应用气相色谱—质谱测定茶叶中主要游离氨基酸及~(15)N丰度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基酸是生物体代谢过程中起重要作用的物质,在许多生理机能方面都起着不可替代的作用。茶氨酸是茶叶中所含有的一种特殊非蛋白质的氨基酸,除此之外,茶叶中主要的游离氨基酸还有谷氨酸、谷氨酰胺、丙氨酸、丝氨酸、天冬氨酸等。并且氨基酸是构成茶叶滋味的重要组成部分,其含量的多少会直接影响茶叶的品质。对于茶叶氨基酸检测已有大量研究,目前主要以仪器分析为主,而应用气相色谱-质谱方法检测茶叶中游离氨基酸尚未见报道。本文研究主要分为两部分:第一部分是应用衍生试剂N-(特丁基二甲基硅烷)-N-甲基三氟乙酰胺(≥95%;MTBSTFA)含叔丁基二甲基氯硅烷(1%;TBDMSCl)衍生、气相色谱和气相质谱联用仪测定茶叶中的游离氨基酸方法。比较了衍生温度、时间、酸度及辅助试剂等对衍生效率的影响,提出以正缬氨酸为内标,乙腈为辅助衍生试剂,衍生温度110℃,衍生时间30 min,可以定量检测茶叶中主要的游离氨基酸。茶氨酸产生三个衍生峰,经质谱鉴定第一个峰(按出峰时间)为环状衍生峰,第二个峰为一个N端没有衍生,第三个峰为完全衍生峰。各氨基酸在10~1000nmol范围内线性良好(相关系数均大于0.99),对茶叶样品测定结果与氨基酸自动分析仪基本一致,添加回收表明茶氨酸、谷氨酸、谷氨酰胺、丝氨酸、天冬氨酸等的回收率均85%~108%。结果表明,本文建立的GC-MS及GC-FID方法操作比较简便、准确,重现性好,适用于茶叶中主要游离氨基酸的分离检测。
     第二部分是利用气相及气相色谱-质谱联用(GC-MS)检测稳定性同位素15N标记不同氮源吸收的茶叶中主要游离氨基酸(茶氨酸、丙氨酸、谷氨酸、谷氨酰胺等),初步建立了检测方法。稳定同位素示踪技术应用较广,但是利用稳定同位素研究茶叶中主要游离氨基酸特别是茶氨酸合成与代谢方面尚无报道。应用稳定同位素方法比常规的氮代谢平衡技术以及单纯测定体内氨基酸谱的方法更优越,可以动态的观察外源氮进入蛋白质、氨基酸代谢过程,深入了解它们的代谢动态变化。通过MTBSTFA衍生后M-57特征离子峰分析,用纯度>99%的丙氨酸、谷氨酸及谷氨酰胺与普通氨基酸进行0、20%、40%、60%、80%、100%比例混合,结果符合检测要求。而实验中检测标记的茶氨酸情况比较复杂,共有十种情况,分为标记一个氮和标记两个氮两大类,并分别进行了分析。同时选取温室吸收48h后的根与茎叶与对照进行比较,茶氨酸的标记不明显,而谷氨酸、谷氨酰胺及丙氨酸等都有不同程度的差异。此方法的建立为代谢吸收实验提供研究基础。
Free amino acids are important metabolites and contributor to tea quality. L-Theanine is a particular non-protein amion acid in tea,in addition to this, the main free amino acids in tea include Glu, Gln, Ala, Ser, Asp and so on. And amin acids have close relation to flavor of tea, the content of amino acids influence the quality of tea directly. As the methods are improved rapidly in recent years, and currently we primarily use instrument for the determination and identification of amino acids. But there is no report that use Gas Chromatography-Mass Spectrometry(GC-MS) determination of main free amino acids in tea. The dissertation consists of two parts : Part one is research and established the mothed about Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Flame Ionization Detector (GC-FID) in determination of main free amino acids in tea. The derivative reagent used in this study was N-tertbutyldimethylsily N-methytrifluroacetemide (MTBSTFA,≥95%) with tert-butyldimethylsilyl chloride (TBDMSCl, 1%). Conditions of reagent, temperature, time, and acidity for derivatization were optimized to give high efficiency. The optimized procedure was as follows: dried amino acids standards or tea extract (water) under N2 gas were redissolved in acetonitrile (ACN) and derivatized with MTBSTFA (1:1 to ACN) at 110℃for 30 min. Analysis of pure amino acid standards showed good linearity (r2≥0.99) from 10 to 1000 nmol. Three peaks were detected for theanine with GC and MS data indicated that only the third peak was the completely derivatized product while the second peak was a product of one N-end derivatization. Free amino acids in tea sample were quantified by the developed methods and the results were comparable to those analyzed by Amino Acids Autoanalyzer. Recoveries of theanine, alanine, serine, aspartate, glutamate, and glutamine were 85%-108% range for spiked tea extract.
