梓醇对发育和衰老中神经可塑性的影响及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究我们旨在探讨(1)发育和衰老过程中Y迷宫空间分辨学习和突触素(synaptophysin,SYN)的变化及窖蛋白(caveolin-1)对突触素的调节机制;(2)梓醇对衰老过程中Y迷宫空间分辨学习、行为能力及突触前蛋白包括突触素和神经生长相关蛋白(growth-associated protein 43,GAP-43)的影响,并从相关信息传递途径探讨作用机制。(3)梓醇及学习记忆训练对发育过程中突触前蛋白(突触素和GAP-43)的作用及机理。
     应用行为学实验(Y迷宫)评价1-,4-,22-24月龄三个年龄组SD雄性大鼠Y迷宫空间分辨学习,western blotting技术检测各组大鼠海马、大脑皮层、小脑皮层突触素及caveolin-1的蛋白表达水平,分析二者的相关性。研究发现无论在海马、大脑皮层还是小脑,caveolin-1蛋白都表现出年龄依赖性的变化特点,而突触素则表现出与之相似的表达方式,二者呈显著正相关。海马突触素表达与动物Y迷宫空间分辨学习能力,主要是记忆成绩正性相关。提示在生物体发育、成熟和衰老的各过程,学习记忆能力与突触可塑性密切相关;caveolin-1在突触可塑性的调节中发挥重要作用,这种作用贯穿动物一生。
     对1月龄幼鼠研究显示梓醇能提高发育过程中海马GAP-43、突触素表达水平,从而提高神经可塑性,其作用途径可能是激活蛋白激酶C(protein kinase C,PKC)及作用于caveolin-1。而学习记忆训练主要提高发育中海马突触素、caveolin-1蛋白表达,并不影响GAP-43水平,提示在发育过程学习训练能通过作用于caveolin-1,上调海马突触素表达水平而提高突触可塑性。表明梓醇与学习记忆训练对发育过程中神经可塑性具有不同的作用,作用位点及途径各不相同。
     Y迷宫评价梓醇对22-24月龄老年大鼠空间分辨学习能力的作用,用旷场实验检测梓醇对老年大鼠探究能力、自发活动等行为功能的影响,western blotting及免疫组织化学技术检测青年对照组、老年对照组、梓醇治疗老年组大鼠海马GAP-43、突触素的表达水平。梓醇应用(连续腹腔注射)10天后,老年大鼠在记忆获得、记忆再现测试中达标所需的训练次数均明显少于老年对照组,正确反应率则高于老年对照组,表明梓醇长期治疗对老年大鼠Y迷宫空间分辨学习记忆能力有促进效应。用药5天时梓醇仅仅提高了老年大鼠记忆再现测试中的正确反应率。结果提示梓醇改善衰老伴发的学习记忆障碍具有时间依赖性特点。梓醇还能引起老年大鼠行为变化,主要表现为提高活动能力评分,缩短中央格停留时间,提示梓醇能提高动物的自发活动、探究能力。研究结果证明
In this study, we attempt to investigate: (1) the changes and adjusting machnism of synaptic plasticity and spatial learning ability during development. (2) the effect of catalpol on cognitive and behavioral defect and presynaptic proteins and a potential mechanism during aging. (3) the effect and mechanism of catapal and training on neuroplasticity during development.
    We investigate the changes in the protein amount of caveolin-1, and the correlation with synaptophysin levels in various brain regions (the hippocampus, cortex and cerebellum) obtained from different age rats (1-, 4-, 22-24month rats). In the hippocampus, a concomitant decrease in caveolin-1 and synaptophysin protein levels has been observed, while in the cortex caveolin-1 and synaptophysin increased in parallel in 22-24month old rats. And in the cerebellum, there is no obvious difference in caveolin-1 and synaptophysin levels among three groups. Hippocampal synaptophysin levels are related to cognitive ability. Our results suggest caveolin-1 may play an important role on the modulating synaptic plasticity throughout life and down-regulated caveolin-1 in the hippocampus may contribute to the decrease of synaptic plasticity in physiological aging process.
    Behavioral tests (Y-maze and open-field test) are used to estimate the the cognitive and behavioral ability of 3 groups SD male rats (1-, 4-, 22-24 moths). We have reported a time-dependent effect of catalpol in the spatial learning and memory on Y maze. The application of catalpol reduced both the number of errors in learning and memory retention after ten days treatment, thus prevented the impairment of spatial learning, and increased memory. However, 5 days treatment only had effect on spatial memory not on learning. These results demonstrate the ability of catalpol to reverse memory deficits and further confirmed the therapeutic potential of catalpol in the treatment of cognitive deficits in aging. The evaluation of the different behavioral measures obtained in the open-field test provides clear evidence that application of catalpol induce obviously behavioral alteration. Catalpol-treated animals have displayed high scores of locomotor. And shorten entering center time that reflects exploratory motivation. These novel finding represents direct demonstration of catalpol preventing behavioral deficits of aged rats.
    The hippocampal levels of GAP-43 and synaptophysin in 3 groups of 4 months (young group), 22-24 months (aged group) and catalpol-treated 22-24 months (catalpol-treated group) rats are evaluated by western blotting. Results clearly show a significant decrease in synaptophysin (46.6%) and GAP-43 (61.4%) levels in the aged group against the young animals and an increase (45.0% and 31.8% respectively) in the catalpol-treated aged rats in comparison with the untreated aged group. By immunohistochemistry, furthermore, we have found that catalpol selectively enhance synaptophysin-IR within the neurons in dentate gyrus layer, while it does not affect synaptophysin-IR in CA1 and CA3 subregions of the
引文
[1] U. S. Census Bureau. Aging Population: World's Older Population Growing by Unprecedented 800,000 a Month. 2001.
    [2] Blass JP. Mitochondria, neurodegenerative diseases, and selective neuronal vulnerability. Ann N Y Acad Sci. 1999, 893: 434-439.
