氯胺酮合用盐酸戊乙奎醚对新生大鼠海马CA3区突触素表达及突触超微结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的观察氯胺酮合用盐酸戊乙奎醚对新生大鼠学习记忆、海马CA3区突触素表达以及突触超微结构的影响。
     方法7d龄Sprague-Dawly(SD)大鼠100只,体重18~20g。随机分为4组,即①氯胺酮组(K组,n=25),予以氯胺酮50mg/Kg腹腔注射;②盐酸戊乙奎醚组(P组,n=25),予以盐酸戊乙奎醚2mg/Kg腹腔注射;③氯胺酮+盐酸戊乙奎醚组(PK组,n=25),予以氯胺酮50mg/Kg+盐酸戊乙奎醚2mg/Kg联合腹腔注射。以上3组药物均以生理盐水稀释成0.1mL/g容积;④生理盐水组(NS组,n=25)以等量体积的生理盐水腹腔注射。于给药后24h,每组大鼠随机选取5只快速断头取脑后行免疫组化测定海马CA3区突触素的表达和透射电镜观察海马CA3区突触数密度和超微结构的变化;余下的大鼠分别于给药后14d(Ⅰ期)、21d(Ⅱ期)进行行为学测试(包括Morris水迷宫实验、旷场实验及新物体识别实验),并且在给药后14d(行为学实验前)、28d(行为学实验后),每组大鼠再分别随机选取5只快速断头取脑,行与给药后24h相同的形态学观察。
     结果①水迷宫实验:在Ⅰ期测试中,逃逸潜伏期PK组最长,NS组和P组最短,K组居中;搜索策略中,边缘式、趋向式、随机式策略的使用4组间两两比较均无显著性差异,PK组采用直线式搜索策略明显少于NS组;探索时间PK组最短,NS组和P组最长,K组居中。在Ⅱ期测试中,训练合格率以NS组和P组最高,PK组最低,K组居中。②旷场实验:4组大鼠在Ⅰ期、Ⅱ期测试中各项指标差异无显著意义。③新物体识别实验:Ⅰ期偏好指数从高到低依次为NS组和P组、K组、PK组;Ⅱ期偏好指数4组大鼠间差异无显著意义。④突触素表达:给药后24h以NS组和P组最高,K组次之、PK组最低;给药后14d,4组大鼠突触素表达均比给药后24h有所增加,其中NS组和P组的增长趋势较快,K组和PK组的增长趋势较慢;给药后28d,4组大鼠突触素表达差异无显著意义。⑤突触的数密度及超微结构:给药后24h,PK组、K组的突触的数密度较低,突触间隙模糊不清或宽窄不一,未见明显突触后致密物,NS组和P组突触的数密度较高,突触间隙规则,可见少量的突触后致密物;给药后14d,4组大鼠均出现突触的数密度增加以及突触间隙变窄、突触活性区长度增长和突触后致密物厚度增加,但变化趋势以NS组和P组较快,K组和PK组较慢;给药后28d,4组大鼠突触的数密度和突触结构参数间无明显差异。
     给药后各时间点上述各项观察指标变化在NS组与P组间比较均无显著性差异。
     结论氯胺酮合用盐酸戊乙奎醚比单用氯胺酮更能抑制新生7d龄SD大鼠(相当于人类的婴儿期)学习记忆能力的发育、突触素表达和突触的数密度的增加、以及突触结构参数的优化。但随着年龄的增长以及适当的学习训练,到出生后35d(给药后28d,相当于人类的青春期),给药组大鼠的学习记忆能力与正常组无明显差异。
Objective To observe the effects of using ketamine combined with penehyclidine hydrochloride in neonatal rats on developments of learning and memory、synaptophysin expression and synaptic ultrastructure in the region of hippocampal CA3.
     Methods One hundred seven-day-old Sprague-Dawly rats were randomly divided into four groups,( namely group K, group P, group PK, group NS)and intraperitoneally injected with 50mg/Kg of ketamine(group K),2mg/Kg of penehyclidine hydrochloride(group P), 50mg/Kg of ketamine plus 2mg/Kg of penehyclidine hydrochloride(group PK) or normal saline(group NS) respectively. The performances of every rat in neurological behavior (included with Open field,Novel objects recognition and Morris water maze) were tested at 14 days(phaseⅠ) and 21 days(phaseⅡ) after treatment.At the time points of 24-hr,14-day and 28-day after the medication, the immunhistochemical method was used for detecting the expression of synaptophysin in the region of hippocampal CA3, and synaptic numerical densities and synaptic ultrastructure also in the region of hippocampal CA3 were measured and observed under electron microscope.
