畜产品冷冻干燥工艺优化及产品复水性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品加工、保藏和运输中会发生各种物理变化及生物化学变化,这些变化不仅会改变食品本来的颜色和结构,而且使芳香物质变质,营养成分下降,最终导致食品品质降低。选择有效的保藏方法能够防止食品品质降低。干燥是保藏食品的一种古老的方法,但是用风干等传统方法干燥的制品通常会使食品品质降低。冷冻干燥是基于升华现象的一种重要的干燥方法。相比于传统干燥方法,冷冻干燥能保持物料原有结构,含水物料中的水分在低温下脱除相对彻底,多种降解反应被减少到最低程度。但高耗能使真空冷冻干燥的成本高出热风干燥的4-8倍,其中升华用去了总能量的一半。优化升华过程操作条件,对改进热传递,缩短干燥时间,减少真空能耗有着十分重要的意义。同多数多变量过程一样,在冻干中涉及大量的显性或隐性影响因素,但只有物料厚度、干燥室压强及加热板温度可以控制。冷冻干燥实验属于高耗时、高耗资的工作,而且并不是在任何可能的操作范围内都可进行。长期以来,许多学者及工程技术人员都希望能大量减少实验量,以数学模型模拟冻干过程。数学优化是降低过程耗能、增大生产率、降低加工成本的重要途径。本文通过冷冻干燥的数学模型、统计模型与条件实验研究干切牛肉、酸乳、熟制鹌鹑蛋冷冻干燥的工艺优化,跟踪冷冻干燥过程水分、物料中心温度、物料表面温度随时间的变化,建立模型预测干切牛肉、酸乳冷冻干燥过程的动态参数。冻干制品浸入水中复水,检测其复水后的食用品质。具体内容与结果如下:
     1.冷冻干燥过程数学优化模型的建立
     本文基于Lichtfield&Liapis模型,建立了干切牛肉、酸乳冷冻干燥能耗的确定型模型,计算了当物料厚度、干燥室压强、加热板温度在三因素五水平设计时,干燥周期、生产率及能耗的模拟值。采用统计软件SPSS 13.0将模拟值进行非线性回归,得出干燥周期、生产率及能耗的统计型模型,采用统计软件LINGO 4计算了干切牛肉、酸乳冷冻干燥的最低能耗。计算结果为:当干切牛肉物料厚度10mm,干燥室压强10Pa,加热板温度78℃时单位水分脱除能耗最低,为19164 KJ·Kg~(-1)(H_2O),其相应干燥周期6.52h,生产率172.29 g·m~(-2)h~(-1)。当酸乳装盘厚度10mm,干燥室压强10Pa,加热板温度51℃时单位水分脱除能耗最低,为27522 KJ·Kg~(-1)(H_2O),其相应干燥周期14h,单位面积为生产率77.89 g·m~(-2)h~(-1)。
     2.畜产品冷冻干燥工艺优化的实验研究
     通过测定干切牛肉、酸乳、熟制鹌鹑蛋的共晶点、共熔点,确定了预冻终点温度。通过单因素试验研究预冻速率与干燥速率的关系,确定了优化的预冻工艺。干切牛肉、酸乳、熟制鹤鹑蛋的优化预冻速率分别为-0.33℃/min、-0.62℃/min、-0.77℃/min。通过单因素实验研究干燥室压强、加热板温度、物料厚度与干燥速率的关系。干切牛肉、酸乳冷冻干燥过程中操作变量物料厚度(L)、干燥室压强(P)、加热板温度(T)与目标函数干燥时间(t)、单位面积生产率(Pr)、单位水分脱除能耗(E)的交互关系已通过数学优化模型确定.通过实验确定了干切牛肉、酸乳冷冻干燥的最佳组合参数:厚度10mm、干燥室压强10Pa,加热板温度分别为78℃、52℃,预冻速率分别为-0.33℃/min、-0.62℃/min。开展三次干切牛肉、酸乳的冻干重复实验,结果表明:干切牛肉干燥时间、单位面积生产率及单位水分脱除能耗的实验值与数学优化值的绝对误差分别低于0.13h,3.5 g·m~(-2)h~(-1),383 KJ·Kg~(-1)(H_2O)。相对误差分别小于1.63%、1.78%及1.1%。酸乳干燥时间、生产率及能耗的实验值与计算值的绝对误差分别低于0.23h、1.5 g·m~(-2)h~(-1)、0.278 KJ·Kg~(-1)(H_2O),相对误差分别低于2.0%、4.5%及1.4%。实验值与计算值很接近,说明本文建立的干燥过程优化模型可以确定千切牛肉、酸乳的冷冻干燥优化工艺。通过单因素实验确定熟制鹌鹑蛋的优化参数为:预冻速率加热板温度85℃,干燥室压强10Pa,干燥时间10.2h。
     3.冷冻干燥过程的动态预测与验证
     假设干切牛肉、酸乳冷冻升华过程中冻结层温度T_i由预冻终点温度T_f经过每K温度上升到熔点温度T_m,以气体分子运动论及物质、能量平衡原理为基础,推导出冻结浓缩酸乳经过T_i时的升华层厚度d_(is)、升华量w_i、升华时间t_i及冻结物料T_i时升华所需物料表面温度T_(is)的计算模型;假设解吸干燥过程中水分含量由升华结束水分百分含量经过每0.5%w/w下降到0.0%w/w,成功模拟了预冻终温-28℃,物料厚度为7mm的干切牛肉、酸乳在干燥室压强p_s=10Pa,加热板温度T_h=42℃的操作条件下开展的冷冻升华干燥实验。并预测与验证了预冻终温-30℃、-28℃,物料厚度10、4mm的干切牛肉、酸乳冷冻升华干燥过程c_i、T_i、T_(is)的动态值及干燥周期S_(ti)。结果表明:预测c_i、T_i、T_(is)与实测值很接近。水分含量的相对误差小于10%,温度误差不超过±5℃。说明模型能有效预测干切牛肉、酸乳冷冻干燥过程的动态参数。
     4.冷冻干燥产品复水性
     将冻干产品在不同温度的水中浸泡复水,观察它们的形状、色泽、口感等复水特性。样品可复水到冷冻干燥前水分含量的90%,复水速率与产品类型、冻结条件等多种因素有关,在最初5min迅速吸水,随之减速,最终停止吸水.冷冻对物料微观结构、挥发性成分影响甚微,复水样品总体结构的弱化由干燥阶段引起,可能是与水混合时所需机械能引起。然而,样品的物理特性被保留,通过调节复水量,样品原来的强度能够恢复。冷冻干燥对乳酸菌的存活有影响,冻干后活菌量下降2~3个对数单位。
The physical, chemical and biological changes during food manufacturing, storage and transportation result in unsatisfactory changes of food color, structure, aroma components and nutrition substances. The choice of the right method of preservation can be the key for a successful operation. Drying is an old method for food' preservation, however, conventional methods such as hot air drying often make food quality inferior. Freeze-drying is an important drying process based on the sublimation phenomenon which has the following advantages compared to the conventional drying process: the material structure is maintained, moisture is removed at low temperature, product stability during the storage is increase, and the fast transition of the moisturized product to be dehydrated minimizes several degradation reactions. However, the cost of freeze-drying is 4-8 times as that of hot air drying. Especially, the sublimation operation needs 50% of the whole energy. Therefore, it is important to improve heat transfer, to shorten drying time, and thus to reduce vacuum energy consumption by optimizing operation conditions. The optimization is an important tool to maximize the amount of removed water and minimize the time of the freeze drying process with significant impact on the energy consumption and hence in the process costs. But the freeze-drying experiments are time consuming and are usually expensive to be carried out in all possible operating ranges. Because of that, expecting great reduction of experiments considerable increase in the development and use of mathematical models that can predict the behavior of the freeze,drying process satisfactorily is observed. Freeze-drying is a process affected by many factors, of which material thickness, shelf temperature, chamber pressure could be controlled. In this research, the freeze-drying processes of cooked beef slice, yoghourt and quail-eggs were optimized though the use of the statistical models and experimental study. The another objective of this study was to track the changes of the moisture content, frozen layer temperature and sample surface temperature with drying time, and establish the models to predict the dynamic parameters for primary freeze drying of cooked beef slice and yoghourt. Freeze-dried products were re-hydrated by dipping them in water and their rehydration characteristics examined. The contents and results are as follows.