    [3] Turnheim K. When drug therapy gets old: pharma—cokinetics and pharmacodynamics in the elderly. Experimental Gerontology. 2003, 38 (8) : 843—853.
    [4] Adachi H, Ishii N. Effects of toeotrienol on life span and protein carbonlation in Caenorhabditis elegans, J Gerotol A Biol Sci Med Sci. 2000, 55 (6) : 280—285.
    [5] Lephart E, Lund T, Handa R, et al. Anti-aging effects of equol: A unique antiandrogenic isoflavone metabolite and its influence in stimulating collagen deposition in human dermal monolayer fibroblasts. J Am Acad Dermatol, 2005, 52 (3) : 85.
    [6] Ramsey JJ, Harper ME, Weindrach R. Restriction of energy intake, energy expenditure, and aging. Free Radic Biol Med. 2000, 29: 946-968.
    [7] Offner H, Zamora A, Subramanian S, etal. A synthetic androstene analogue inhibits collagen-induced arthritis in the mouse. Clin Immunol. 2004, 110 (2) : 181-190.
    [8] Kahn A. Regaining lost youth: The controversial and colorful beginnings of hormone replacement therapy in aging. J Gerontol A Biol Sci Med Sci. 2005, 60 (2) : 142-147.
    [9] 童坦君,张宗玉.衰老分子生物学在新世纪面临的机遇与挑战.中华老年医学杂志.2000,19(3):167-169.
    [10] Teter B, Ashford JW. Neuroplasticity in Alzheimer's Disease. J Neurosci Res. 2002, 70: 402-437.
    [11] Burke SN, Barnes CA. Neural plasticity in the ageing brain. Nat Rev Neurosci. 2006, 7: 30-40.
    [12] Mori N. Toward understanding of the molecular basis of loss of neuronal plasticity in ageing. Age Ageing. 1993, 22: 5-18.
    [13] Davies HA, Kelly A, Dhanrajan TM, etal. Synaptophysin immunogold labelling of synapses decreases in dentate gyrus of the hippocampus of aged rats. Brain Res. 2003, 986: 191-195.
    [14] Gianotti C, Porta A, De Graan PN, etal. B-50/GAP-43phosphorylation in hippocampal slices from aged rats: effects of phosphatidylserine administration. Neurobiol Ageing. 1993, 14: 401-406.
    [15] Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 1997, 20: 84-91.
    [16] Eastwood SL, Burnet PW, McDonald B, etal. Synaptophysin gene expression in human brain: a quantitative in situ hybridization and immunocytochemical study, Neuroscience. 1994, 59: 881-892.
    [17] Arendt T. Neurodegeneration and plasticity. Int J Dev Neurosci. 2004, 22: 507-514.
    [18] Selkoe DJ. Alzheimer's disease is a synaptic failure. Science. 2002, 298: 789-791.
    [19] Horwitz B. Neuroplasticity and the progression of Alzheimer's disease. Int J Neurosci. 1988, 41: 1-14.
    [20] Brewer GJ. Neuronal plasticity and stressor toxicity during ageing. Exp Gerontol. 2000, 35: 1165-1183.
    [21] Foy M, Baudry M, Thompson R. Estrogen and hippocampal synaptic plasticity, Neuron Glia Biology. 2004, 1: 327-338.
    [22] Kotani S, Nakazawa H, Tokimasa T, etal. Synaptic plasticity preserved with arachidonic acid diet in aged rats. Neurosci Res. 2003, 46: 453-461.
    [23] Walsh GS, Krol KM, Crutcher KA, etal. Enhanced neurotrophin-induced axon growth in myelinated portions of the CNS in mice lacking the p75 neurotrophin receptor. J. Neurosci. 1999, 19: 4155-4168.
    [24] 赵蓉.中医衰老学说及抗衰老研究概况.实用中医药杂志.2006,22(161):384-385.
    [25] 周训蓉.中医“肾精化生脑髓”理论在延缓衰老中的应用.中医药信息.2006,23(4):1-2.
    [26] 陈京萍,周乐全,丁胜元,等.六味地黄汤对老年阴虚大鼠学习记忆能力的改善作用.中药新药与临床药理,2001,12(4):282-283.
    [27] 周建政,张永祥,周金黄.六味地黄汤对快速老化模型小鼠(SAM)学习记忆能力的改善作用.中国实验方剂学杂志.1999,5:29-33.
    [28] 李献平,刘敏.六味地黄丸及其类方对家蚕寿命的影响.中国中医基础医学杂志.1998,4(9):39.
    [29] 苗明三.(怀)地黄多糖对衰老模型小鼠免疫器官的影响.河南中医.1999,19 (3):30.
    [30] Hou JC, Zhang CX, Yang SL. Effects of dihuang compound on learning and memory of rats and apoptosis of hippocampal cells in Alzheimer's Disease. Progress of anatomical sciences 2005, 11 (2) : 111-113.
    [31] Cui Y, Yan Z, Hou S, etal. Effect of radix rehmanniae preparata on the expression of c-fosand NGF in hippocampi and learning and memory in rats with damaged thalamic arcuate nucleus, Zhong Yao Cai. 2004, 27: 589-592.
    [32] Liu CH, Li GS, Huang YX. Comparison on catalpol in rehmannia glutinosa libosch of different producing areas. Tradit Chin Med Res. 2001, 14: 10-12.
    [33] Luo YY, Zhang SQ, Suo JZ, etal. Determination of catalpol in Radix Rehmanniae by high performance liquid chromatography. Chin Pharm J. 1994, 29: 38-39.
    [34] Li DQ, Duan YL, Bao YM, etal. Neuroprotection of catalpol in transient global ischemia in gerbils. Neurosci Res. 2004, 50: 169-177.
    [35] Li DQ, Bao YM, Zhao JJ, etal. Neuroprotective properties of catalpol in transient global cerebral ischemia in gerbils: dose-response, therapeutic time-window and long-term efficacy. Brain Res. 2004, 1029: 179-185.
    [36] Jiang B, Liu JH, Bao YM, etal. Catalpol inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade. Toxicon. 2004,43:53-59.
    