     Part two is about use Gas Chromatography-Mass Spectrometry (GC-MS) analysis the main free amino acids in tea (Thea, Ala, Glu, Gln )which absorbed different nitrogen source labelled stable isotope 15N. The application of stable isotopic tracer technology is universally, but the study of isotopomer distributions in tea has not been reported. GC-MS is a rapid method that provides rich information on isotopomer on isotopomer distributions for metabolic flux analysis.After derivatized with MTBSTFA , analysed the characteristic ion peak M-57, mass spectroscopy gave rise to characteristic spectra for all analysed compounds and established the detection method preliminary. Used Amino acid standards enriched with different proportions (0, 20, 40, 60, 80 and 100%) of universally (U) 15N-labelled Ala, Glu, Gln.(amion acids containing > 98% 15N at all nitrogen positions), were used to calibrate the method for isotopic enrichment of the individual amino acids. The tea plant were placed in a greenhouse ,and were supplied with 15NH4+ for 48h. A comparative analysis between control and 48h show that there are difference in labelled amino acids (theanine not very obviously). The developed GC-MS method provided a potential methodology to investigate nitrogen metabolism in tea plants by quantifying the abundance of 15N labeled amino acids.
引文
[1]理克特G.植物代谢-主要代谢的生理和生物化学[M].北京:科学出版社, 1985.
    [2]韩海华,周斌星.茶氨酸研究及其应用. [J].蚕桑茶叶通讯. 2008(4): 30-32.
    [3]倪君,须海荣.茶叶氨基酸检测方法的研究进展[J].茶叶, 2007, 33(22): 63-66.
    [4] Sasaoka K., Kilo M. Studies on the biosynthesis of theanine in tea seedlings synthesis of theanine by the homogenate of tea seedlings [J]. Agric. Biol. Chem, 1963, 27(6): 467-468.
    [5] Sasaoka K., Kilo M., Onishi Y. Some properties of the theanine synthesizing enzyme in tea seedlings [J]. Agric. Biol. Chem, 1965, 29(11): 984-988.
    [6] Roach M C, Harmony M D. Determination of amino acids at subfemtomole levels by high-performance liquid chromatography with laser-induced fluorescence detection. [J]. Anal. Chem, 1987, 59(3): 411-415.
    [7]朱旗,施兆鹏,童京汉等. HPLC检测分析速溶绿茶游离氨基酸[J].茶叶科学, 2001, 21(2):134-136.
    [8]宛晓春.茶叶生物化学[M].北京:中国农业出版社, 2003: 32- 33.
    [9]刘京萍,李金,葛兴铜、铁、锰半胧氨酸配合物的合成及其超氧化物歧化酶活性[M].化学世界,2004,(5): 235-238.
    [10] Khan M.F, Ismail, Norhayati Yusof, Ahmad Pauzi M, Khaa G.M.Role of copper and its complexes in Biological systems [J]. Inorganic Chemistry Transaction, 1998, 14(1): 29-39.
    [11]杜荣茂,向庆宁.茶氨酸的研究现状及发展前景[J].中国食品添加剂. 2003, 1: 13-16.
    [12] Silva A. M., Merce A, et al. Potentiometric and spectroscopic of mixed copper(Ⅱ)complexes with amino acids and either adenosine 50 triphosphate or phosphocreatine. [J].Polyhedron 25 (2006) 1319-1326.
    [13]韩志萍.镍(Ⅱ)-酪氨酸配合物的极谱研究与应用[J],曲阜师范大学学报,2005,31(2):93-95.
    [14] Ryuji Ando, Hashira Inden,et al. Spectroscopic characterization of amino acid and amino acid ester-Schiff-base complexes of oxovanadium and their catalysis in sulfide oxidation[J]. Inorganica Chimica Acta 2004(357): 1337-1344.
    [15]王辉.稀土与氨基酸配合物的研究价值及其合成方法[J].稀有金属,2002,26(2):156-159.
