) encapsulation of calcium carbonate particles, J. Polym. Sci. Part A: Polym. Chem., 2004, 42, 4063-4073
    [12] Li H.Y., Chen H.Z., Xu W.J., et al. Polymerencapsulated hydrophilic carbon black nanoparticles free from aggregation, Colloids Surf. A Physicochem. Eng. Aspects, 2005, 254, 173-178
    [13] Hirai T., Saito T., Komasawa I., Stabilization of CdS nanoparticles immobilized on thiol-modified polystyrene particles by encapsulation with polythiourethane, J. Phys. Chem. B, 2001, 105, 9711-9714
    [14] Liu P., Facile preparation of monodispersed core/shell zinc oxide@polystyrene (ZnO@PS) nanoparticles via soapless seeded microemulsion polymerization, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 291, 155-161
    [15] Yu D.G., An J.H., Preparation and characterization of titanium dioxide core and polymer shell hybrid composite particles prepared by two-step dispersion polymerization, Polym., 2004, 45, 4761-4768
    [16]刘雪奇,曾红梅,赖琼钰,含羧基磁性高分子微球的合成与表征,无机化学学报, 2005, 21, 490-493
    [17] Lv X.T., Hari-Bala,Wang Z.C., et al. In situ synthesis of nanolamellas of hydrophobic magnesium hydroxide, Colloids Surf. A: Physicochem. Eng. Aspects, 2007, 296, 97-103
    [18] Tang E.J., Cheng G.X., Ma X.L., Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles, Powder Tech., 2006, 161, 209-214
    [1]贾修伟,纳米阻燃材料,北京,化学工业出版社, 2005
    [2] Lepoittevin B., Pantoustier N., Devalckenaere M., et al., Macromolecules, 2002, 35(22), 8385-8390
    [3] Morlat-Therias S., Mailhot B., Gonzalez D., et al., Interactions with antioxidants, Chem. Mater. 2005, 17(5), 1072-1078
    [4] Gilman J.W., Jackson C.L., Morgan A.B., et al., Flammability properties of polymer layered silicate nanocomposites: Polypropylene and polystyrene nanocomposites Chem. Mater.,. 2000, 12, 1866-1873
    [5] Giannelis E.P., Polymer layered silicate nanocomposites, Adv. Mater., 1996, 8(1), 29-35
    [6] Wang Z., Pinmavaia T.J., Nanolayer reinforcement of elastomeric poly-urethane, Chem. Mater., 1998, 10, 1820
    [7] Burnside S.D., Giannelis E.P., Synthesis and properties of new poly(dimethylsi1oxane) nanocomposites, Chem. Mater., 1995, 7, 1597-1600
    [8] Wang S.F., Hu Y., Song L., et al., Preparation and thermal properties of ABS/montmorillonite nanocomposite, Polym. Degrad. Stab., 2002, 77, 423-426
    [9] Gilman J.W., Flammability and thermal stability studies of polymer-layered silicate (clay) nanocomposites, Appl. Clay Sci. 1999, 15, 31-49
    [10] Chou C., Lin J., One-Step Exfoliation of Montmorillonite via Phase Inversion of Amphiphilic Copolymer Emulsion, Macromolecules, 2005, 38, 230-233
    [11] Wang K., Wang L., Wu J., et al., Preparation of highly exfoliated epoxy/clay nanocomposites by"slurry compounding": process and mechanisms, Langmuir,2005, 21, 3613-3618
    [12] Sahoo P.K., Samel R. Fire retardancy and biodegradability of poly(methyl methacrylate)/montmorillonite nanocomposite, Polym. Degrad. Stab., 2007, 92, 1700-1707
    [13] Plummer C.J.G., Garamszegi L., Leterrier Y., et al., Hyperbranched polymer layered silicate nanocomposites, Chem. Mater., 2002, 14, 486-488
    [14] Choi Y.S., Choi M.H., Wang K.H., et al., Synthesis of exfoliated PMMA/Na-MMT nanocomposites via soap-free emulsion polymerization, Macromolecules, 2001, 34, 8978-8985
    [15] Viville P., Lazzaroni R., Pollet E., et al., Surface characterization of poly(epsilon-caprolactone)-based nanocomposites, Langmuir, 2003, 19, 9425-9433
    [16] Park J.H., Jana S.C., Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites, Macromolecules, 2003, 36(8), 2758-2768
    [17] Mariott W.R., Chen EY-X., Stereospecific polymerization of methacrylates by metallocene and related catalysts , J. Am. Chem. Soc., 2003, 125, 15726-15727
    [18] Robello D.R., Yamaguchi N., Blanton T., et al., J. Am. Chem. Soc., 2004, 126, 8118-8119
    [19] Zhang Z.J., Zhang L.N., Li Y., et al., New fabricate of styrene–butadiene rubber/montmorillonite nanocomposites by anionic polymerization, Polymer, 2005, 46, 129-136