    [37] Sidik K, Morris RW. Nonparametric step-down test procedures for finding minimum effective dose. J Biopharm Stat. 1999, 9: 217-240.
    
    [38] Gage FH, Bjorklund A , Stenevi V , etal. Intrahippocampal septal grafts ameliorate learning impairments in aged rats. Science. 1984, 225: 533-536.
    
    [39] Vallee M, Mayo W, Darnaudery M, etal. Neurosteroids: deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc Natl Acad Sci USA. 1997, 94(26):14865-14870.
    
    [40] Brudzynski SM, Krol S. Analysis of locomotor activity in the rat: parallelism index, a new measure of locomotor exploratory pattern. Physiol Behav. 1997, 62: 635-642.
    
    [41] Routtenberg A, Cantallops I, Zaffuto S, etal. Enhanced learning after genetic overexpression of a brain growth protein. Proc Natl Acad Sci USA. 2000, 97: 7657-7662.
    
    [42] Toker A. Signaling through protein kinase C. Front Biosci. 1998, 3: 1134-1147.
    
    [43] Vaynman SS, Ying Z, Yin D, etal. Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Res. 2006, 1070: 124-130.
    
    [44] Levine ES, Dreyfus CF, Black IB, etal. Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc Natl Acad Sci USA. 1995, 92(17):8074-7.
    
    [45] Gaudreault SB, Dea D, Poirier J. Increased caveolin-1 expression in Alzheimer's disease brain. Neurobiol Aging. 2004, 25: 753-759.
    
    [46] Gaudreaul SB, Blain JF, Gratton JP, etal. A role for caveolin-1 in post-injury reactive neuronal plasticity. J Neurochem. 2005,92: 831-839.
    
    [47] Skene JH. Axonal growth associated proteins. Annu Rev Neurosci. 1989, 12:127-156.
    
    [48] de la Monte SM, Ng SC, Hsu DW. Aberrant GAP-43 gene expression in Alzheimer's disease. Am J Pathol. 1995,147(4):934-946.
    
    [49] Bogdanovic N, Davidsson P, Volkmann I, etal. Growth-associated protein GAP-43 in the frontal cortex and in the hippocampus in Alzheimer's disease: an immunohistochemical and quantitative study, J Neural Transm. 2000,107: 463-478.
    
    [50]Schmoll H, Ramboiu S, Platt D, etal. Age influences the expression of GAP-43 in the rat hippocampus following seizure, Gerontology. 2005, 51: 215-224.
    
    [51] Kadar T, Dachir S, Shukitt-Hale B, etal. Sub-regional hippocampal vulnerability in various animal models leading to cognitive dysfunction. J Neural Transm. 1998, 105(8-9):987-1004.
    
    [52] Morrison JH, Hof PR. Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer's disease. Prog Brain Res. 2002, 136:467-486.
    [53] Rekart JL, Quinn MM, Mesulam M, etal. Subfield-specific increase in brain growth protein in postmortem hippocampus of Alzheimer's patients. Neuroscience. 2004, 126: 579-584.
    
    [54] Sjogren M, Minthon L, Davidsson P, etal. CSF levels of tau, beta-amyloid(1-42) and GAP-43 in frontotemporal dementia, other types of dementia and normal ageing, J Neural Transm. 2000,107:563-579.
    
    [55]Dent EW, Meiri KF. GAP-43 phosphorylation is dynamically regulated in individual growth cones. J Neurobiology. 1992, 23(8):1037-1039.
    
    [56]QinH, Dent EW, Meiri KF. Modulation of actin filament behavior by GAP-43 (neuromodulin) is dependent on the phosphorylation status of Ser41, the Protein Kinase C site. J Neurosci, 1997,17(10):3515-3524.
    
    [57]Norden JJ, Lettes A, Costello B,etal. Possible role of GAP-43 in calcium regulation/neurotransmitter release. Ann N Y Acad Sci. 1991,627:75-93.
    
    [58]Battaini F, Pascale A. Protein kinase C signal transduction regulation in physiological and pathological aging. Ann. N. Y. Acad. Sci. 2005,1057(1): 177-192.
    
    [59] Oka N, Yamamoto M, Schwencke C, et al. Caveolin interaction with protein kinase C isoenzyme-dependent regulation of kinase activity by the caveolin scaffolding domain peptide. J Biol Chem. 1997, 272:33416-33421.
    
    [60] Taggart MJ, Leavis P, Feron O, etal. Inhibition of PKCalpha and rhoA translocation in differentiated smooth muscle by a caveolin scaffolding domain peptide. Exp Cell Res. 2000, 258:72-81.
    
    [61] Bhatnagar A, Sheffler DJ, Kroeze WK, etal. Caveolin-1 Interacts with 5-HT_(2a) serotonin receptors and profoundly modulates the signaling of selected Gα_0-coupled protein receptors. J Biol Chem. 2004,279: 34614-34623.
    
    [62] Tarsa L, Goda Y. Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. PNAS. 2002,99(2): 1012-1016.
    
    [63] Dzienis-Koronkiewicz E, Debek W, Chyczewski L. Use of synaptophysin immunohistochemistry in intestinal motility disorders. Eur J Pediatr Surg. 2005 Dec;15(6):392-8.
    
    [64] Winter E. Effects of an extract of Ginkgo biloba on learning and memory in mice. Pharmacol Biochem behav, 1991,38(1):109.
    
    [65] Rosenzweig ES, Barnes CA, Impact of ageing on hippocampal function: plasticity, network dynamics, and cognition, Prog Neurobiol. 2003,69:143-179.
    
    [66] Smith TD, Adams MM, Gallagher M, etal. Circuit-Specific Alterations in Hippocampal Synaptophysin Immunoreactivity Predict Spatial Learning Impairment in Aged Rats, The Journal of Neuroscience, 2000, 20(17):6587-6593.
    