     Results①Morris water maze tests at phase I, the escape latency in group K increased obviously compared to that in group NS or group P,and it increased further in group PK;oppositely,the preference index and the spatial probing time for previous platform in group K and group PK decreased remarkably compared to that in group NS or group P,especially for that in group PK.About searching strategies, there was no obvious difference for the indices of edge、trend、random strategies among four groups. The average percentage of straight strategy in group PK was significantly lower than that in group NS. Morris water maze tests at phaseⅡ, group PK performed worst, followed by group K, group NS and group P performed best.②There was no significant difference for the results in Open field tests among each group.③Novel object recognition tests at phase I, group NS and group P were the best, followed by group K, group PK performed worst. Results got in phaseⅡhad no significant difference among each group .④Compared with group NS and group P, the expression of synaptophysin in group K decreased significantly 24 hrs and 14 days after administration, and group PK was lower than group K. Up to 28 days after administration, the synaptophysin expression increased in all of the four groups and there were no significant differences between groups.⑤Compared with group NS and group P, group K showed significant decreases in synaptic numeric density、postsynaptic density thicknes and synaptic cleft 24 hrs and 14 days after administration, and group PK was lower than group K. Up to 28 days after administration, the synaptic ultrastructure optimized in all of the four groups and there were no significant differences between groups.
     There was no any significant difference for all indices at every time point mentioned above compared between group P and group NS. Conclusions The using of Ketamine together with penehyclidine hydrochloride or alone in neonatal rats both hindered the development of learning and memory、synaptophysin expression、synaptic numerical densities and the optimization of the synaptic ultrastructure in the region of hippocampal CA3, but the former did more significantly than the latter.However,the adverse effects mentioned aboved may diminished by learning、training and increasing of age, so that no difference was found for the adult rats in different groups.The administration of penehyclidine hydrochloride alone had no visibly disadvantageous effect on all the indices detected in this research.
引文
1.潘三强,宿宝贵,韩辉等.大鼠海马CA3区在学习记忆时突触可塑性的变化[J].解剖学杂志,2001,24(4):336-339.
    2. Oliveira AM, Hawk JD, Abel T, Havekes R. Post-training reversible inactivation of the hippocampus enhances novel object recognition memory[J]. Learn Mem,2010,17(3):155-160.
    3. Wan H, Mackay B, Iqbal H, Naskar S, Kemenes G.Delayed intrinsic activation of an NMDA-independent CaM-kinase II in a critical time window is necessary for late consolidation of an associative memory[J]. J Neurosci,2010,30(1):56-63.
    4. Gong N, Li Y, Cai GQ, et al. GABA transporter-1 activity modulates hippocampal theta oscillation and theta burst stimulation-induced long-term potentiation[J]. J Neurosci,2009 ,29(50):15836-15845.
    5. Dashniani MG, Beseliia GV, Maglakelidze GA, et al. Effects of the selective lesions of cholinergic septohippocampal neurons on different forms of memory and learning process[J]. Georgian Med News,2009,6(166):81-85.
    6. Mochizuki N, Takagi N, Kurokawa K,et al. Effect of NMDA receptor antagonist on proliferation of neurospheres from embryonic brain[J].Neurosci Lett, 2007,417(2):143-148.
    7. Akashi K, Kakizaki T, Kamiya H,et al. NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses[J]. J Neurosci,2009,29(35):10869-10882.
    8. Ni X, Martin-Caraballo M. Differential effect of glutamate receptor blockade on dendritic outgrowth in chicken lumbar motoneurons[J]. Neuropharmacology,2010, 58(3):593-604.
    9. Kaindl AM, Koppelstaetter A, Nebrich G, Stuwe J, Sifringer M, ZabelC,Klose J, Ikonomidou C. Brief alteration of NMDA or GABAA receptor- mediated neurotransmission has long term effects on the developing cerebral cortex[J].Mol Cell Proteomics,2008,7(12):2293-2310.
    10. Manabe T. Molecular mechanisms for memory formation[J]. Brain Nerve, 2008,60(7):707-715.
    11.张军.全麻药突触前作用机制的研究进展[J].《国外医学》麻醉学与复苏分册,2003,24(4):226-229.