    [16] Takehiko T., Jun T., et al. Time-dependent Changes of Amino Acids in the Serum, Liver, Brain and Rats Administered with Theanine[J]. Biosci. Biotechol. Biochem. 1999, 63(4): 615-618.
    [17] Yokogoshi H., et al. Theanine-inducedreduction of brain serotonin concentration in rats [J]. Biosci. Biotech Biochem. 1998. 62(4): 816-817.
    [18]林雪玲,李炎等.茶氨酸对小鼠学习记忆能力的影响[J].食品科学. 2004, 25(5): 145-147.
    [19]木村良平,栗田正子,村田敏郎. [J].药学杂志. 1975, 95: 892-896.
    [20]凌关庭.可供开发食品添加剂(Ⅷ):L-茶氨酸及其生理功能[J].粮食与油脂. 2003,5: 46-49.
    [21] Yokogoshi H, Kobayashi M, et al. Effect of theanine,γ-glutamylethylamide, on brain monoamines and striatal dopamine release in conscious rats. [J].Neurochem. Res. 1998, 23(5): 667-673.
    [22] Yokogoshi H, et al. Hypotensive effect of gamma-glutamyl methylmide in spontaneously hypertensive rats. [J]. Life Sci. 1998. 62(12): 1065-1068.
    [23] Kakuda T., Nozawa A ., et al. Inhibiting effects of theanine on caffeine stimulation evaluated by EEG in the rat. [J].Biosci.Biotech. Biochem., 2000, 64(2): 287-293.
    [24]大久保勉.茶の機能,村松敬一郎等编,东京:学会出版.センター, 2002: 318-322.
    [25] Sadzuka Y., Sugiyama T., et al. The effect of theanine, as a novel biochemical modulator, on the antitumor activity of adriamycin [J]. Cancer Lett. 1996, 105(2): 203-209.
    [26]王小雪等.茶氨酸的抗疲劳作用研究[J].中国公共卫生. 2002, 18(3):315-317.
    [27]吕毅等.茶氨酸的生理作用及合成[J].茶叶科学. 2003, 23(1):1-5.
    [28] Yokozawa T., Dong E.. Influence of green tea and its three major components upon low-density lipoprotein oxidation.Exp. Toxicol. Pathol.,1997, 49(5): 329-335
    [29]剂荣森,杨虹琦,黄郁维等.植物中游离氨基酸的提取、纯化及分析方法.河南科技大学掌握: [J].自然科学版. 2007, 28(3): 76-79.
    [30]赵和涛.茶氨酸生化特性及由其辨别真假茶化学方法[J].热带作物科技, 1994( 3) : 44- 47
    [31]何丽一.平面色谱方法及应用:色谱技术丛书[M]. 2版.北京:化学工业出版社, 2005..
    [32]郑许松,陈法军,陈建明等.茭白孕茭前后植株中叶片和叶鞘器官中游离氨基酸和总糖含量的变化[J].科技通报,2006,22(4):467-470.
    [33]张金林,陈托兄,王锁民.阿拉善荒漠区几种抗旱植物游离氨基酸和游离脯氨酸的分布特征[J].中国沙漠,2004,24(4):493-499
    [34] Macchi F.D., Shen F. J., Keck R. G., Harris R. J. et al Methods in Molecular Biology, Amino Acid Analysis Protocols. [J].Humana Press, 2001, 159: 9~30.
    [35]于泓,牟世芬.氨基酸分析方法的研究进展[J].分析化学, 2005, 33(3): 398-404
    [36] Yan Wang,Xue-Jun Kang ,Wei-Hong Ge et al. Simple, Rapid, and Accurate RP-HPLC Method for Determination of Cystine in Human Urine after Derivatization with Dansyl Chloride. [J].Chromatographa. 2007(9): 527-532.
    [37]梁冬生,常碧影.柱前衍生高效液相色谱法测定氨基酸. [J].色谱. 1993, 11(3)140-143.
    [38]曲冬梅,弓爱君,高鹤永等.反相高效液相色谱法直接检测芳香族氨基酸. [J].氨基酸和生物资源. 2004, 26(1): 71-73.
    [39]万丹晶,陈妙芬,翟咏虹.用HPLC法和氨基酸分析仪测定多维氨基酸片中18种氨基酸. [J].药学服务与研究. 2006, 6(3): 212-214.
    [40]李廷轩,马国瑞,张锡洲等.籽粒苋不同富钾基因型根系分泌物中有机酸和氨基酸的变化特点. [J].植物营养与肥料学报2005,11(5): 647-65.