    [67] 洪岸. 老年大鼠学习记忆减退的神经过敏基础.生理科学进展,1995; 26 (3): 240.
    [68] Wiedemann B, Franke WW. Identification and localization of synaptopbysin, an integral membrane glycoprotein of Mr 38000 characteristic of presynaptic vesicles. Cell. 1985, 4: 1017-1028
    [69] Rutten BPF, Van der Kolk NM, Schafer S, etal. Age-related Loss of synaptophysin immunoreactive presynaptic boutons within the hippocampus of APP751~(SL), PS1~(M146L), and APP751~(SL)/PS1~(M146L) transgenic mice. American Journal of Pathology. 2005, 167: 161-173.
    [70] Ishimaru H, Casamenti F, Ueda K, etal. Changes in presynaptic proteins, SNAP-25 and synaptophysin, in the hippocampal CA1 area in ischemic gerbils. Brain Res. 2001, 903 (1-2) : 94-101.
    [71] Callahan LM, Vaules WA, Coleman PD. Quantitative decrease in synaptophysin message expression and increase in cathepsin D message expression in Alzheimer disease neurons containing neurofibrillary tangles. J Neuropathol Exp Neurol. 1999 Mar; 58 (3) : 275-87.
    [72] Heinonen O, Soininen H, Sorvari H, etal. Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in Alzheimer's disease. Neuroscience. 1995, 64 (2) : 375-84.
    [73] 钟振国,屈泽强,王乃平等.三七总皂苷对大脑基底核损伤动物模型大脑神经元突触素的影响.中国中药杂志,2005,30(12):913-915.
    [74] Sze CI, Troncoso JC, Kawas C, etal. Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol. 1997, 56 (8) : 933-944.
    [75] Calhoun ME, Kurth D, Phinney AL, etal. Hippocampal neuron and synaptophysin-positive bouton number in aging C57BL/6 mice. Neurobiol Aging. 1998, 19 (6) : 599-606.
    [76] Lu B. BDNF and activity-dependent synaptic modulation. Learn. Mem. 2003, 10: 86-98.
    [77] Lu B, Chow A. Neurotrophins and hippocampal synaptic transmission and plasticity, J Neurosci Res. 1999, 58: 76-87.
    [78] Li S, Couet J, Lisanti MP. Src tyrosine kinases, G alpha subunits and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem. 1996, 271: 29182-29190.
    [79] Carman CV, Lisanti MP, Benovic JL. Regulation of G protein-coupled receptor kinases by caveolin, J Biol Chem. 1999, 274: 8858-8864.
    [80] Couet J, Belanger MM, Roussel E, etal. Cell biology of caveolae and caveolin. Adv Drug Deliv Rev. 2001, 49: 223-235.
    [81] Braun JE A, Madison DV. A novel SNAP25-Caveolin complex correlates with the onset of persistent synaptic potentiation. J Neurosci. 2000, 20: 5997-6007.
    [82] Teyler TJ, DiScenna P. Long-term potentiation. Ann Rev neurosci. 1987; 10:131
    [83] Matthies H. In earch of cellular mechanisms of memory. Prog Neurobiol. 1989, 32: 277
    [84] 李永新,梅镇彤,长时程增强的形成机制及其与学习记忆的相关性,生理科学进展,1993;24(3): 278.
    [85] Barnes CA. Memory dificits associated with senescence: A neurophsiological and behavioural study in the rat. J Comp Physiol and Psychol. 1979, 93(1):74
    
    [86] Barnes CA, McNaughton BL. An age comparison of the rates of acquisition and forgetting of spatial information in relation to long-term enhancement of hippocampal synapses. Behav Neurosci. 1985,99:1040-1048.
    
    [87] Gooney M, Messaoudi E, Maher FO, etal. BDNF-induced LTP in dentate gyrus is impaired with age: analysis of changes in cell signaling events. Neurobiology of Aging. 2004,25:1323-1331.
    
    [88] Palade GE. Fine structure of blood capillaries. J Appl Physiol. 1953, 24: 1424 - 1436.
    
    [89] Yamada E. The fine structure of the gall bladder of the mouse. J Biophys Biochem. Cytol. 1955, 1: 445-458.
    
    [90] Glenney JR, Soppet JrD. Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci USA. 1992 , 89(21): 10517-10521.
    
    [91] Razani B, Lisanti MP. Caveolins and Caveolae: Molecular and Functional Relationships. Experimental Cell Research. 2001,271,36-44.
    
    [92] Tang Z., Scherer PE, Okamoto T, etal. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem. 1996, 271: 2255 - 2261
    
    [93] Krajewska WM, Maslowska I. Caveolins: structure and function in signal transduction. Cell Mol Biol Lett, 2004,9(2): 195-220.
    
    [94] Fielding PE, Fielding CJ. Plasma membrane caveolae mediate the efflux of cellular free cholesterol, Biochemistry. 1995, 34:14288-14292.
    
    [95] Rothberg KG, Heuser JE, Donzell WC, etal. Caveolin, a protein component of caveolae membrane coats. Cell 1992, 8:673-682.
    
    [96] Fielding CJ, Fielding PE. Cholesterol and caveolae: structural and functional relationships, Biochim Biophys Acta. 2000,1529:210-222.
    
    [97] Sargiacomo M, Scherer PE, Tang Z, etal. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci U.S.A. 1995, 92: 9407-9411
    
    [98] Couet J, Li S, Okamoto T, etal. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem. 1997, 272: 6525-6533.
    
    [99] Schlegel A, Schwab RB, Scherer PE, etal. A role for the caveolin-scaffolding domain in mediating the membrane attachment of caveolin-1. The caveol in-scaffolding domain is both necessary and sufficient for membrane binding in vitro, J Biol Chem. 1999, 274: 22660 - 22667.
    
    [100] Song KS, Li S, Okamoto T, etal. Copurification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent free purification of caveolae membranes, J Biol Chem. 1996,271: 9690-9697.
    
    [101]ParkWY, Park JS, Cho KA, etal. Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. J Biol Chem 2000, 275:20847-20852.
    
    [102]Cho KA, Ryu SJ, Oh YS, etal. Morphological adjustment of senescent cells by modulating caveolin-1 status. J Biol Chem 2004, 279: 42270-42278.
    
    [103]ChoKA, SC Park. Caveolin-1 as a prime modulator of aging: a new modality for phenotypic restoration? Mech Ageing Dev. 2005, 126(1): 105-110.
    
    [104] Park JS, Kim HY, Kim HVV, etal. Increased caveolin-1, a cause for the declined adipogenic potential of senescent human mesenchymal stem cells. Mech Ageing Dev. 2005: 551-559.
    