    [20] Ray S.S., Okamoto M., Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym. Sci., 2003, 28, 1539-1641
    [21] Strawhecher K.E., Manias E., Structure and properties of polyvinyl alcohol)/ Na+-montmorillonite nanocomposites, Chem. Mater., 2000, 12, 2943-2949
    [22] Zhang S., Horrocks A.R., A review of flame retardant polypropylene fibres, Prog. Polym. Sci., 2003, 28, 1517-1538
    [23] Tang E.J., Cheng G.X., Ma X.L., Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxidenanoparticles, Powder Tech., 2006, 161, 209-214
    [24]莫尊理等,乳液插层法制备PMMA/Nd(OH)3/MMT三相纳米复合材料及表征,功能材料, 2006, 37(9), 1473-1476
    [25]王国成,尚晓艳,蒋涛,甲基丙烯酸甲酯/蒙脱土纳米复合材料的研究,湖北大学学报(自然科学版), 28(3), 277-281
    [26]廖勇勤,王琪,王良文,高分子材料科学与工程, 2000, 16(6), 144-150
    [27]薛奇,高分子结构研究中的光谱方法,北京,高等教育出版社, 1995
    [28] Laachachi A., Leroy E., Cochez M., et al., Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate), Polym. Degrad. Stab., 2005, 89, 344-352
    [29] Yeh J.M., Liou S.J., Lin C.Y., et al., Anticorrosively enhanced PMMA-clay nanocomposite materials with quaternary alkylphosphonium salt as an intercalating agent, Chem. Mater., 2002, 14, 154-161
    [30]胡源,宋磊,纳米技术在阻燃材料中的应用,火灾科学, 2001, 1(1), 48-52
    [31] Chin I.J., Thurn-Albrecht T., Kim H.C., et al., On exfoliation of montmorillonite in epoxy, Polymer, 2001, 42, 5947-5952
    [32] Pavlidou S., Papaspyrides C.D., A review on polymer–layered silicate nanocomposites, doi:10.1016/j.progpolymsci.2008.07.008
    [33] Wrobleski D.A., Benicewicz B.C., Thompson K.G., et al., Corrosion resistant coatings from conducting polymers, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1994, 35(1), 265-266
    [1] Blumstein A., Herz J., Sinn V., et al., Compt. Rend., 1958, 246, 1856-1858
    [2] Uskov I.A., Vysokomolekulyarnye Soedineniya, 1960, 2, 926-930
    [3] Blumstein A., Polymerization of adsorbed monolayers: II Thermal degradation of the inserted polymer, J. Polym. Sci., Part A, 1965, 3(7), 2665-2672
    [4] Allcock H.R., Hartle T.J., Taylor J.P., et al., Organic polymers with cyclophosphazene side groups: Influence of the phosphazene on physical properties and thermolysis, Macromolecules, 2001, 34, 3896-3904
    [5] Price D., Bullett K.J., Cunliffe L.K., et al., Cone calorimetry studies of polymer systems flame retarded by chemically bonded phosphorus, Polym. Degrad. Stab., 2005, 88, 74-79
    [6] Price D., Pyrah K., Hull T.R., et al., Flame retardance of poly(methyl methacrylate) modified with phosphorus-containing compounds, Polym. Degrad. Stab., 2002, 77(2), 227-233
    [7] Zanetti M., Camino G., Canavese D., et al., Fire retardant halogen-antimony-claysynergism in polypropylene layered silicate nanocomposite, Chem. Mater., 2002, 14(1), 189-193
    [8] Laachachi A., Cochez M., Ferriol M., et al., Influence of Sb2O3 particles as filler on the thermal stability and flammability properties of poly(methyl methacrylate) (PMMA), Polym. Degrad. Stab., 2004, 85(1), 641-646
    [9] Sahoo P.K., Samel R., Fire retardancy and biodegradability of poly(methyl methacrylate)/montmorillonite nanocomposite, Polym. Degrad. Stab., 2007, 92, 1700-1707
    [10] Lepoittevin B., Pantoustier N., Devalckenaere M., et al., Poly(epsilon- caprolactone)/clay nanocomposites by in-situ intercalative polymerization catalyzed by dibutyltin dimethoxide, Macromolecules, 2002, 35(22), 8385-8390
    [11] Park J.H., Jana S.C., Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites, Macromolecules, 2003, 36(8), 2758-2768
    [12] Laachachi A., Cochez M., Ferriol M., et al., Influence of TiO2 and Fe2O3 fillers on the thermal properties of poly(methyl methacrylate) (PMMA), Mater. Lett., 2005, 59, 36-39
    [13] Laachachi A., Leroy E., M. Cochez, et al., Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate), Polym. Degrad. Stab., 2005, 89, 344-352
    [14] Kashiwagi T., Du F.M., Douglas J.F., et al., Nanoparticle networks reduce the flammability of polymer nanocomposites, Nature Materials, 2005, 4, 928-933
    [15]王许云,张军,张峰,等.,应用锥形量热法评价聚合物复合材料热释放速率,复合材料学报, 2004, 21(3), 162-166