    12. Jeon D, Song I, Guido W, Kim K, Kim E, Oh U, Shin HS. Ablation of Ca2+ channel beta3 subunit leads to enhanced N-methyl-D-aspartate receptor-dependent long term potentiation and improved long term memory. J Biol Chem[J]. 2008,283(18):12093-12101.
    13. Morgan CJ, Curran HV. Acute and chronic effects of ketamine upon human memory: a review[J]. Psychopharmacology (Berl),2006 ,188(4):408-424.
    14. Himmelseher S,Durieux ME.Revising a dogma:ketamine for patients with neurological injury[J]? Anesth Analg,2005,101:524-534.
    15.周赞宫,赵洋,宋建防.氯胺酮对全脑缺血大鼠的脑保护作用.临床麻醉学杂志,2008,24(8):683-685.
    16. Zou X, Patterson TA, Divine RL, Sadovova N, Zhang X, Hanig JP, Paule MG, Slikker W Jr, Wang C. Prolonged exposure to ketamine increases neurodegeneration in the developing monkey brain[J]. Int J Dev Neurosci,2009,27(7):727-731.
    17.李清,刘菊英,周青山.不同浓度氯胺酮对谷氨酸诱导大鼠脊髓背角神经元和星形胶质细胞凋亡的影响[J].中华麻醉学杂志,2005,25(7):515-518.
    18.武云飞,王志萍,江山,曾因明.多次氯胺酮麻醉对发育早期大鼠空间辨别学习记忆与海马CA1区突触长时程增强的影响[J].徐州医学院学报,2005,25(3):221-224.
    19.蒯建科,姚立农,于代华,杨永慧,张凤林,柴伟,孙绪德,彭德民.氯胺酮对新生大鼠神经功能和海马谷氨酸受体及转运体表达的影响[J].临床麻醉学杂志,2007,23(3):218-220.
    20.王海,戴泽平.氯胺酮对老年大鼠空间学习记忆功能和海马胆碱乙酰转移酶的影响[J].皖南医学院学报,2008,27(4):235-238.
    21. Seo SW, Suh MK, Chin J, Na DL. Mental confusion associated with scopolamine patch in elderly with mild cognitive impairment (MCI) [J]. Arch Gerontol Geriatr,2009,49(2):204-207.
    22. Morita T, Hitomi S, Saito S, Fujita T, Uchihashi Y, Kuribara H. Repeated ketamine administration produces up-regulation of muscarinic acetylcholine receptors in the forebrain,and reduces behavioral sensitivity to scopolamine in mice[J]. Psychopharmacology, 1995,117(4):396-402.
    23.章子贵,徐晓虹,吴馥梅.东莨菪碱所致记忆障碍的脑内突触机制[J].心理学报,1998,30(3):332-336.
    24.徐建民,俞海燕.不同剂量的东莨菪碱对大鼠学习记忆能力的影响[J].苏州大学学报(医学版),2006,26(1):53-54.
    25.朱广球,尤匡掌.麻醉前使用戊乙奎醚对老年人术后早期精神功能的影响[J].中国新药与临床杂志,2002,26(4):280-283.
    26.初春芹,桂波,陈玲.盐酸戊乙奎醚对老龄大鼠认知功能的影响[J].临床麻醉学杂志,2008,24(4):328-330.
    27.袁力勇,戴体俊,王霞民.咪达唑仑与盐酸戊乙奎醚对小鼠学习记忆获得和巩固及再现的影响[J].医药导报,2007,27(1):7-10.
    28.关新民.医学神经生物学纲要[M].北京:科学出版社,2003:52.
    29.李茜,蔡舒,顾嘉宾.盐酸戊乙奎醚合用氯胺酮对小鼠学习记忆的影响[J].徐州医学院学报,2007,27(9):606-608.
    30. Olney jw . New insights and new issues in developmental neurotoxicology[M].Neuro Toxicology,2002,23(6):659-668.
    31. Dobbing J, Sands J.Comparative aspects of the brain growth spurt [J] .Early Hum Dev,1979,7(1):79-83.
    32. Bruel-Jungerman E,Laroche S,Rampon C.New neurons in the dentate gyrus are involved in the expression of enhanced long-term memoryfollowing environmental enrichment[J] . Eur J Neurosci,2005,21(2):513-521.
    33.孙敬方.动物实验方法学[M].北京:人民卫生出版社,2001:356.
    34. Jiang ML, Han TZ, Pang W, Li L. Gender- and age-specific impairment of rat performance in the Morris water maze following prenatal exposure to an MRI magnetic field [J].Brain Res, 2004,995(1):140-144.