     1. Development of optimization models during freeze-drying
     The deterministic mathematical models for drying period, productivity and energy consumption during freeze-drying of cooked beef slice were development based on the models originally developed by Lichtfield and Liapis (1979). The drying period, productivity and energy consumption were calculated when the three main influential parameters (sample thickness, chamber pressure and shelf temperature) under five different levels of the other two. By nonlinear regression analysis of the calculation data, using statistical software SPSS 13.0, the statistical models for the drying period, the productivity and the energy consumption, with the freeze-drying sample thickness, chamber pressure and shelf temperature were also established and the optimal objective values were solved by statistical software LINGO 4. Finally, the freeze-drying process of cooked beef slices and yoghourts was optimized though the use of the statistical models LINGO 4. The results of the freeze drying of cooked beef were that: the minimum energy consumption 19164 KJ·Kg~(-1) (H_2O), the drying period 6.52h, the productivity 172.29 g·m~(-2)h~(-1), with sample thickness 10 mm, chamber pressure 10 Pa, shelf temperature 78℃. The results of the freeze drying of yoghourts were that: the minimum energy consumption 38263 KJ·Kg~(-1) (H_2O), the drying period 14h, the productivity 77.89 g·m~(-2)h~(-1), with sample thickness 10 mm, chamber pressure 10 Pa, shelf temperature 51℃.
     2. Experimental study on optimization of freeze-drying process of livestock products
     The eutectic and co-melting temperatures of cooked beef slices, yoghourt and quail-eggs were measured and their terminal freezing temperatures were determined. The relationship between the freezing and drying velocities of cooked beef slices, yoghourt and quail-eggs were studied through single factor experiments, and optimal freezing technologies were determined. The relationship between drying velocities and chamber presses, heating board temperatures and sample thickness were also studied through single factor experiments. The relationship between the drying time, productivities, energy consumption and the sample thickness, chamber pressure, of the heating board temperature have been determined through mathematical optimization previous mentioned. At last the optimal combination of the parameters for the freeze-drying technology of cooked beef slices, yoghourt, were determined through experiments. They are as follows: the temperatures of the heating board are 78℃and 52℃, respectively, the chamber pressures are 10Pa, the freezing velocities are -0.33℃/rain and -0.62℃/min, respectively, and material thickness are 10mm. The absolute errors of the drying periods, productivities and energy consumptions between calculated and experimental data for cooked beef slices were low than 0.13h, 3.5g·m~(-2)h~(-1) and 382.63 KJ·Kg~(-1) (H~2O), respectively, and for yoghourts were lower than 0.23h, 1.5 g·m~(-2)h~(-1), 278 KJ·Kg~(-1)(H_2O), respectively. The relatively errors between calculated and experimental data for cooked beef slices were low than 1.63 %, 1.78% and 1.1%, respectively, and for yoghourt, were low than 2.0%, 4.5% and 1.4%, respectively. It indicates that the optimization models established in the paper are feasible to optimize freeze drying process. The optimal parameters of cooked quail-eggs freeze drying was obtained through single factor experiment. They are as follows: the heating board temperature is 85℃, the chamber pressure is 10Pa, the freezing velocity is-0.77℃/min.
     3. Prediction and validation of dynamic parameters during freeze drying
     The predictive models were established, according to the kinetic theory of gases and heat and mass transfer principles, for quantifying changes of sublimation moisture c_i, sublimation time t_i, and sample surface temperature T_(is) with frozen layer temperature Ti. The predictive models during de-sorption were also established for quantifying changes of de-sorption time ti, central temperature in the sample Ti and the temperature on the sample surface T_(is) with de-sorption moisture ci. The changes of moisture content c_i, T_i and T_(is) in 6ram cooked beef slice with time during freeze,drying were simulated. Meanwhile, the models were used to predict the changes of c_i, T_i and T_(is) in 10mm and 4ram samples during freeze-drying. The results showed that the predicted c_i, T_i and T_(is) with time were nearest to the measured. Therefore, the established models could effectively predict the dynamicparameters for freeze drying of cooked beef slice and concentrated yoghourt.