    [16] Zhang J., Wang X.Y., Zhang F., et al., Estimation of heat release rate for polymer-filler composites by cone calorimetry, Polym. Testing, 2004, 23, 225-230
    [17] Daimatsu K., Sugimoto H., Kato Y., et al., Preparation and physical properties of flame retardant acrylic resin containing nano-sized aluminum hydroxide, Polym.Degrad. Stab., 2007, 92, 1433-1438
    [18] Genovese A., Shanks R.A., Structural and thermal interpretation of the synergy and interactions between the fire retardants magnesium hydroxide and zinc borate, Polym. Degrad. Stab., 2007, 92, 2-13
    [19] Li Z.Z., Qu B.J., Flammability characterization and synergistic effects of expandable graphite with magnesium hydroxide in halogen-free flame-retardant EVA blends, Polym. Degrad. Stab., 2003, 81, 401-408
    [20] Fu M.Z., Qu B.J., Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends, Polym. Degrad. Stab., 2004, 85, 633-639
    [21] Hu Y., Wang S.F., Ling Z.H., et al., Preparation and combustion properties of flame retardant nylon 6/montmorillonite nanocomposite, Macromol. Mater. Eng., 2003, 288, 272-276
    [22] Bourbigot S., Le Bras M., Dabrowski F., et al., PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations, Fire Mater., 2000, 24, 201-208
    [23] Bourbigot S., Devaux E., Flambard X., Flammability of polyamide-6/clay hybrid nanocomposite textiles, Polym. Degrad. Stab., 2002, 75, 397-402
    [24] Zhu J., Wilkie C.A., Thermal and fire studies on polystyrene-clay nanocomposites, Polym. Int., 2000, 49, 1158-1163
    [25] Gilman J.W., Jackson C.L., Morgan A.B., et al., Flammability properties of polymer-layered silicate nanocomposites: Polypropylene and polystyrene nanocomposites, Chem. Mater., 2000, 12, 1866-1873
    [26] Hartwig A., Pütz D., Schartel B., et al., Combustion behaviour of epoxide based nanocomposites with ammonium- and phosphoniumbentonites, Macromol. Chem. Phys., 2003, 204(18), 2247-2257
    [27] Wang S.F., Hu Y., Li Z.L., et al., Flammability and phase-transition studies of nylon 6/montmorillonite nanocomposites, Colloid Polym. Sci., 2003, 281,951-956
    [28] Tang Y., Hu Y., Wang S.F., et al., Intumescent flame retardant-montmorillonite synergism in polypropylenelayered silicate nanocomposites, Polym. Int., 2003, 52(8), 1396-1400
    [29] Porter D., Metcalfe E., ThomasM J.K., Nanocomposite fire retardants-a review, Fire Mater., 2000, 24, 45-52
    [30] Fredrickson G.H., Bicerano J., Barrier properties of oriented disc composites, J. Chem. Phys., 1999, 110, 2181-2188
    [31]李同年,聚合物-层状硅酸盐纳米复合材料,中国塑料, 1999, 13(7), 25-31
    [32] Jeffrey W.G., Takashi K., Nanocomposites: a revolutionary new flame retardant approach, Sampe Journal, 1997, 33(4), 40-46
    [33] Jeo H.G., Jung H.T., Lee S.W., et al., Morphology of polymer/silicate nanocomposites: High density polyethylene and a nitrile copolymer, Polym Bullet., 1998, 41, 107-113
    [34] Ray S.S., Okamoto M., Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci., 2003, 28, 1539-1641
    [35]袁绍彦,徐宏,古宏晨,阻燃型聚合物基纳米复合材料的研究,功能材料, 2005, 36(6), 817-820, 824
    [36] Jiang Z.W., Song R.J., Bi W.G., Lu J., Tang T., Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion, Carbon, 2007, 45, 449-458
    [37] Xie W., Gao Z.M., Pan W.P., et al., Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite, Chem. Mater., 2001, 13(9): 2979-2990
    [38] Zanetti M., Camino G., Reichert P., et al., Thermal behaviour of polypropylene layered silicate nanocomposites, Macromol. Rapid Commun., 2001, 22, 176-180
    [39] Cai Y.B., Huang F.L., Wei Q.F., et al., Structure, morphology, thermal stability and carbonization mechanism studies of electrospun PA6/Fe-OMT nanocomposite fibers, Polym. Degrad. Stab., 2008, doi: 10.1016/j.polymdegradstab. 2008.08.003
    [40] Qin H.L., Zhang Z.G., Feng M., et al., The influence of interlayer cations on the photo-oxidative degradation of polyethylene/montmorillonite composites, J. Polym. Sci., Part B, Polym. Phys., 2004, 42, 3006-3012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700