    35.洪良利,田东萍,苏敏.低硒对F344纯系大鼠子代神经行为发育和学习记忆能力的影响[J].卫生研究,2006,35(1):54-58.
    36.宿宝贵,潘三强.大鼠海马结构在空间辨别性学习记忆时突触素表达的变化[J].中国病理生理杂志,2000,16(5):421-423.
    37. Gomez-Pinilla F, So V, Kesslak JP. Spatial learning induces neurotrophin receptor and synapsin I in the hippocampus[J]. Brain Res,2001,904(1):13-19.
    38.南燕,买鸿宴,张琳,沈丽.大鼠海马生后早期突触定量研究.Chin J Neurosci,1999,15(3):227-232.
    39.张琳,买鸿宴,黄浩,刘贺飞,南燕,尚俊杰,廖洪恩,沈丽.突触数密度Disector测量法的建立与计算机辅助分析的实现.解剖学报,2000,31(1):8-12.
    40.王艳玲,孙若鹏,雷革非.癫痫发作对幼年大鼠齿状回神经发生影响的研究[J].中华儿科杂志,2004,42(8):621-624.
    41. He M, Qin X, Yang GY, Feng ZZ, Yang ZC. Relationship between learning and memory ability and expression of hippocampal N-methyl-D-aspartic acid (NMDA) in burn rats with depression[J]. Zhonghua Shao Shang Za Zhi,2009,25(1):46-48.
    42.陈鹏慧,阮怀珍,吴席贵.缺氧及谷氨酸对大鼠下丘脑神经元NMDA通道的影响[J].第三军医大学学报,2001,23(4):429-431.
    43. Fellini L, Florian C, Courtey J, Roullet P. Pharmacological intervention of hippocampal CA3 NMDA receptors impairs acquisition and long-term memory retrieval of spatial pattern completiontask[J].Learn Mem,2009,16(6):387-394.
    44.李花,刘旺华,刘建新.丹龙醒脑片对沙土鼠脑缺血再灌注保护作用的实验研究[J].中国中医药信息杂志,2003,10(5):29-31.
    45.韩太真,吴馥梅.学习与记忆的神经生物学[M].北京医科大学中国协和医科大学联合出版社,北京,1998.4.
    46. Van der Zee EA, Luiten PG.Muscarinic acetylcholine receptors in the hippocampus,neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol[J].1999,58(5):409-471.
    47. Matsuyama S, Matsumoto A, Enomoto T, et al.Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. Eur J Neurosci,2000,12 (10):3741-3747.
    48. Mochizuki N, Tagagi N, Kurokawa K, Kawai T, Besshoh S, Tanonaka K, Takeo S. Effect of NMDA receptor antagonist on proliferant of neurospheres from embryonic brain[J].Neuroscience Letters,2007,417(2):143-148.
    49. Karadottir R, Attwell D. Neurotransmitter receptors in the life and death of oligodendrocytes [J].Neuroscience,2007,145(4):1426-1438.
    50. Ikonomidou C,Bosch F,Miksa M,Bittigau P, Vockler J, Dikranian K, Tenkova TI, Stefovska V, Turski L, Olney JW.Blockade of NMDA receptots and apoptotic neurodegeneration in the developing brain[J].Science,1999,283(5398):70—74.
    51. Contestabile A.Roles of NMDA receptor activity and nitric oxide production in brain development[J].Brain Res Rev,2000,32(2-3):476-509.
    52. Hansen HH,Briem T,Dzietko M,et a1.Mechanisms leading to disseminated apoptosis following NMDA receptor blockade in the developing rat brain[J].Neurobiol Dis,2004,16(2):440-453.
    53. Komuro H , Rakic P . Modulation of neuronal migration by NMDAreceptors[J].Science,1993,260(5104):95-97.
    54. Sirear R.Developmental maturation of the N-methyl-aspartic acid receptor channel complex in postnatal rat brain[J] . Int J Dev Neurosci,2000,18(1):121-131.
    55. Wang C,Anastasio N,Popov V,et a1.Blockade of N-methyl-D-aspartate receptors by phencyclldine causes the loss of corticostriatal neurons[J].Neuroscience,2004,125(2):473-483.
    56. Harris LW,Sharp T,Gartlon J,et a1.Long-term behavioral,molecular and morphological effects of neonatal NMDA receptor antagonism[J].Eur J Neurosci,2003,18(6):1706—1710.