    [41]宋志峰,王丽,纪锋等.柱前在线衍生-反相高效液相色谱内标法快速测定饲料中氨基酸.[J].分析化学,2007,35(1):25-30.
    [42]孙莲,张煊,王岩等.柱前衍生化RP-HPLC测定芜菁子中的12种游离氨基酸. [J].华西药学杂志. 2008, 23(4): 490-491.
    [43] Jo¨rgen Persson , Torgny Na¨sholm. A GC-MS method for determination of amino acid uptake by plants. [J] Physiologia Plantarum. 2001(113): 352-358.
    [44] Meier-Augenstein W. Applied gas chromatography coupled to isotope ratio mass spectrometry. [J] Journal of Chromatography A, 842 (1999) 351–371.
    [45] Brune C., Jenckel L., Kronenberger K., [J].Anal.Chem.1963,197:42.
    [46] Simpson I.A., Bol R., Dockrill S.J., Peteke K.J., Evershed R.P., Archaeol. Prospect. 4 (1997) 147–152.
    [47] Keith, L. H., Ed,Ann Arbor. Identification and Analysis of Organic Pollutants in Water; [J] Ann Arbor Science. 1976; ppiii-v.
    [48] Hunt, D. F.; Shabanowitz, J.; Harvey, T. M.; Coates, M. [J] Anal.Chem. 1985, 57, 525-537.
    [49] Michael Dauner,Uwe Sauer. GC-MS Analysis of Amino Acids Rapidly Provides Rich Information for Isotopomer Balancing [J] Biotechnol. Prog. 2000, 16, 6426?49.
    [50]齐文启,孙宗光.环境荷尔蒙物质及其检测与分析. [J].上海环境科学, 1999, 18(12): 531-534
    [51]周家斌,王铁冠,黄云碧等.北京部分地区大气PM10中多环芳烃的季节性变化. [J].中国环境科学, 2005,25(1): 115-119
    [52] Nasr Yousef M.J. Omar, M.Radzi Bin Abas,Kamal Aziz Ketuly.Concentrations of PAHs in atmospheric particles (PM-10) and roadside soil particles collected in Kuala Lumpur, Malaysia. [J] Atmospheric Environment 2002,36: 247-254.
    [53] Valery Isidorov,Maria Jdanova, Volatile organic compounds from leaves litter. [J].Chemosphere, 2002, 48: 975-979.
    [54]杨梅,马永安,林忠胜等.环境水体中三嗪和酰胺类除草剂的固相萃取/气相色谱-质谱测定. [J].分析测试学报. 2008, 27(1): 38-41.
    [55]李林,宋立荣,甘南琴等,顶空固相微萃取-气象色谱-质谱测定水中异味化合物. [J].分析化学, 2005,33(8): 1058-1062.
    [56] Alberto Zafra,Monsalud del Olmo,Beatriz Suarez et al., Gas chromatographic-mass spectrometric method for the determination of bisphenol A and its chlorinated derivatives in urban waster. [J].Water Research, 2003,37: 735-742.
    [57]李英,王楼明,张琛等,固相微萃取-气相色谱-质谱法测定水中双酚A. [J].质谱学报, 2005,26(1): 19-22.
    [58] Paul L.Wood,M.Amin Khan Neurochemical analysis of amino acids, polyamines and carboxylic acids: GC-MS quantization of tBDMS derivatives using ammonia positive chemical ionization. [J]. Chromatogr B. 2006, 831: 313-319.
    [59] Christopher M. Reddy, James G Quinn, GC-MS analysis of total petroleum hydrocarbons and polycyclic aromatic hydrocarbons in seawater samples after the North Cape Oil Spill. [J].Marine Pollution Bulletin, 1999,38(2): 126-135.
    [60] Williams C.L., Preston T., Hossack M., Slater C., McColl E.L., FEMS Immunol. Med. Microb. 13 (1996) 87–94.
    [61] Shunji Hashimoto, Masatoshi Morita, Analysis of PCDDs, PCDFs, planar and other PCBs inseaweed from Japanese coast. [J].Chemosphere, 1995,31(8): 3887-3897.
    [62]王京平,刘斌,徐民等.应用固相萃取-气相色谱-质谱测定水体中邻、间、对-硝基氯苯. [J]理化检验-化学分析,2008, 44(1): 83-85.
    [63] Letizia Davi M., Franco Gnudi. Phenolic compouds in surface water. [J]. Wat. Res.1999,33(4): 3213-3219.