     4. Rehydration quality of freeze dried products
     Freeze-dried products were re-hydrated by dipping them in water at different temperature and their rehydration characteristics, such as shape, color and taste properties were examined. The samples were found to restore up to 90% of their original moisture content, depending on the type of products and various other factors like the freezing condition. The water uptake happened rapidly during the first 30s and then slowed down with time until it finally stopped altogether. Microstructure and volatility component of freeze drying products were not seriously affected by freezing, while the drying step resulted in an overall structural weakening of the reconstituted products, possibly as a consequence of the mechanical energy required for mixing with water. However, its physical properties were retained and the original strength could be recovered by modulating the amount of water. The freeze-drying process affected survival of the lactic acid bacteria, resulting in a 2-3 log population reduction.
引文
1 C., Ratti. Hot air and freeze-drying of high-value foods: a review[J]. Journal of food Engineering, 2001, 49:311-319
    2 Chirife, J., & Buera, M. A critical review of some non-equilibrium situations and glass transition on water activity values of foods in microbiological growth range [J]. Journal of Food Engineering. 1995, 25:531-552
    3 Karmas, R., Buera, M, P., & Karel, M. Effect of glass transition on rates of non-enzymatic browning in food systems [J]. Journal of Agriculture Food Chemistry. 1992, 40:873-879
    4 Roos, Y., & Himberg, M. Non-enzymatic browning behavior, as related to glass transition, of a model at chilling temperatures. Journal of Agriculture Food Chemistry. 1994, 42:893-898
    5 Roos, Y., & karel, M. Applying state diagrams to food processing and development. Food Technology [J], 1991, 45, 66-70, 107
    6 Sapru, V., & Labuza, T. P. Glass state in bacterial spores predicted by polymer glass-transition theory [J]. Journal of Food science, 1993, 58:445-448
    7 Stapelfeldt, H., Nielsen, B. R., & Skibsted, L H. Effect of heat treatment, water activity and storage temperature on the oxidative stability of whole milk power [J]. international Dairy Journal, 1997, 7: 331-339
    8 Irzyniec, Z., Klimezak, J., & Michalowski, S. Freeze-drying of the black currant juice [J]. Drying thechnoly, 1995, 13:417-424
    9 Boss, E., A., Filho, R., M. & Coselli, E. Freeze drying process: real time model and optimization [J]. Chemical Engineering and Processing, 2004, 43:1475-1485
    10 GEORG W. O. Freeze-Drying [M].New York: Wil-ey-VCH, 1999.58-109
    11 Franks, F. Freeze-drying: from empiricism to predictability [J]. Cryo-Lett. 1990, 11:93-110
    12 Levine, H., Slade, L. Water as a plasticizer: physico-chemical aspects of low-moisture polymeric systems [J]. Water Science, 1988, (3): 79-185
    13 Blanshard, J.M.V., Lillford, P.J.The Glassy State in Foods [M]. Nottingham: Nottingham University Press, 1993
    14 Felix Franks. Freeze-drying of bioproducts: putting.principles into practice [J]. European Journal of Pharmaceutics and Biopharmaceutics, 1998, 45: 221-229.
    15 周德庆著,微生物学教程[M].北京:高等教育出版社,1993,394-402
    16 Jay,J.M.,编著,徐岩等译,现代食品微生物学(第五版)[M],北京:中国轻工业出版社,2001
    17 梁勇,杜敏,南庆贤,等.浓缩型乳酸菌发酵剂的制备[J].中国乳品工业,1995,(2):132~133
    18 乔发东,吴秀芳,南庆贤,等.浓缩乳酸菌发酵剂的现状[J].中国乳品工业,1998,(1):22~23
    19 华泽利.食品冷冻冷藏原理与设备[M].北京:机械工业出版社,1999
    20 Alfied Bartholomaj. Food Factories [M].New York: Weinheim VCH,1997
    21 Yi-Chieh Wang, Roch-Chui Yu, Cheng-Chun Chou. Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage [J]. International Journal of Food Microbiology. 2004, 93: 209-217
    22 Enrico Maltini, Paolo Di Nardo. Preparation of freeze-dried yoghurt as a space food [J]. Journal of Food Engineering. 2007, 80 : 402-407
    23 Fonseca, E, Beal, C., & Corrieu, G. Operating conditions that affect the resistance of lactic acid bacteria to freezing and frozen storage [J]. Cryobiology.2001, 43, 189
    24 Champagne, C. P., & Gardner, N. J. O. The effect of protective ingredients on the survival of immobilized cells of Streptococcus thermophilus to air and freeze-drying [J]. Electronic Journal of Biotechnology.2001, (4):146-152
    25 Kim, S.S., Bhowmik, S.R., 1990. Survival of lactic acid bacteria during spray drying of plain yogurt. Journal of Food Science 55, 1008-1010
    26 Heckly, R.J., 1961. Preservation of bacteria by lyophilization. Advances in Applied .Microbiology 3, 1-76
    27 Ishibashi, N., Shimamura, S., 1993. Bifidobacteria: research and development in Japan. Food Technology 47, 126-134
    28 Speck, M.L., Myers, R.P., 1946. The viability of dried skim milk cultures of Lactobacillus bulgaricus as affected by the temperature of reconstitution. Journal of Bacteriology 52, 657-663
    29 徐成海.食品真空冷冻干燥技术现状及发展前景的探讨.真空.1996.08.1-5
    30 Shan Jiang, Steven L. Nail. Effect of process conditions on recovery of protein activity after freezing and freeze-drying.European Journal of Pharmaceutics and Biopharmaceutics 45 (1998) 249-257
    31 Songrning Zhu, Hosahalli S. Ramaswamy, Alain Le Bail. Ice-crystal formation in gelatin gel during pressure shift Versus conventional freezing. Journal of Food Engineering, 2005 66:69-76
    32 Zhongshul Yua, Keith P. Johnston, Robert O. Williams Ⅲ. Spray freezing into liquid versus spray-freeze drying: Influence of atomization on protein aggregation and biological activity. European journal of pharmaceutical sciences. 2005 ⅩⅩⅩ:ⅩⅩⅩ-ⅩⅩⅩ.