    [105] Park WY, Park JS, Cho KA , etal. Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. J Biol Chem. 2000,275:20847-20852.
    
    [106] Couet J , Sargiacomo M, Lisanti MP. Interaction of a receptor tyrosine ki2nase , EGF2R , with caveolins. Caveolin binding negatively regulates ty2rosine and serine/ threonine kinase activities. J Biol Chem, 1997, 272(48):30429 - 30438.
    
    [107] Volonte D, Zhang K, Lisanti MP etal. Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts, Mol Biol Cell. 2002,13:2502-2517.
    
    [108] Phillips PD, Kuhnle E, Cristofalo VJ. EGF binding ability is stable throughout the replicative life-span of WI-38 cells, J Cell Physiol. 1983,114(3): 311 - 316.
    
    [109] Yeo EJ, Jang IS, Lim HK, etal. Agonist-specific differential changes of cellular signal transduction pathways in senescent human diploid fibroblasts, Exp Gerontol. 2002, 37:871-883.
    
    [110] Aoyagi M, Fukai N, Ogami K, etal. Kinetics of 125I-PDGF binding and down-regulation of PDGF receptor in human arterial smooth muscle cell strains during cellular senescence in vitro, J Cell Physiol. 1995,164:376-384.
    
    [111] Engelman JA, Chu C, Lin A, etal. Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain, FEBS Lett. 1998, 428:205-211.
    
    [112] Cho KA, Ryu SJ, Park JS, etal. Senescent phenotype can be reversed by reduction of caveolin status, J Cell Biol. 2003,278:27789-27798.
    
    [113] Chen QM, Tu VC, Catania J, etal. Involvement of Rb family proteins, focal adhesion proteins and protein synthesis in senescent morphogenesis induced by hydrogen peroxide, J Cell Biol. 2000,113:4087-4097.
    
    [114] Wei Y, Yang X, Liu Q, etal. A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling, J Cell Biol. 1999:1285-1294.
    [115] Teixeira A , Chaverot N, Schroder C, etal. Requirement of caveolae microdomains in extracellular signal-regulated kinase and focal adhesion kinase activation induced by endothelin-1 in primary astrocytes, J Neurochem. 1999,72: 120-128.
    
    [116] Dimri GP, Nakanishim M, Desprez M J, etal. Inhibition of E2F activity by the cyclin-dependent protein kinase inhibitor p21 in cells expressing or lacking a functional retinoblastoma protein, Mol. Cell. Biol. 1996,6:2987-2997.
    
    [117] Galbiati F, Volonte D, Liu J, etal. Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism, Mol Biol Cell. 2001,12(8):2229 - 2244.
    
    [118]Garcia-Cardena G, Oh P, Liu J, etal. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: Implications for caveolae localization. Proc. Natl. Acad. Sci. USA. 1996,93, 6448-6453.
    
    [119] Liu J, Garcia-Cardena G , Sessa WC. Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: Implications for caveolae localization. Biochemistry. 1996, 35:13277-13281.
    
    [120] Michel JB, Feron 0, Sacks D, etal. Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem. 1997, 272:15583-15586.
    
    [121] Krajewska WM, Maslowska I. Caveolins: structure and function in signal transduction. Cell Mol Biol Lett. 2004, 9: 195-220.
    
    [122] Russelakis-Carneiro M, Hetz C, Maundrell K, etal. Prion replication alters the distribution of synaptophysin and caveolin 1 in neuronal lipid rafts. Am J Pathol. 2004, 165: 1839-1848.
    
    [123] Pike LJ, Han X, Chung K-N , etal. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: A quantitative electrospray ionization/mass spectroscopic analysis. Biochemistry. 2002,41: 2075-2088.
    
    [124] Galbiati F, Engelman JA, Volonte D, etal. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoproteincomplex, and T- tubule abnormalities. J Biol Chem. 2001, 19: 19.
    
    [125] Toselli M, BiellaG, Taglietti V, etal. Caveolin-1 Expression and Membrane Cholesterol Content Modulate N-Type Calcium Channel Activity in NG108-15 Cells. Biophys J. 2005,89: 2443 - 2457.
    
    [126] Jiangsu New Medical Collegel. Dictionary of Chinese Materia Med ica (中药大辞典). Shanghai: Shanghai Peop le' s Publish ing House, 1975.
    
    [127 ] L iu CH, Zhang LJ , L i GS. Determ ination of rehmannio sideA in root tuber of Rehmannia glutinosa Libosch. Chin Tradit Herb Drugs (中草药). 2002, 33 (8): 706-707.
    