    [64] Chen X. B., Calder A. G., Prasitkusol P., Kyle D. J. Jayasuriya. Determination of 15N isotopic enrichment and concentrations of allantoin and uric acid in urine by gas chromatography/mass spectrometry. [J]. J.Mass Spectrom, 1998, 33: 130-137.
    [65] Villas-Boas SG., Delicado DG., Akesson M., et al. Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography–mass spectrometry. [J] Anal Biochem. 2003, 322: 134-138.
    [66]李春雷,郝永梅,盛国英等,居室空气中PM2.5上PAHs的定量分析. [J].复旦学报(自然科学版), 2005,44(1): 144-148.
    [67] Villas-Boas S.G., Moxley J.F., Akesson M., et al. High-throughput metabolic,state analysis: the missing link in integrated functional genomics of yeasts. [J] Biochem. 2005, 388: 669-677.
    [68] Koek M.M., Muilwijk B., Van derwerf MJ., et al. Microbial metabolomics with gas chromatography/mass spectrometry. [J]Anal Chem. 2006, 78: 1272-1281.
    [69] Roelco J.. Kleijn, Jan-Maarten A. Geertman, Metabolic flux analysis of aglycerol - overproducing Saccharomyces cerevisiae strain based on GC-MS, LC-MS and NMR-derived 13C-labelling data. Fems Yeast Res 2007(7 ): 216–231.
    [70] J.J.Nam,B.H.Song, K.C.Eom et al, Distribution of polycyclic aromatic hydrocarbons in agricultural soils in South Korea. [J] Chemosphere, 2003,50: 1281-1289.
    [71] Li Hou, Hian Kee Lee, Determination of pesticides in soil by liquid-phase microextraction and gas chromatography-mass spectrometry. [J] Journal of Chromatography A, 2004,1038: 37-42.
    [72] Aderbal F. Magalhaes, C. Celira. Santos. et al. Detection of Polyhydroxyalkaloids in Lonchocarpus Extracts by GC-MS of Acetylated Derivatives. [J] Phytochem. Anal. 2002(13): 215–221.
    [73] Christman R. F., Liao W. T., Millington D. S., Johnson J. D.. In Advances in the Identification & Analysis of Organic Pollutantsin Water; Keith, L. H., Ed.; Ann Arbor Science: Ann Arbor,MI, 1981(2): 979-999.
    [74] Chen X. B., Calder A. G., Prasitkusol P., Kyle D. J. Jayasuriy M. C. N.. Determination of 15N Isotopic Enrichment and Concentrations of Allantoin and Uric Acid in Urine by Gas Chromatography-Mass Spectrometry. [J] Journal Of Mass Specterometry.1998(33) : 130-137.
    [75] Godber I.M.I. , Rarsons R.. Translocation of amino acids from stem nodules of Sesbania rostrata demonstrated by GC-MS in planta 15N isotope dilution. [J] Plant. Cell and Environment. 1998(21):1089–1099.
    [76] Calder A. G., Garden K. E., Anderson S. E., Lobley G. E. Quantitation of Blood and Plasma Amino Acids Using Isotope Dilution Electron Impact Gas Chromatography/Mass Spectrometrywith U-13C Amino Acids as Internal Standards Rapid Commun. [J] Mass Spectrom. 1999(13): 2080–2083 .
    [77]朱昱等.特丁基二甲基硅烷衍生化-气相色谱-质谱联用法分析尿中硝西泮的代谢物-氨基硝西泮. [J]分析化学研究简报. 2003.7.(7) :850~852.
    [78]李华等.爱格丽白葡萄酒香气成分的GC/MS分析. [J]中国农业科学2005,38(6):1250-1254.
    [79] Chunhui Deng, XinYing Yin. Development of microwave-assisted deriveatization followed by gas chromatogramphy/mass spectrometry for fast determination of amino acids in neonatal blood samples. Rapid Commun. [J] Mass Spectrom. 2005; 19: 2227–2234.
    [80] Gonzalez-Vila F.J, Verdejo T.. del Rio et al , Accumulation of hydrophobic compounds in the soil lipidic and humic fractions as result of a long term land treatment with olive oil mill effluents(Alpechin). [J] Chemosphere, 1995,31(7): 3681-3686.
    [81] Igor A.. Revelsky, S. Yuri.Yashin. Electron ionization and atmospheric pressure photochemical ionization in gas chromatography-mass spectrometry analysis of amino acids. [J] Mass Spectrom, 2003, 9: 497-507.