    33 李云飞.食品真空冷冻干燥中冻结的温度测定与分析,低温工程,1997(2):32-27
    34 王海鸥.真空冷却技术及其在食品工业中的应用.农机化研究,2004,9(5):55-62
    35 Barbosa-Canovas, G.V., Vega-Mercado, H. Dehydration of Foods. International .Thomson Publishing, New York,, 1996:240
    36 高福成.冻干食品[M].北京:中国轻工业出版社,1998
    37 Schenz, W. M. Glass transition and product stability: an overview. Food Hydrocolloids, 1995, 9: 307-315
    38 Slade, L., & Levine, H. Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety [J]. Food science and nutrition. 1991, 30:115-360
    39 Roos,Y. Phase transitions in foods [M]. London: Academic Press.1995
    40 Kerr, W., Lim, M., Reid, D., & Chen, H. Chemical reaction Kinetics in relation to glass transition temperature in frozen food. polymer solution [J]. Journal of science food Agriculture. 1993, 61:51-56
    41 Rastogi, N. K., & Niranjan, K. Enhance mass transfer during osmotic dc hydration of high pressure treated pineapple [J]. Journal of food science, 1998, 63:508-511
    42 Hammami, C., & René, F. Determination of freeze-drying process variable for strawberries [J]. Journal of Food Engineering, 1997, 133-154
    43 Stute, R., & Knorr, D. High-pressurc and freezing pretreatment effects on drying, rehydration, texture and color of green beans, carrots and potatoes [J]. Journal of Food Science, 1994, 59(6): 1168-1170.
    44 Garcia-Reverter, J., Bourne, M.C., & Mulet, A. Low temperature and rchydration of dried cauliflower florets [J]. Journal of Food science, 1994, 59 (6):1181-1183
    45 Pappas, C., Tsami, E., & Marinos-Kouris, D. the effect of process condition on the drying Kinetics and rchydration characteristics of some MW-vacuum dehydrated foods [J]. Drying technology, 1999, 17:157-174
    46 Lin, T. M., & Ducance, T. D. Characterization of vacuum microwave, air and freeze-drying carrots slice [J]. Food Research International, 1998, 31 (2): 111-117
    47 Jankovié, M. Physical properties of convectively dried and frccze-dried berrylike fruits [J].Faculty of Agriculture. Belgrade, 38 (2):129-135
    48 Shishcgrarha, F., & Ratti, C. Changes in color and volume of berries during freeze:drying. 1999 ASAE annual international meeting. July 18-21., Toronto, Canada
    49 蒋立本,冯霄,刘永忠等.冷冻干燥过程的热经济学分析.制冷学报.2001(4):44-48.
    50 Wang, W., Chen, G., H. Heat and mass transfer model of dielectric-material-assisted microwave freeze-drying of skim milk with hygroscopic effect. Chemical Engineering Science.2005, 60:6542-6550
    51 LitvinS Dehydration of carrots by a combination of freeze-drying, microwave heating and air vacuum drying [J].Journal of Food Engineering, 1998, 36:103-111
    52 Chen, G., Wang, W., Mujumdar, A.S. Theoretical study of microwave heating patterns on batch fluidized bed drying of porous material. Chemical Engineering Science, 2001, 56, 6823-6835
    53 Datta, A.K., Sun, E., Soils, A. Food dielectric property data and their composition-based prediction (second ed ) [M].. Marcel Dekker, New York,, 1995:457-492
    54 Hartel, R.M. Phase transitions in ice cream [M]. Phase/State Transition in Foods. Marcel Dekker, New York, 1998:327-331
    55 Ni, H., Datta, A.K., Tottance, K.E. Moisture transport in intensive microwave heating of biomaterials: a multiphase porous media model [J]. International Journal of Heat and Mass Transfer.1999, 42, 1501-1512
    56 Sacikoglu, H., Liapis, A.I. Mathematical modeling of the primary and secondary drying stages of bulk solution freeze-drying in trays: parameter estimation and model discrimination by comparison of theoretical results with experimental data [J]. Drying Technology. 1997, 15:791-810
    57 Wang, W., Chen, G. Numerical investigation on dielectric material assisted microwave freeze-drying of aqueous mannitol solution. Drying Technology, 2003.21: 997-1018.
    58 Wang, Z.H., Shi, M.H. Effects of heating methods on vacuum freeze drying [J]. Drying Technology, 1997,15:1475-1498
    59 Bell, G. A., & Mellor, J., D. Adsorption freeze-drying [J]. Food Australia, 1990, 42 (5): 226-227
    60 P. Di Matteo, G. Donsì, G. Ferrari. The role of heat and mass transfer phenomena in atmospheric freeze-drying of foods in a fluidised bed. Journal of Food Engineering. 2003, 59:267 - 275
    61 孔凡真.发展高科技冻干食品产业前景广阔.2003,(10):12-13.
    62 C.J. King.Freeze-Drying of Foods [M]. Cleveland: CRC Press, OH, 1971.176-233
    63 Farid, M. M., & Chen, X. D. The analysis of heat and mass transfer during frying of food using a moving boundary solution procedure [J]. Heat and Mass Transfer, 1998,34:69 - 77
    64 Singh, R. P. Moving boundaries in food engineering [J]. Food Technology, 2000,54:44-53
    65 R. Chakraborty, A.K. Saha, P. Bhattacharya. Modeling and simulation of parametric sensitivity in primary freeze-drying of foodstuffs [J]. Separation. and Purification Technology. 2006, 49:258-263
    66 Felix Franks. Freeze-drying of bioproducts: putting principles into practice [J]. European Journal of Pharmaceutics and Biopharmaceutics. 1998, 45:221-229
    67 R.J. Lichtfield, A.I. Liapis. An absorption-sublimation model for a freeze dryer [J]Chem. Eng. Sci. 1979,34 (9) :1085-1090
    68 Sadikoglu, H., & Liapis, A. I. Mathematical. modeling of the primary and secondary drying stages of bulk solution freeze-drying in trays: parameter estimation and model discrimination by comparison of theoretical results with experimental data[J]. Drying Technology.1997,15:791 - 810
    69 Liapis, A.I., Bruttini, R. A Theory for the primary and secondary drying stages of the freeze-drying of pharmaceutical crystalline and amorphous solutes: comparison between experimental data and theory[J]. Separat. Technol.1994, (4): 144-155
    70 Pikal, M.J., Shah, S., Roy, M.L., Putman, R. The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure[J].Int. J. Pharm., 1990, 60:203-217
    71 Edinara Adelaide Boss, Rubens Maciel Filho &Eduardo Coselli. Freeze drying process: real time model and optimization [J]. Chemical Engineering and Processing, 2004, 43:1475-1485
    72 华泽钊,食品冷冻冷藏原理与设备[M].北京:机械工业出版社,1999:10-56.