    [128] D ing ZM . R ehmannia glutinosa Liboschl (地黄). Bei-jing: Peop le's Medical Publish ing House, 2001.
    [129] 汪昂(清).医方集解.沈阳,辽宁科学技术出版社,1997,1版.
    [130] 彭怀仁.中药方剂大辞典,第6册[M].北京:人民卫生出版社,1996.288.
    [131] 周坤福,王明艳,陈全良,等.金匮肾气丸延缓衰老作用的实验研究.南京中医药大学学报.1998,14(6):351
    [132] 张大禄,范丙义,张瑜,等.六味地黄方抗衰老作用研究.中医药信息.2001,18(6):19-20.
    [133] 谢金龙.金匮肾气丸的抗衰老作用.中成药.1993,15(11):24.
    [134] Chang, I1-Moo. Anti-aging and Health-promoting constituents derived from traditional oriental herbal remedies. Annals of the New York Academy of Sciences. 2001, 928: 281-286.
    [135] 管家齐,刘军莲,王传金.干地黄在金匮肾气丸中抗衰老实验研究.南京中医药大学学报(自然科学版).2002,18(3):169-170.
    [136] 伍清,董淳.六味地黄汤及其补泻组分的抗衰老作用及机制.中药药理与临床.2003,19(3):6-7.
    [137] 彭代银,刘青云,桂建华,等.二龄蚕康饮延缓衰老作用的研究.中医中药杂志.1997,22(9):556.
    [138] Hatanpaa K, Isaacs KR, Shirao T, etal. Loss of proteins regulating synaptic plasticity in normal ageing of the human brain and in Alzheimer disease. J Neuropathol Exp Neurol. 1999, 58: 637-643.
    [139] 殷越,冯涛,周大果,等.地黄饮子对D一半乳糖所致脑衰老小鼠学习记忆行为的影响.中医药学报.2002,30(6):55-56.
    [140] Gaeddert A. Herbal approaches to treating memory loss, dDementia, and Alzheimer's disease. Acupuncture Today. 2003, 4 (4)
    [141] Effros R B. Roy Walford and the immunologic theory of aging, Immunity & Ageing 2005, 2: 7.
    [142] 谢延,李丽红,凌湘力,等.参芪地黄丸对D一半乳糖致衰老小鼠的免疫调节作用.福建中医药.2003,34(2):36-37.
    [143] 梁爱华,薛宝云,王金华,等.鲜地黄与干地黄止血和免疫作用比较研究.中国中药杂志.1999,24 (11):663.
    [144] 刘福君,赵修南,聂伟,等.地黄低聚糖增强小鼠免疫功能的作用.中国药理学通报.1998.14(1):90
    [145] Harman D. Ageing: a theory based on free radical and radiation chemistry. J Gerontol, 1956, 11: 298-300.
    [146] Beckman KB, Ames BN. The Free Radical Theory of Aging Matures. Physiol. Rev. 1998, 78: 547-581.
    [147] Mehlhorn R. J, in Physiological Basis of Aging and Geriatrics, edited by Paola S. Timiras (CRC Press, Ann Arbor) 1994, 61-72.
    [148] 强世平,赵华.六味地黄汤对老龄小鼠血清SOD和LPO的影响.中医药研究.1998,14(6):42-43.
    [149] 李献平,刘敏.六味地黄汤及其类方对小鼠血中老化相关酶活力的影响.中国实验方剂学杂 志.1999,5(2):29-30
    [150] 谢宁,宋琳,牛英才等.加减地黄饮子对Aβ1-40所致AD大鼠学习记忆及抗氧化作用的影响.中国中医药信息杂志.2005,1:12.
    [151] 裘月,屈志炜.常用补益中药抗脂质过氧化作用比较,中国药学杂志,1996,31(2):83-86.
    [152] 曹凯,刘永平.熟地、菊花、山药、牛膝四大怀药对小鼠脑线粒体单胺氧化酶活性的影响,中国老年学杂志,1998,18 (2):102.
    [153] 张鹏霞,曲凤玉.熟地提取液对衰老模型小鼠脑组织NOS、NO、SOD和LPO的影响,中国老年学杂志,1999,19 (3):174-175.
    [156] Kim SS, Son YO, Chun JC, etal. Antioxidant property of an active component purified from the leaves of paraquat-tolerant Rehmannia glutinosa. Redox Report, 2005, 10 (6) : 311-318.
    [157] 宫斌,莫启忠.补肾中药延缓脑组织衰老的实验研究进展.老年医学杂,1993,13 (2):124-126
    [158] Buttke TM, Sandstrom PA. Oxidative. Stress as a mediator of apoptosis. Immunol Today. 1994, 15: 7.
    [159] 李龙宣,赵斌,许志恩,等.熟地黄抑制阿尔茨海默病样大鼠海马神经元凋亡的作用,中华神经医学杂志.2006,1:10-13
    [160] Smeyne RJ, Vendrell M, Hayward M, et al. Continuous c-fos expression precedes programmed cell death in vivo. Nature, 1993, 363: 166—169.
    [161] Chao JC, Chiang SW, Wang CC, etal. Hot water-extracted Lycium barbarum and Rehmannia glutinosa inhibit proliferation and induce apoptosis of hepatocellular carcinoma cells. World J Gastroenterol. 2006, 12 (28) : 4478-4484.
    [162] Hertoghe T. The "Multiple Hormone Deficienc" Theory of Aging: Is Human Senescence Caused Mainly by Multiple Hormone Deficiencies?. Annals of the New York Academy of Sciences. 2005, 1057 (1) : 448-465.
    [163] MaY, ZHou WX, Cheng JP, etal. Effect of Liuwei Dihuang decoction on the balance of the hypothalamus-pituitary-ovary axis of senescence-accelerated mice. Chinese Journal of Experimental Traditional Medical Formulae. 2005, 2: 10.
    [164] 魏小龙.海马学习记忆功能有关基因及六味地黄汤益智作用与基因表达关系的研究.生理科学进展.2000,31(3):227-230.
    [165] 查良伦.生地对家兔糖皮质激素受抑模型的实验研究.中西医结合杂志,1988,8 (2):95.
    [166] 冯国平,荣征星,易宁育,等.生地、龟板和附子、肉桂对“甲亢”大鼠β—肾上腺素能受体的影响.中西医结合杂志.1986,6(10):606.
    [167] 侯士良,盛经纬.怀庆熟地黄滋阴作用的初步研究,中国中药杂志,1992,17 (5):301-303
    [168] 原中琉璃子.八味地黄丸、柴胡加龙骨牡蛎汤、大柴胡汤、黄连解毒汤对动脉硬化的影响.国外医学.中医中药分册,1987,9(5):49.
    [169] 卞慧敏,龚婕宁,魏凯峰,等.六味地黄汤对衰老加血瘀模型大鼠血脂和纤溶活性的影响.南京中医药大学学报.2006,22(1),29-30.
    [170] 卞慧敏,龚婕宁,魏凯峰,等.六昧地黄汤对衰老加阴虚血瘀模型大鼠的保护作用.中药药理与临床.2005,21(4):2-4
    [171] 豫北医学专科学校中药研究室,等。炮制熟地黄时加酒与不加酒的比较.药学通报.1982,17(2:50.
    [172] 卞慧敏,龚婕宁,马健.六昧地黄汤对家兔体外血小板聚集率的影响.中成药.2000,11:792.
    [173] 周坤福,王明艳,赵凤鸣,等,六味地黄丸延缓衰老作用机理的实验研究,江苏中医.1999,20(1):44-45
    [174] 魏小龙,茹祥斌.低分子量地黄多糖对p53基因表达的影响[J].中国药理学报,1997,18(5):71.
    [175] Ozawa T. in Understanding the Process of Aging, edited by Enrique Cadenas and Lester Packer (Marcel Dekker, New York ) 1999, 265-292.
    [176] Haussmann MF, Winkler DW, O'Reilly KM, etal. Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones. Proceedings of the Royal Society of London: Biological Sciences. 2003. 270 (1522) : 1387-1392.
    [177] Mark J, Zijlmans JM, Martens UM, etal. Genetics Telomeres in the mouse have large inter-chromosomal variations in the number of T_2AG_3 repeats, Proc. Natl. Acad. Sci. USA 1997, 94: 7423-7428.
    [178] von Zglinicki T. Oxidative stress shortens telomeres. Trends in Biochemical Sciences 2002, 27, 339-344.
    [179] Panossian LA, Porter VR, Valenzuela HF, etal. Telomere shortening in T cells correlates with Alzheimer's disease status. Neurobiol Aging. 2003, 24: 77-84.
    [180] Zhang HP, Zhang YX. P-60 Effect of serum from Liuwei Dihuang decoction-treated rats on long-term potentiation in hippocampal slices from senescence accelerated mice. Acta Pharmacol Sin. 2003, 23 (4) : 342-381. {Proceedings of the 12th China and Japan Joint Meeting on Pharmacology (CJP-2002) and the 8th International Symposium on Biopeptides Medical Sciences (BMS-2002)}
    [181] Yamazaki M, Chiba K, Mohri T. Neuritogenic effect of natural iridoid compounds on PC12 cells and its possible relation to signaling protein kinases. Biol Pharm Bull. 1996, 19: 791-795.
    [182] Masliah E, Mallory M, Hansen L, etal. Quantitative synaptic alterations in the human neocortex during normal aging. Neurology, 1993, 43 (1) : 192-197.
    [183] Martin SJ, Morris RG. Cortical plasticity: it's all the range. Curr Biol. 2001, 11 (2) : 57259.
    [184] Chapman PF, White GL, Jones MW, etal. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neurosci. 1999, 2: 271-276.
    [185] Himeda T, Mizuno K, Kato H, etal. Effects of age on immunohistochemical changes in the mouse hippocampus, Mech Ageing Dev. 2005, 126: 673-677.
    [186] Tarsa L, Goda Y. Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. PNAS. 2002, 99(2): 1012-1016.
    