    [82] Buch A., Glavin D. P. A new extraction technique for in situ analyses of amino and carboxylic acids on Mars by gas chromatography mass spectrometry.[J] . Planet Space Sci, 2006, 54: 1592-1599.
    [83] Ute Roessner-Tunali, JunLi Liu. Kinetics of labelling of organic and amino acids in potato tubers by gas chromatography-mass spectrometry following incubation in 13C labelled isotopes. [J] The Plant Journal . 2004, 39: 668–679.
    [84]金海如.丛枝菌根丝精氨酸双向运转并分解为鸟氨酸. [J]中国科学, 2008, (11): 1048-1055.
    [85] Hannelore Kaspar, Katja Dettmer et al. Automated GC-MS analysis of free amino acids in biological fluids. Journal of Chromatography B, 2008,870 : 222–232.
    [86]何红波,张威等,测定土壤氨基糖和氨基酸手性异构体中氮同位素比值的气相色谱-质谱方法. [J]土壤学报, 2009, (2): 290-298.
    [87] Taylor J., King R.D., Altmann T., Fiehn O.. Application of metabolomics to plant genotype discrimination using statistics and machine learning. [J] Bioinformatics, 2002, 18: 241~248.
    [88] Roessner U., Wagner C., Kopka J., Trethewey R.N., et al . Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. [J] The Plant Journal, 2000, 23:131~142.
    [89] Baker A.. Dodd C. D., Parsons R.. Identification of amino compounds synthesized and translocated in symbiotic Parasponia. Plant. [J] Cell and Environment. 1996(19): 1249-1260.
    [90] P. Millard, R. Wendler, A. Hepburn and A. Smith. Variations in the amino acid composition of xylem sap of Betula pendula Roth. Trees dur to remobilization of stored N in the spring. Plant. [J] Cell and Environment, 1998, 21: 715~722.
    [91] Grassi G., Millard P., Wendler R., Minotta G. et al. Measurement of xylem sap amino acid concentrations in conjunction with whole tree transpiration estimates spring N remobilization by cherry (Prunus avium L.) trees. [J] Plant, Cell and Environment, 2002, 25: 1689~1699.
    [92] Nasholm T., Ekblad A ., Nordin A ., Giesler R, Hogberg M., Hogberg P.. Boreal forest plants take up organic nitrogen. [J] Nature, 1998, 392: 914~916.
    [93] Ute Roessner-Tunali, JunLi Liu. Kinetics of labelling of organic and amino acids in potato tubers by gas chromatography-mass spectrometry following incubation in 13C labelled isotopes. [J] The Plant Journal. 2004, 39:668-679.
    [94] Godeber I.M., Parsons R.. Translocation of amino acids from stem nodules of Sesbania rostrata demonstrated by GC-MS in planta 15N isotope dilution. [J] Plant, Cell and Environment (1998) 21, 1089–1099.
    [95] Jin H., Pfeffer P. E., Douds D. D.. et al. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. [J] New Phytologist. 2005 (168): 687-696.
    [96]苏波,韩兴国,黄建辉15N自然丰度法在生态系统氮素循环研究中的应用. [J]生态学报. 1999,19(3): 408-416.
    [97]徐春英,梅旭荣等GC-C-IRMS分析氨基酸碳氮同位素的衍生化方法及其展望. [J]中国农学通报2008,24(4): 151-156.
    [98] NaudéS M.. The isotopes of nitrogen, mass 15, and oxygen, mass 18 and 17, and their abundances. Phys Rev, 1930, 36: 333~346.
    [99] Urey H C. The thermodynamic properties of isotopic substances. Chem Soc, 1947, 1: 562~58.
    [100] Schoemnheimer R., Rittenberg D., Foster G. L., et al. The application of the nitrogen isotope for the study of protein metabolism. [J] Science, 1938, 88: 599~60.
    [101] Vickery H. B., Pucher G. W ., Schoonheimer R., et al. The metabolism of nitrogen in the leaves of the buckwheat plant. J Biol Chem, 1939, 129:791~79.
    [102] Norman A. G., Werksman C. H. The use of the nitrogen isotope 15N in determining nitrogen recovery from plant materials decomposing in soil. Agron J, 1943, 35: 1023~102.
    [103]周桦,宇万太,沈善敏.稳定性核素15N在农业研究中的应用.核农学报. 2008,22(4):544~54.