    73 无锡轻工业学院,天津轻工业学院合编.食品工程原理:下册[M].北京:轻工业出版社,1987.438-471;574-619
    74 李云飞,葛克山.食品工程原理[M].北京:中国农业大学出版社,2002.845-850
    75 刘永忠,郭有仪,郁永章.冷冻干燥过程的计算模型及其应用.西安交通大学学报.1999,33(12):61-65
    76 李云飞,王成芝.真空冷冻干燥能量控制下的准稳态模型研究[J],华东工业大学学报,1997,19(1):34~38
    77 谢国山,王立业.真空冷冻干燥干燥过程的模拟研究.化工装备技术.2003,24(1):6-9.
    78 Ratti,C., & Crapise, G., H. A generalized drying curve for Hygroscopic shrinking materials [J]. In A. S. Mujumdar (Ed.), Drying: '92, 1:864-874
    79 Fontain, J., & Ratti, C. Lumped-parameter approach for prediction Of drying kinetics in foods [J].Journal of Food Process Engineering, 1999, 22 (4):287-305
    80 Khalloufi, S., Robert, J. & ratti, C. Mathematical simulation of food freeze-drying. ASAE 1999 annual international meeting, July, 18-21, Toronto, Canada
    81 郭玉明,姚智华,崔清亮等.真空冷冻干燥干燥过程参数对升华干燥能耗影响的组合试验研究.农业工程学报.2004,20(4):180-184
    82 胡纲.真空冷冻干燥干燥过程中几个影响因素的探讨.化工装备技术.2004,25(6):5-7
    83 刘占杰,华泽钊,陶乐仁等.影响食品冷冻干燥过程的因素分析.青岛大学学报.2000,15(1):42-45
    84 张颜民,徐光,童建民.食品真空冷冻干燥干燥过程工艺参数分析.真空与低温.1999,5(3):180-185
    85 刘永忠.冷冻干燥速率强化技术.现代化工.2002:22(4):59-64
    86 齐龄,许淑惠,吕灿仁.液状制品冷冻干燥过程传输特性的研究.制冷学报.1997,22:26-27
    87 左建国,华泽钊,刘宝林等.冷冻干燥过程中溶液冻结特性的DSC研究.低温工程.2005,3.48-64
    88 程远霞.食品共晶、共熔温度侧定试验研究[J].淮海工学院学报,2001,(4):44-46
    89 Jun Xiang, Jeffery M. Hey, Volker Liedtke etc. Investigation of freeze-drying sublimation rates using a freeze-drying microbalance technique. International Journal of Pharmaceutics 279 (2004) 95-105
    90 江家伍.提高真空冷冻干燥速率的研究[J].包装与食品机械,2002,(2):4-8
    91 陈冠.冻干食品质量控制[J].制冷学报.1990,(4):38-41
    92 李云飞.真空冻干节能研究[J].低温工程,1997,(4):51-56
    93 Mohammed Farid. A unified approach to the heat and mass transfer in melting solidification, frying and different drying processes. Chemical Engineering Science 56 (2001) 5419-5427.
    94 葛斌.冷冻干燥过程传热传质研究.制冷.1996,57(4):37-40
    95 Giorgio Rovero, Sabrina Ghio, Antonello A. Barresi. Development of a prototype capacitive balance for freeze-drying studies.Chemical Engineering Science 56 (2001) 3575-3584
    96 S.C. Tsinontides, P. Rajniak, D. Pham, W.A. Hunke, J. Placek, S.D. Reynolds. Freeze drying principles and practice for successful scale-up to manufacturing. International Journal of Pharmaceutics, 2004, 280:1-16
    97 Anna M. Elia, Antonello A. Barresi. Intensification of transfer fluxes and control of product properties in freeze-drying. Chemical Engineering and Processing 37 (1998) 347-358
    98 Mohammed Farid. The moving boundary problems from melting and freezing to drying and frying of food. Chemical Engineering and Processing, 2002, 41:1-10
    99 Alfied Bartholomaj. Food Factories Process, Equipment, Costs ,New York: Weinlaeim VCH, 1997.
    100 Kenneth.J. Valentas,Endque.Rotstein, R.Paul singh. Hand book of Food Engineering Practice.CRC Press Boca Raton New York, 1997
    101 陈孟,何星存,杨卓如.结合水对冷冻干燥过程影响的研究.化学工业与工程.2002,19(5):360-365
    102 James P. George, A.K. Datta. Development and validation of heat and mass transfer models for freeze-drying of vegetable slices. Journal of Food Engineering 52 (2002): 89-93