    [187] Smith T D, Adams MM, Gallagher M, etal. Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. J Neuroscience. 2000, 20(17):6587-6593
    
    [188] Heinonen O, Soininen H, Sorvari H, etal. Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in Alzheimer's disease. Neuroscience. 1995, 64(2):375-84.
    
    [189] Mulasa MF, Demuroa G, Mulasa C, etal. Dietary restriction counteracts age-related changes in cholesterol metabolism in the rat, Mech. Ageing. Dev. 2005,126:648-654.
    
    [190] Takayoshi M, Makoto U. [Gly~(14)]-Humanin improved the learning and memory impairment induced by scopolamine in vivo. Br J Pharmacol. 2001,134:1597-1599;
    
    [191] Madrrone DF, Petit TL. The role of synaptic morphology in neural plasticity: structural interactions underlying synaptic power. Brain Res. 2002, 38 (3):291-308.
    
    [192] Martinez G, Di Giacomo C , Carnazza ML, etal. MAP2, synaptophysin immunostaining in rat brain and behavioral modifications after cerebral postischemic reperfusion. Devel Neurosci. 1997 ,19(6): 457.
    
    [193] King DL, Arendash GW. Maintained synaptophysin immunoreactivity in Tg2576 transgenic mice during aging: correlations with cognitive impairment. Brain Res. 2002 , 926(1-2):58-68.
    
    [194] Kawabe JI, Grant BS, Yamamoto M, ed al. Changes in caveolin subtype protein expression in aging rat organs, Mol. Cell. Endocrinol. 2001,176:91-95.
    
    [195] Ratajczak P, Damy T, Heymes C , etal. Caveolin-1 and -3 dissociations from caveolae to cytosol in the heart during aging and after myocardial infarction in rat. Cardiovasc. Res. 2003,57:358-369
    
    [196] Koudinov AR, Koudinova NV. Essential role for cholesterol in synaptic plasticity and neuronal degeneration. FASEB J. 2001,15:1858-1860.
    
    [197] Ko M, Zou K, Minagawa H, etal. Cholesterol-mediated neurite outgrowth is differently regulated between cortical and hippocampal neurons. J Biol Chem. 2005, 280(52):42759-65.
    
    [198] Wolf H, Hensel A, Arendt T, etal. Serum lipids and hippocampal volume: the link to Alzheimer's disease? Ann Neurol. 2004, 56(5):745-748.
    
    [199] Abad-Rodriguez J, Ledesma MD, Craessaerts K, etal. Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol. 2004,167(5):953-60
    
    [200] Cirrito JR, Yamada KA, Finn MB, etal. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron. 2005, 48(6):913-922.
    
    [201] Beasley CL, HonerWG, Bergmann K, etal. Reductions in cholesterol and synaptic markers in association cortex in mood disorders. Bipolar Disord. 2005, 7(5):449-55.
    
    [202] Nishi M, Whitaker-Azmitia PM. Azmitia EC. Enhanced synaptophysin immunoreactivity in rat hippocampal culture by 5-HT_(1A) agonist, S100β, and corticosteroid receptor agonists. Synapse. 2005, 23(1): 1-9.
    
    [203] Riedel G, Wetzel W, Reymann KG. Computer-assisted shock-reinforced Y-maze training: a method for studying spatial alternation behavior. Neuroreport. 1994,5 (16):2061-2064.
    
    [204] Routtenberg A. Measuring memory in a mouse model of Alzheimer's disease. Science. 1997, 277: 839-840.
    
    [205] Arendash GW, Gordon MN, Diamond M, etal. Behavioral assessment of Alzheimer's transgenic mice followinglong-term Aβ vaccination: task specificity and correlations between Aβ deposition and spatial Memory. DNA and Cell Biol. 2001,20(11): 737-744.
    