    [104] William E. M. ,Carmozina de Araujo M ,Renato C , et al. Contributions of C3 and C4 plants to higher trophic levels in an Amazonian savanna [J]. Oecologia ,1999,119 :91~96.
    [105]易现峰,张晓爱.稳定同位素技术在生态学上的应用. [J]生态学杂志,2005,24(3):306~314.
    [106] Schoenheimer R., Rattner S., Rittenberg D.. Studies in protein metabolism: the metabolic activity of body proteins investigated with L(-)leucine containing two isotopes[M]. J Biol Chem,1939,130: 703-732.
    [107] Cabana G., Rasmussen J.B.. Comparison of aquatic food chains using nitrogen isotopes. [J] Proceedingsof the National Academy of Sciences of the United States of America, 1996, 93: 10844-10847.
    [108] Vander Zanden M.J., Fetzer W.W.. Global patterns of ap\quatic food chain length. Oikos, 2007, 116: 1378-1388.
    [109] Smith K. F. , Sharpz Z. D., Brown J. H.. Isotopic composition of carbon and oxygen indesert fauna :Investigations into the effects of diet , physiology , and seasonality [J]. J.Arid Environ, 2002,52:419~430.
    [110]徐军,张敏,谢平.稳定同位素基准的可变性及对营养级评价的影响. [J] Lake Sci.(湖泊科学), 2010, 22(1): 8-20.
    [111]蔡德陵,张淑芳,张经.稳定碳氮、同位素在生态系统研究中的应用. [J]青岛海洋大学学报,2002,32(2):287~295.
    [112] Tang H.R., Wang Y.L.. Metabonomics: a Revolution in Progress. [J] Progress in Biochemistry and Biophysics, 2006,33 (5): 401~417.
    [113] Yoneyama T., Ito O , Engelaar W. M H G. Uptake, metabolism and distribution of nitrogen in crop plants traced by enriched and natural 15N: Progress over the last 30 years. Phytochemistry Reviews,2003, 2:121~132.
    [114] Phillips D A., Fox T C., King M D., Bhuvaneswari T V,., et al.Teuber L R. Microbial products trigger amino acid exudation from plant roots. Plant Physiology, 2004, 136: 2887~2894.
    [115] Daubresse M.C., Reisdorf-Cren M., K. Pageau, et al. Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in Tobacco. Plant Physiol., 2006, 140: 444~456.
    [116] Holdensen L., Hauggaard-Nielsen H., Jensen E S.. Short-range spatial variability of soilδ15N natural abundance-effects on symbiotic N2-fixation estimates in pea. [J] Plant Soil, 2007, 298: 265~272.
    [117] Stein.T.P. Metabolism of Nonessential 15N-Labeled Amino Acids and the Measurement of Human Whole-Body Protein Synthesis Rates. J. Nutr. 1986(116): 1651-1659.
    [118] Bol R., Ostle N J., Chenu C C ., Petzke K J., et al. Long term changes in the distribution andδ15N values of individual soil amino acids in the absences of plant and fertilizer inputs. [J] Isotopes of Environ. Health Stud, 2004, 40: 243~256.
    [119] Petzke K., Boeing H., Klaus S., Metges C C.. Carbon and nitrogen stable isotopic composition of hair protein and amino acids can be used as biomarkers for animal-derived dietary protein intake in Humans. [J] Nutritional Methodology, 2005,135: 1515~1525.
    [120] Kim T H., Yoneyama T.. Interaction of carbon and nitrogen assimilation estimated by 13C and 15N tracing in detached leaves of spinach. [J] Environmental and Experimental Botany, 2007, 61: 152~158.
    [121]席琳乔,张德罡等. 15N同位素稀释法测定燕麦根际固氮菌固氮量的研究. [J]核农学报. 2007, 21(4): 417-420.
    [122]林国斌,吕华东,倪蕾. GC-MS/MS稳定同位素稀释技术测定蜂蜜中的氯霉素. [A]海峡预防医学杂志. 2007,13(3): 5-8.
    [123] Xudong Zhang, Hongbo Hea, Wulf Amelung.GC/MS method for the assessment of 15N and 13C incorporation into soil amino acid enantiomers. Soil Biology & Biochemistry 39 (2007) : 2785–2796.
    [124] Abei Carvalho,Casimiro Pio, Carla Santos, Water-soluble hydroxylated organic compounds in German and Finnish aerosolsm. [J].Atomspheric Environment, 2003,37:1775-1783.