    103 A.S.Mujumdar. Handbook of Industuial Drying. New York: Marcel Dekker, Inc,1995
    104 攀先发.食品真空冷冻干燥节能措施探讨[J].西南科技大学学报,2003,(1):23-27
    105 王剑平.食品工业化干燥[M],中国轻工出版社,2003:(4):32-35
    106 胡纲.真空冷冻干燥过程中几个影响因素的探讨[J].化工装备技术.2004,(6):45-49
    107 王立业.真空冷冻干燥机的开发现状与发展趋势[J].农机化研究,2004.9:33-37
    108 文怀兴,苏宇锋,夏田.食品冷冻干燥过程温度的模糊控制.粮油加工与食品机械.2001,8:29-31
    109 李宏.冷冻干燥过程计算机监控系统.医药工程设计杂志 2001,22(4):39-43
    110 刘永忠.冷冻干燥过程的神经网络预测模型.2002,33(4):129-137
    111 N.W.DESROTER.食品保藏技术[M].北京:中国食品出版社,1999
    112 M.A.Rao.Engineering Properties of Food.Zed.New York: Marecl Dekker, Inc,1995.
    113 姚开,何强,贾冬英.牦牛肉冷冻干燥过程的研究.食品与发酵工业.2001.27(10):46-48
    114 张晋陆.冷冻干燥法生产鸡肉丁的工艺研究.真空与低温.1998,4(4):192-196
    115 李素云,董铁有,王春杰等.真空冷冻干燥干燥鱼香肉丝的最佳工艺.食品科技.2004,11.40-43
    116 King, V., A. E. & Chen, J. F. Oxidation of Controlled Low-temperature Vacuum Dehydrated and Freeze-dried Beef and Pork. &fear Science, 1998, 48, (1/2): 11-19
    117 李云飞,黄桂琴,王成芝等.奶牛初乳冷冻干燥特性与节能工艺优化研究.农业工程学报.1996,12(2):136-141
    1 BOSS E A, HLHO R M, TOLEDO E C V D. Freeze Drying Process: Real Tune Model and Optimization [J]. Chemical Engineering and Processing, 2004, 43: 1475-1485.
    2 RATII C. Hot Air and Freeze-Drying of High-Value Foods: a Review [J]. Journal of Food Engineering, 2001, 49: 311-319.
    3 KORKIDA M K, PHILIPPOPOULOS C. Volatility of Apples during Air and Freeze Drying[J]. Journal of Food Engineering, 2006,73: 135-141.
    4 LIAPIS A I, BRUTTINI R, PIKAL M J. Research and Development Needs and Opportunities in Freeze Drying [J]. Drying Technology, 1996, 14: 1265-1300.
    5 LIAPIS A I, SADIKOGLU H. Mathematical Modeling of the Primary and Secondary Drying Stages of Bulk Solution Freeze-Drying in Trays: Parameter Estimation and Model Discrimination by Comparison of the Theoretical Results with Experimental Data [J]. Drying Technology, 1997, 15: 791-810.
    6 MILLMAN M J, LIAPIS A I, MARCHELLO J M. An Analysis of the Lyophilization Process Using a Sorption-Sublimation Model and Various Operational Policies [J]. AIChEJ, 1985, 31: 1594-1604.
    7 CHAKRORTY R, SAHA A K, BHATTACHARYA P. Modeling and Simulation of Parametric Sensitivity in Primary Freeze-Drying of Foodstuffs [J]. Separation and Purification Technology, 2006, 49:258-263.
    8 FRANKS F. Freeze-Drying of Bioproduets: Putting Principles into Practice [J]. European Journal of Pharmaceutics and Biopharmaceutics, 1998, 45: 221-229.
    9 TSINONTIDES S C, RAJNIAK P, PHAM D, et al. Freeze Drying Principles and Practice for Successful Scale-up to Manufacturing[J]. International Journal of Pharmaceutics, 2004, 280: 1-16.
    10 PLACKETr R L, BURMAN J P. The Design of Optimum Multifactorial Experiments [J]. Biometrika, 1946, 33, 305-325.
    11 LICHTFIELD R J, LIAPIS A I. An absorption-sublimation model for a freeze dryer. Chem. Eng. Sci. 1979, 34, 1085-1090.
    12 SHENG T Y R, PECK R E. Rates for Freeze-Drying [J]. AICHE Symposium Series, NY USA, 1977, 73(163).
    13 李云飞,王成芝.真空冷冻干燥能量控制下的准稳态模型研究[J],华东工业大学学报,1997,19(1):34~38.
    14 谢国山,王立业.真空冷冻干燥过程的模拟研究[J].化工技术装备,2003,24(1):6-9.
    15 KEPPELER R A, COWART D G. Thermal Properties of Freeze-Drying Mushrooms [J]. Journal of Food Science, 1972, 37: 205.
    16 PERRY H R, GREEN D, MALONEY J O. Perry's Chemical Engineering Handbook[S]. McGraw-Hill, New York, USA, 1992.
    17 郭玉明,姚智华,崔清亮等.真空冷冻干燥干燥过程参数对升华干燥能耗影响的组合试验研究.农业工程学报.2004,20(4):180-184.
    18 李云飞,黄桂琴,王成芝等.奶牛初乳冷冻干燥特性与节能工艺优化研究.农业工程学报.1996,12(2):136-141.
    19 汪喜波,毛志怀.生姜真空冷冻干燥过程影响因素的试验研究.中国农业大学学报.2002,7(6):39~43.
    20 宫元娟,王博,林静等.香菇冷冻干燥工艺参数的试验研究.农业工程学报.2004,20(1):226-229.