    57. Qi ZY, He XY, Li Q, Mo YX, Liang K. Neurobehavioral function of neonatal mice following excitotoxic brain damage[J]. Zhongguo Dang Dai Er Ke Za Zhi,2009,11(3):191-193.
    58.陈贵海,张李群,周江宁.年龄及性别对小鼠新物体再认能力和矿场行为的影响[J].中国临床康复,2005,9(4):107-109.
    59. Rodriguez VM, Carrizales L,Mendoza MS,et al.Effects of sodium arsenite exposure on development and behavior in the rat [J].Neurotoxicol Teratol,2003,24(6):743-750.
    60. Martinez G, Di Giacomo C, Camazza ML, et al. MAP-2,synaptophysin immunostaining in rat brain and behavioral modifications after cerebral postschemic reperfusion[J].Devel Neurosci,1997,19(6):457-464.
    61. Eastwood SL, Burnet PWJ, McDonald B, et al. Synaptophysin gene expression in human brain:a quantitative in situ hybridization and immunohistochemical study[J].Neurosci,1994,59(1):881-892.
    62.陈志斌,杨天德.氯胺酮对SD大鼠海马神经元细胞凋亡和突触素表达的影响[J].第三军医大学学报,2005,27(20):2042-2044.
    63. Wang C, Anastasio N, Popov V, et al. Blockade of N-methyl-D-aspartate receptors by phencyclidine causes the loss of corticostriatal neurons[J].Neuroscience,2004,125(2):473—483.
    64.文敏,周波,康朝胜等.大鼠海马CA3区突触素的增龄性变化[J].山东大学学报(医学版),2008,46(3):229-231.
    65.宋文秀,曹云涛,刘华庆.新生鼠脑缺血再灌注后海马CA1区突触素的表达及意义[J].第四军医大学学报,2004,25(16):1467-1469.
    66. Kleim JA, Jones TA, Schallert T. Motor enrichment and the induction of plasticity before or after brain injury[J]. Neurochem Res,2003,28 (11):1757-1769.
    67. Chen YC, Chen QS, Lei JL, Wang SL. Physical training modifies the age-related decrease of GAP-43 and synaptophysin in the hippocampal formation in C57BL/6J mouse[J].Brain Res,1998,806(2):238-245.
    68. Becher JT, Walker JA, Olton DS. Neuroanatomical bases of spatial memory[J].Brain Res,1980,200(2):307-320.
    69. 0’keefe J, Sqeakman A. Single unit aetivity in the rat hippocampus during a spatial memory task[J].Exp Brain Res,1987,68(1):1-8.
    70.宿宝贵,潘三强.大鼠海马结构在空间辨别性学习记忆时突触素表达的变化[J].中国病理生理杂志,2000,16(5):421-423.
    71.蒯建科,孙绪德,高昌俊.氯胺酮对新生大鼠认知功能和海马突触素表达的影响[J].医学研究生学报,2008,21(4):364-366.
    72. Coggeshall RE, Lekan HA. Methods for determining the numbers of cells and synapses:a case for more uniform standards of review[J].J Comp Neurol,1996,364(1):6-15.
    73. Coggeshall RE.A consideration of neural counting methods[J].TINS,1994,15(1):9-13.
    74. Mayhew TM, Gundersen HJG. If you assume,you can make an ass out of u and me:a decade of the disector for stereological counting of particles in 3D space[J].J Anat,1996,183(1):1.
    75.沈丽,张琳,南燕.体视学在突触超微结构定量研究中的应用[J].中国体视学与图像分析杂志,1998,3(1):37-41.
    76.张琳,买鸿宴,南燕等.Disector法测量突触的数密度[J].神经解剖学杂志,1998,14(4):411-414.
    77.罗兰,陆汉新,吴馥梅等.脱甘氨酰胺精氨酸加压素引起小鼠脑内突触结构可塑性变化的定量观察[J].解剖学报,1991,22(1):93-97.
    78. Leite JP, Neder L, Arisi GM, et al. Plasticity, synaptic strength,and epilepsy: what can we learn from ultrastructural data[J]? Epilepsia,2005,46 (Suppl5):134-141.
    79. Toni N, Buchs PA, Nikonenko I, et al. Remodelling of synaptic membranes after induction of long-term potentiation[J].J Neurosci,2001,21: 6245-6251.
    80. Kornau H C, Schenker L T, Kennedy M B ,et al. Domain interaction between NMDA receptor subunits and the post-synaptic density protein PSD-95[J]. Science,1995,269(5231):1737-1740.