    [125] Amelung W., Zhang X.. Determination of amino acid enantiomers in soils.SoilBiology and Biochemistry, 2001, 33: 553-56.
    [126] Gberg H. P. Tansley review 15N natural abundance in soil-plant systems [J]. New Phytologist, 1997, 137:179-203.
    [127] Rodier C., Sternberg R., Raulin F., Vidal-Madjar C.. Chemical derivatization of amino acids for in situ analysis of Martian samples by gas chromatography. [J] Chromatogr A 2001, 915:199–207.
    [128] Rodier C., Laurent C., Szopa C., Sternberg R., et al. Chirality and the origin of life: in situ enantiomeric separation for future space missions. Chirality 2002;14:527–532.
    [129] Pietrogrande M.C., Zampolli M., Dondi F., et al . In situ analysis of the Martian soil by gas chromatography: decoding of complex chromatograms of organic molecules of exobiological interest. J Chromatogr A 2005, 1071:255–261.
    [130] Ali Shareef, J. Michael Angove, D. .John Wel. Optimization of silylation using N-methyN-(trimethylsilyl)-trifluoroacetamide,N,O-bis-(trimethylsilyl)-trifluoroacetamide and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide for the determination of the estrogens estrone and 17-ethinylestradiol by gas chromatography–mass spectrometry [J] . J Chromatogr A, 2006, 1108: 121–128.
    [131] Claude Schummer, Olivier Delhommea, M.R.Brice. Appenzellerb,Robert Wennigb, Maurice Millet Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. [J] Talanta, 2009, 77:1473–1482.
    [132] Schwenk W.F., Berg P.J., Beaufrere B., et al. Use of t-buty-dimethylsilylation in the gas chromatographic/mass spectrometric analysis of physiological compounds found in plasma using elec-tron-impact ionization. Analytical Biochemistry, 1984,141: 101-109.
    [133] Revelsky A. Igor., Yuris S.. Electron ionization and atmospheric pressure photochemical ionization in gas chromatography-mass spectrometry analysis of amino acids. L.A. Revelsky et al, Eur. J. Mass Spectrom,2003(9): 497-507.
    [134] Simek P., Heydova A. Jegorov A.. High Resolution Capillary Gas Chromatography and Gas Chromatography-Mass Spectrometry of Protein and Non-Protein Amino Acids, Amino Alcohols, and Hydroxycarboxylic Acids as their tert-Butyl-dimethysilyl Derivatives. J. High Res. Chromatogr, (1994)17,145.
    [135] Rodier C., Sternberg R. Raulin F. Vidal-Madjar C.. Chemical Derivatization of Amino Acids for In Situ Analysis of Martian Samples by Gas Chromatography. J. Chromatogr. A. 2001.915,199.
    [136] Starke I.. Kleinpeter E. Kamm B.. Separation, Identification, and Quantification of Amino Acids in L-Lysine Fermentation Potato Juices by Gas Chromatography-Mass Spectrometry. Fresetius J. Anal. Chem. 2001, 371-380
    [137] Hofmann D., Gehre K. Jung. Sample preparation techniques for the determination of nutural 15N/14N variations in amino acids by gas-chromatography-combustion-isotope ratio mass spectrometry GC-C-IRMS). [J] Isotopes in Environmental and Health Studies , 2003, 39: 233- 244.
    [138] Sacks G. L., Brenna J. T.. 15N/14N Position-specific isotopic analyses of polynitrogenous amino acids. [J] Analytical Chemistry, 2005, 77:1013- 1019.
    [139] Godin J.P., Faure M., Breuille D.. Hopfgartner G.. Fay L-B. Determination of 13C isotopic enrichment of valine and threonine by GC-C-IRMS after formation of the N(O,S)-ethoxycarbonyl ethyl estyl ester derivatives of the amino acids. [J] Analytical and Bioanalytical Chemistry 2007, 388: 909- 918.
    [140] Michael Dauner, Uwe Sauer. GC-MS Anlaysis of Amino Acids Rapidly Provids Rich Information for Isotopomer Balancing. Biotechnol Prog. 2000(16): 642-649.
    [141] Schmidt K., Norregaard L. C., Pedersen B., Meissner A., et al. Quantification of intracellular metabolic fluxes from fractional enrichment and 13C-13C coupling constraints on the isotopomer distribution in labeled biomass components. Met. Eng. 1999, 1, 166-179.
    [142] Christensen B., Nielsen J.. Isotopomer analysis using GC-MS. Met. Eng. 1999,1: 282-290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700