    1 C.Ratti. Hot air and freeze-drying of high-value foods: a review[J]. Journal of food Engineering, 2001, 49:311-319
    2 Felix Franks. Freeze-drying of bioproducts: putting principles into practice[J]. European Journal of Pharmaceutics and Biopharmaceutics. 1998, 45:221-229
    3 Edinara Adelaide Boss, Rubens Maciel Filho, Eduardo Coselli Vasco de Toledo . Freeze drying process: real time model and optimization.Chemical Engineering and Processing. 2004,43:1475-1485
    4 姚开,何强,贾冬英.牦牛肉冷冻干燥过程的研究[J].食品与发酵工业.2001.27(10):46-48
    5 李云飞,黄桂琴,王成芝等.奶牛初乳冷冻干燥特性与节能工艺优化研究.农业工程学报.1996,12(2):136-141
    6 郭玉明,姚智华,崔清亮等.真空冷冻干燥干燥过程参数对升华干燥能耗影响的组合试验研究.农业工程学报.200420(4):180-184
    7 汪喜波,毛志怀.生姜真空冷冻干燥过程影响因素的试验研究.中国农业大学学报.2002,7(6):39-43
    8 宫元娟,王博,林静等.香菇冷冻干燥工艺参数的试验研究.农业工程学报.2004,20(1):226-229
    9 冯祖荫,张建中.五香牛肉的制作技术.肉类工业.2006,(2):9-12
    10 张晋陆.冷冻干燥法生产牛肉丁的研究[J].中国畜产与食品,1998,5(5):4-8
    11 周光宏主编.畜产品加工学[M].北京:中国农业出版社,2002
    12 Yi-Chieh Wang, Roch-Chui Yu, cheng-chun Chou. Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage[J]. International Journal of Food Microbiology.2004, 93:209-217
    13 郑世华,郑仕远,吴永民等.五香鹌鹁皮蛋的研制[J].食品工业科技.1994(3):31-33
    14 乔秀红,李清萍.五香鹌鹌蛋烘烤工艺研究.食品工业科技[J1.2007,28(1):129-131
    15 程远霞,陈素芝,谢秀英.食品共晶点和共熔点的试验研究.淮海工学学院学报.2001(12):44-46
    16 吴谋成主编.食品分析与感官评定.北京:中国农业出版社,2002:49-54;301-328
    17 Rybka, S., & Kailasapathy, K. Effect of freeze drying and storage on the microbiological and physical properties of AB-yoghurt. Milchwissenschaft.1997, 52, 390-394
    18 LitvinS Dehydration of carrots by a combination of freeze-drying、microwave heating and air vacuum drying [J].Journal of Food Engineering, 1998, 36:103-111
    19 高福成.冷干食品[M].北京:中国轻工业出版社.1998.05:26-45
    20 傅行军.施压方式对胡萝卜冷冻干燥影响的实验研究[J].上海理工大学学报.1999,(4).389-392
    21 冯志哲主编.食品冷藏学.北京:中国轻工业出版社,2003:67-72
    22 蒋其斌,张克俭,廖敏.食品真空冷却技术的应用研究[J].食品工业科技.2004,25(7):68-70
    23 华泽钊,食品冷冻冷藏原理与设备[M],机械工业出版社,1999:10
    24 Enrico Maltini, Paolo Di Nardo. Preparation of freeze-dried yoghurt as a space food [J]. Journal of Food Engineering.2007, 80:402-407
    25 谢春阳.冻干技术生产活性龙芽葱木的研究[J].食品科学2004(12)135-137
    26 陈冠.冻干食品质量控制[J].制冷学报.1990,(4):38-41
    27 张兆祥,晏继文,徐成海等编著.真空冷冻干燥与气调保鲜.北京:中国民航出版社.1996:14-30
    28 齐锡龄,杜小泽,李惟毅.真空冷冻干燥非稳态热质传递模型的应用.高校化学工程学报.1997,11(2):201-205
    1 Franks, F. Freeze-drying of bioproducts: putting principles into practice.European Journal of Pharmaceutics and Biopharmaceutics. 1998, 45, 221-229
    2 Liapis, A.I., Bmttini, R. & Pikal, M.J. Research and development needs and opportunities in freeze drying. Drying Technology. 1996, 14, 1265-1300
    3 Perry, H.R., Green, D., Maloney, J.O. Perry's Chemical Engineering Handbook, 6th Edition. 1992, McGraw-Hill, New York, USA
    4 无锡轻工业学院,天津轻工业学院合编.食品工程原理(下册)[M].北京:轻工业出版社,1987.438-471:574-619
    5 李云飞,葛克山.食品工程原理[M].北京:中国农业大学出版社,2002.845-850
    6 Stoecker, W.F. Industrial Refrigeration Handbook [M]. NJ, USA: McGraw-Hill Professional Publishing, 1998:695-770
    7 Keppeler, R. A. Cowart D. G. Thermal properties of freeze-drying mushrooms. Journal of food Science. 1972, 37, 205
    8 Liapis, A.I., & Sadikoglu, H. Mathematical modeling of the primary and secondary drying stages of bulk solution freeze-drying in trays: parameter estimation and model discrimination by comparison of the theoretical results with experimental data, Drying Technology. 1997, 15, 791-810
    9 Boss, E.A., Filho, R.M., & Toledo, E.C.V.D.Freeze drying process: real time model and optimization. Chemical Engineering and Processing. 2004, 43, 1475-1485
    10 Lichtfield, R.J., & Liapis, A.I. An absorption-sublimation model for a freeze dryer. Chem. Eng. Sci. 1979, 34, 1085-1090
    11 Ratti, C. Hot air and freeze-drying of high-value foods: a review. Journal of food Engineering. 49, 311-319
    12 Krokida, M.K., & Philippopoulos, C. 2006. Volatility of apples during air and freeze drying. Journal of Food Engineering. 200, 73, 135-141
    13 Millman, M.J. Liapis,. A.I. & Marchello, J.M. 1985. An analysis of the lyophilization process using a sorption-sublimation model and various operational policies. AIChFJ. 31, 1594-1604
    14 Chakraborty, R., Saha, A.K., & Bhattacharya, P. Modeling and simulation of parametric sensitivity in primary freeze-drying of foodstuffs. Separation and Purification Technology. 2006, 49:258-263
    15 Tsinontides, S.C., Rajniak, P., Pham, D., Hunke, W.A., & Placek, J., Reynolds, S.D. Freeze drying principles and practice for successful scale-up to manufacturing. International Journal of Pharmaceutics. 2004, 280, 1-16
    16 Sheng, T.Y.R., & Peck, R.E. Rates for freeze-drying. AICHE Symposium Series, 1977, 73(163), NY USA
    1 食物营养成份表(北京地区).北京:轻工业出版社,1990:54-56
    2 C.Ratti. Hot air and freeze-drying of high-value foods: a review[J].Journal of food Engineering, 2001, 49:311-319
    3 V. A.-E. King~* & J.-F. Chen. Oxidation of Controlled Low-temperature Vacuum Dehydrated and Freeze-dried Beef and Pork[J]. Meat Science. 1998, 48, (1/2):11-19.