    [206] Oliveirajr AA, Hodges HM. Alzheimer's disease and neural transplantation as prospective cell therapy. Curr Alzheimer Res.2005, 2:79-95.
    
    [207] Eilam D. Open field behavior withstands drastic changes in arena size. Behav Brain Res. 2003, 142: 53-62.
    
    [208] Nabeshima, Hasegawa M, Nakayama S, etal. Impairment of learning and memory and the accessory symptom in aged rats as senile dementia model (1)-Emotional behavior. Jpn J Psychopharmacol, 1993, 13: 65-72.
    
    [209] Siwak CT, Tapp PD, Milgram NW. Effect of Age and Level of Cognitive Function on Spontaneous and Exploratory Behaviors in the Beagle Dog. Learn Mem, 2001,8: 317-325.
    
    [210] Fried land RP, FritschT, Smyth KA, etal. Patients with Alzheimer's disease have reduced activities in midlife compared with healthy control-group members. Proc Natl Acad Sci USA. 2001, 98(6): 3440-3445.
    
    [211]Drai D, Kafkaf i N, Benjamini Y, etal. Rats and mice share common ethologically relevant parameters of exploratory behavior. Behav Brain Res. 2001,125: 133-140.
    
    [212]Dlugos CA, Pentney RJ. Quantitative immunocytochemistry of GABA and synaptophysin in the cerebellar cortex of old ethanol-fed rats. Alcohol Clin Exp Res, 2002, 26 (11): 1728 -1733.
    
    [213] Li S, Reinprecht I, Fahrestock M, et al. Activity-dependent changes in synap tophysin immunoreactivity in hippocampus, p iriform cortex, and entorhinal cortex of the rat. Neuroscience, 2002, 115 (4): 1221-1229.
    
    [214] Gincel D, Shoshan-Barmatz V. The synaptic vesicle protein synaotophysin: purification and characterization of its channel activity. Biophys J. 2002,83:3223-3229.
    
    [215] Kadar T, Dachir S, Shukitt-Hale B, etal. Sub-regional hippocampal vulnerability in various animal models leading to cognitive dysfunction. J Neural Transm. 1998, 105(8-9):987-1004.
    
    [216] Morrison JH, Hof PR. Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer's disease. Prog Brain Res. 2002, 136:467-486
    
    [217] Ullian EM, Sapperstein SK, Christopherson KS, etal. Control of synapse number by glia. Science, 2001, 291(5504): 657-661.
    [218] 闰荣,罗小光,曹云鹏,张朝东.星形胶质细胞对PC12细胞的分化及突触素和生长相关蛋白43表达的影响。中国医科大学学报J ChinMed Univ第35卷第1期2006年2月
    [219] He Q, Dent E.W, Meiri KF. Modulation of actin filament behavior by GAP-43 (neuromodulin)is dependent on the phosphorylation status of serine 41, the protein kinase C site, J Neuroscience. 1997,17: 3515-3524.
    [220] Tartaglia N, Du J, William J, etal. Protein Synthesis-dependent and-independent Regulation of Hippocampal Synapses by Brain-derived Neurotrophic Factor. J Biol Chem. 2001276, (40): 37585-37593.
    [221] Gomez-Pinilla F, Ying Z, Roy RR, etal. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity, J Neurophysiol. 2002,88:2187-2195.
    [222] Suzuki S, Numakawa T, Shimazu K, etal. BDNF-induced recruitment of TrkB receptor into neuronal lipid rafts: roles in synaptic modulation, JCB. 2004,167:1205-1215.
    [223] Coffey ET, Akerman KE, Courtney MJ. Brain derived neurotrophic factor induces a rapid upregulation of synaptophysin and tau proteins via the neurotrophin receptor TrkB in rat cerebellar granule cells. Neurosci Lett. 1997,227(3):177-180.
    [224] Alder J, Kanki H, Valtorta F, etal. Overexpression of synaptophysin enhances neurotransmitter secretion at Xenopus neuromuscular synapses, J Neurosci. 1995,15:511-519.
    [225] Strittmatter SM, etal. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell. 1995, 80:445-452.
    [226] Wehrle R, Caroni P, C Sotelo, etal. Role of GAP-43 in mediating the responsiveness of cerebellar and precerebellar neurons to axotomy. Eur J Neurosci. 2001, 13(5): 857-870.
    [227] Routtenberg A, MebergPM. A novel signaling system from the synapse to the nucleus.Trends Neurosci. 1998,21(3):106.
    [228] Rekart JL, Meiri K, Routtenberg A. Hippocampal-dependent memory is impaired in heterozygous GAP-43 knockout mice. Hippocampus. 2005,15:1-7.
    [229]. Smart EJ, Ying YS, Anderson RG. Hormonal regulation of caveolae internalization.J Cell Biol. 1995,131:929-938.
    [230]. Liu J, Oh P, Horner T, etal. Organized endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositol-anchored protein microdomains.J Biol Chem. 1997,272: 7211-7222.
    [231] Mineo C, Ying YS, Chapline C, etal. Targeting of protein kinase Calpha to caveolae.J Cell Biol. 1998,141, 601-10.
    [232] Markus EJ, Petit TL, LeBoutillier JC. Synap tic structure changes during development and aging. Dev Brain Res. 1987. 35:239-248
    [233] 赵世刚,姜玉武,罗强等.脑源性神经营养因子与海马苔藓状纤维突触重组的关系.中华医学杂志,2001,81:283-287
    [234] Windholz E, Gschanes A, Windisch M, etal. Two peptidergic drugs increase the synaptophysin immunoreactivity in brains of 6-week-old rats. Histochem J. 2000, 32 (2): 79-84.
    
    [235] Shojo H, Kibayashi K. Changes in localization of synaptophysin following fluid percussion injury in the rat brain. Brain Res. 2006 Feb 21; [Epub ahead of print]
    
    [236] Ferrer I. Neurons and their dendrites in frontoteraporal dementia. Dement Geriatr Cogn Disord, 1999,10:55-58.
    
    [237] Yamagata Y, Obata K, Greengard P, etal. Increase in synapsin I phosphorylation implicates a presynaptic component in septal kindling. Neuroscience, 1995, 64(1):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700