    81. Nusser Z, Mulvihill E, Streit P ,et al. Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience,1994,61(3): 421-427.
    [1] Martin SJ, Morris RG. Cortical plasticity : it’s all the range[J]. Curr Biol,2001,11(2):57-59.
    [2] Sato K, Morimoto K, Suemaru, et al. Increased synapsin I immunoreactivity during long-term potentiation in rat hippocampus[J]. Brain Res,2000,872(1-2):219-222.
    [3]宿宝贵,潘三强,韩辉,等.大鼠海马结构在空间辨别性学习记忆时突触素表达的变化[J].中国病理生理杂志,2000,16(5):421-423.
    [4]廖敏,刘能保,张敏海,等.慢性捆绑应激致大鼠学习记忆受损及海马神经元突触素和突触后致密物95表达的变化[J].华中科技大学学报(医学版),2003,32(4):367-370.
    [5] Honer WG, Falkai P, Chen C,et al. Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mentaillness[J].Neuroscience,1999,91:1245-1255.
    [6] Mori N, Morii H. SGG10-related neuronal growth-associated proteins in neural development, plasticity, degeneration and aging[J]. J Neurosci Res,2002,70(3):264-273.
    [7] Muller D, Djebbara-Hannas Z, Jourdain P, et al. Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus[J].Neurobiology,2000,97:4315-4320.
    [8] Bu J, Bruckner SR, Sengoku T, et al. Glutamate regulates caveolin expression in rat hippocampal heurons[J]. J Neurosci Res,2003,72(2):185-190.
    [9] Gaudreault SB, Blain JF, Gratton JP, et al. A role for caveolin-1 in post-injury reactive neuronal plasticity[J]. J Neurochem,2005,92(4):831-839.
    [10] Cohen A W, Hnasko R, Schubert W, et al. Role of caveolae and caveolins in health and disease[J]. Physiol Rev,2004,84(4):1341-1379.
    [11] Maffei A, Preatori F, Shibuki K, et al. NO enhances presynaptic currents during cerebellar mossy fiber-granule cell LTP[J]. Neurophysiol,2003,90(4):2478-2483.
    [12] Dere E, Frisch C, Souza-Silva MA, et al. Unaltered radialmaze performance and brain acetylcholine of the endothelial nitricoxide synthase knoickout mouse[J]. Neuroscience, 2001, 107(4):561-570.
    [13] Puzzo D, Vitolo O, Trinchese F, et al. Amyloid-βpeptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity[J]. J Neurosci,2005,25(29):6887-6898.
    [14] Chen C, Magee JC,Marcheselli V,et al.Attenuated LTP in hippocampal dentate gyrus neurons of mice deficient in the PAF receptor[J]. J Neurophysiol,2001,85:384-390.
    [15] Gardoni F, Schrama LH, Kamal A, et al. Hippocampal synaptic plasticity involves competition between Ca2+/calmodulin-dependent protein kinase II and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor[J]. J Neuro-sci, 2001, 21:1501-1509.
    [16] Williams JM, Guevremont D, Kennard JT, et al. Long-term regulation of N-methyl-D-aspartate receptor subunits and associated synaptic proteins following hippocampal synaptic plasticity[J]. Neuro-science,2003,118: 1003-1013.
    [17] Colbran R J, Brown AM. Calcium /calmodulin-dependent protein kinase II and synaptic plasticity[J]. CurrOpin Neurobio,2004,14(3): 318-327.
    [18] PrattK G, WattA J, Griffith L C, et a.l Activity-dependent remodeling of presynaptic inputsby postsynaptic expression ofactivated CaMKII[J].J Neuron, 2003, 39(2): 269-281.
    [19] Kawakami S, Muramoto K, Ichikaua M, et al. Localization of MAP1B in the postsynaptic densities of the rat cerebral cortex[J]. Cell MolNeurobiol,2003,23(6):887-894.
    [20] Gonzalez-Billault C, Demandt E, Wandosell F, et al. Perinatal lethality of MAPIB deficient mice expressing alternative isoforms of the protein at low levels[J]. Mol Cell Neurosci,2000,16(4):408-421.
    [21] Mori K, Togashi H, Ueno KI, et al. Aminoguanidine prevented the impairment of learning behavior and hippocampal long-term potentiation following transient cerebral ischemia[J]. Behav Brain Res,2001,120: 159-168.
    [22]董军,陆大祥,颜壳,等.血小板激活因子对大鼠海马脑片CA1区LTP的作用[J].中国应用生理学杂志,2005,21(2):133-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700