    4 姚开,何强,贾冬英.牦牛肉冷冻干燥过程的研究[J].食品与发酵工业.2001.27(10):46-48.
    5 张晋陆.冷冻干燥法生产牛肉丁的研究[J].中国畜产与食品,1998,5(5):4-8
    6 周光宏主编.畜产品加工学[M].北京:中国农业出版社,2002
    7 Yi-Chieh Wang, Roch-Chui Yu, Cheng-Chun Chou. Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage[J]. International Journal of Food Microbiology.2004, 93: 209-217.
    8 Enrico Maltini, Paolo Di Nardo. Preparation of freeze-dried yoghurt as a space food [J]. Journal of Food Engineering.2007, 80 : 402-407.
    9 张兰威,鄂志强,万海峰,等.乳酸菌增菌培养基的筛选及干燥保护剂的选择[J].中国乳品工业,2000,(2):7~9.
    10 梁勇,杜敏,南庆贤,等.浓缩型乳酸菌发酵剂的制备[J].中国乳品工业,1995,(2):132~133.
    11 乔发东,吴秀芳,南庆贤,等.浓缩乳酸菌发酵剂的现状[J].中国乳品工业,1998,(1):22~23.
    12 郑世华,郑仕远,吴永民等.五香鹌鹑皮蛋的研制[J].食品工业科技.1994(3):31-33
    13 乔秀红,李清萍.五香鹌鹑蛋烘烤工艺研究.食品工业科技[J].2007,28(1):129-131
    14 高福成.冷干食品[M].北京:中国轻工业出版社.1998.05:26-45
    15 Barbanti, D., Mastrocola, D., & Lerici, C. R. Early indicators of chemical changes in foods due to enzymic or non enzymic browning reactions. Ⅲ. Colour changes in heat-treated model systems[J]. Food Science & Technology.1990, 23(6), 49-98.
    16 Edinara Adelaide Boss, Rubens Maciel Filho, Eduardo Coselli Vasco de Toledo. Freeze drying process: real time model and optimization.Chemical Engineering and Processing. 2004,43:1475-1485.
    17 Felix Franks. Freeze-drying of bioproducts: putting principles into practice[J]. European Journal of Pharmaceutics and Biopharmaceutics. 1998, 45:221-229.
    18 I. Sam Saguy, Alejandro Marabi, Rony Wallach. Liquid imbibition during rehydration of dry porous foods. Innovative Food Science and Emerging Technologies. 2005, (6) :37-43.
    19 del Valle, J. M., Stanley, D. W., & Bourne, M. C. Water absorption and swelling in dry bean seeds. Journal of Food Processing and Preservation. 1992, 16: 75-98.
    20 Krokida, M. K., & Maroulis, Z. B. Structural properties of dehydrated products during rehydration[J]. International Journal of Food Science & Technology.2001, 36, 529-538.
    21 Lewicld, P. P. Effect of pre-drying treatment, drying and rehydration on plant tissue properties: A review [J]. International Journal of Food Properties.1998, 11 - 22.
    22 Lozano, J. E., Rotstein, E., & Urbicain, M. J. Total porosity and open-pore porosity in the drying of fruits[J]. Journal of Food Science. 1980, 45, 1403-1407.
    23 Marabi, A., Dilak, C., Shah, J., & Saguy, I. S. Kinetics of solids leaching during rehydration of particulate dry vegetables[J]. Journal of Food Science2004, 69: 91-96.
    24 ValdezD,GioriG, RuizA, etal. Applied and Environment Microbiology,1983,45:302~304.
    25 Graciela FgioriG, RuizA, etaL. Applied and Environment Microbiology, 1985,413~415.
    26 Rybka, S., & Kailasapathy, K. Effect of freeze drying and storage on the microbiological and physical properties of AB-yoghurt. Milchwissenschaft.1997, 52, 390-394.
    27 冯祖荫,张建中.五香酱牛肉的制作技术.肉类工业.2006,(2):9-12.
    28 吴谋成主编.食品分析与感官评定.北京:中国农业出版社,2002:49-54;301-328.
    29 Hsu, K. H. A diffusion model with a concentration-dependent diffusion coefficient for describing water movement in legumes during soaking [J]. Journal of Food Science.1983, 48(2), 618-622, 645.
    30 Mastrocola, D., Barbanti, D., Rosa, M., & Pittia, P. Dalla Physicochemical characteristics of dehydrated apple cubes reconstituted in sugar solutions. Journal of Food Science, 1998, 63(3), 495-498.
    31 Mazza, G., & Lemaguer, M. Dehydration of onions: some theoretical and practical considerations. Journal of Food Technology.1980, 15(2), 181-194.
    32 SuiLin. Thermal Condition of Freeze-drying processing in a porous medium with predeterm indee rate of drying Int[J].J.Refrig. 1995,18(3).161-167
    33 Fonseca, F., Beal, C., & Corrieu, G. Operating conditions that affect the resistance of lactic acid bacteria to freezing and frozen storage [J]. Cryobiology.2001, 43, 189-198.
    34 Rybka, S., & Kailasapathy, K. Media for enumeration of yoghurt Bacteria [J]. International Dairy Journal.1996, 6, 839-850.
    35 Hubalek, Z. Protectants used in the cryopreservation of microorganisms. Cryobiology.2003, 46, 205 - 229.
    36 Leslie, S. B., Israeli, E., Lighthart, B., Crowe, J. H., & Crowe, L. M. O. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Applied and Environmental Microbiology.1995, 61, 3592 - 3597.
    37 Heckly, R. J.. Preservation of bacteria by lyophilization. Advances in Applied Microbiology. 1961, 3, 1 - 76.
    38 Champagne, C. P., & Gardner, N. J. O. The effect of protective ingredients on the survival of immobilized cells of Streptococcus thermophilus to air and freeze-drying [J]. Electronic Journal of Bioteclmology.2001, (4):146-152.
    39 万红兵,田洪涛,种克等.冷冻和冻干过程对保加利亚乳杆菌存活性影响的研究[J].现代食品科技.2006,22(4):1-12.
    40 A I Liapis,R J Litchfield Optimal control of a Freeze dryer[J] chemical engineering society,1998,34:975-981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700