智能割草机器人全区域覆盖运行的控制和动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究的智能割草机器人(IRM)是全区域覆盖运行的户外移动机器人,工作在非结构化的草坪环境中。充分考虑到智能割草机器人的工程实用性,基于RBF神经网络算法,提出在无人为标识的草坪区域中建立边界和识别边界的新方案。
     割草机器人的智能在环境中表现为诸多适应性的行为。据此本文提出归一化行为的概念,形成智能割草机器人基于归一化行为的控制体系结构,深入研究归一化行为模式的特性,提出行为元SB和SDB结构,并采用模糊Petri网建立了割草机器人面向环境、针对任务的归一化行为模型。根据行为控制与模糊逻辑之间存在的内在关系,基于模糊控制理论对割草机器人全区域覆盖运行的主要行为:路径跟踪行为、避障行为和区域切换行为进行智能控制,解决了智能割草机器人的路径跟踪行为与避障行为的协调问题。
     根据智能割草机器人的特点和任务目标,提出机器人工作性能的评价指标。对割草机器人全区域覆盖运行的路径规划进行数学描述,基于Morse理论提出工作子区域的划分方法,解决了统一而又简单的覆盖路径的规划问题。结合已建立的工作区域边界及拓扑图,提出牵连子区域优先覆盖的新方法,有效地解决了全区域覆盖的运动规划问题。文中还对智能割草机器人全区域覆盖规划的性能进行了分析。
     本论文首次引入智能割草机器人的空气动力学特性研究,对刀盘中气流流动模式和特性进行了深入研究,并分析了气流不均衡性对割草机器人自主行为的影响。通过求解有限元模型,得到割草机器人刀盘对不平衡刀片的离心惯性力的动态响应,提出减少刀盘受迫振动的方法。
     建立了智能割草机器人在草坪环境中的动力学模型,并进行了相应的动力学特性分析。根据草坪的物理特性,对车轮—草坪力学模型的特定力学性质进行了分析,得到割草机器人在草坪上运动的滚动阻力及草坪所允许的附着力。基于草坪的几何特性,建立其描述函数,研究了由于草坪不平整所引起的割草机器人在不同运动速度下的垂向振动特性,推导出割草机器人对草坪不平整引起的侧向扰动的稳态响应。
     利用后退方法设计了割草机器人非完整动力学的轨迹跟踪控制律,给出了考虑外界扰动情况下的仿真控制结果。并基于H_∞理论对机器人的反馈镇定控制进行了探讨。
     论文最后设计了割草机器人的本体结构和基于CAN总线的控制系统,研制了基于ARM嵌入式处理器的主控模块和相应的功能子模块。根据割草机器人的行为模式,制定了机器人在工作过程中可能存在的所有通信报文类型。结合软硬件对样机系统进行实验调试,实验结果满足割草机器人工作要求。
     通过对智能割草机器人全区域覆盖运行的规划、基于行为的智能控制和动力学特
The intelligent robot mower (IRM) studied in this thesis is one kind of area-covering outdoor mobile robot working in the unstructured environments. With the full consideration of engineering practicability, based on the RBF neural network, a new solution to the boundary set-up and identification of unmarked operational area is proposed.The intelligence of robot mower is regarded as several adaptability behaviors in the environments, so the concept of unitary behavior mode is proposed and the unitary behavior-controlled architecture for robot mower is formed. The characteristics of the unitary behavior mode are deeply studied. We put forwards the behavior-unit SB and SDB models, and use the Fuzzy Petri Net to build the environment-oriented and task-aimed behavior model for IRM. On the internal relationships between the behavior control and fuzzy logic, we design the main behaviors for IRM covering the whole operational area by the use of the fuzzy ratiocination theory. That is: path-tracing behavior, obstacle-avoiding behavior and region-switching behavior. The harmonization problem of path-tracing behavior and obstacle-avoiding behavior is solved by the fuzzy control.According to the purposes and features of IRM, the evaluation indexes of robot performance are given. The mathematics description of complete coverage path planning is presented. The dividing method of operational sub-regions is given based on the Morse theory, and the uniform and simple coverage paths can be planned. Combined with the boundary of operational area and the topology structure, a new method of embroiled sub-region with priority-covering is presented to obtain the motion planning more stably and continuously. The performance analysis of the complete coverage planning is given in the thesis.It is the first time that the research of aerodynamics for IRM is introduced. We analyze detailedly the flow mode and characteristics of airflow in the blade deck, and study the effect on IRM's self-acting behaviors produced by the imbalance airflow. By the solution of the finite element model, we also do the analysis for the dynamic response of centrifugal inertia force from the imbalance blades impaction on the body of IRM, and eventually put forward the method to decrease the forced vibration.The dynamic model of IRM in the lawn environment is build up, the related analysis of dynamic characteristics based on the model is studied. Based on the physical feature of lawn, by investigating the particular mechanics property of wheel-lawn model, the rolling resistance and the allowable attaching force are obtained when the robot mower moves on the lawn. For the dimensional feature of lawn, the function is set to describe the lawn's unevenness. The vertical vibration of IRM is studied based on the lawn terrain function, and then the vibration characteristics will be available at the different velocities of the robot motion. Through studying the steady response of lateral disturbance from the uneven lawn, the steady response will be obtained.Using the Backstepping method, we design the trajectory following law based on the Nonholonomic dynamics of robot mower. The emulation results considering the disturbance are given. The feedback Stabilization control of robot is discussed using the H_∞ theory.Considering the demand of the environment and tasks, we design the mechanical structure and control system based on the CAN field bus technology. The main module
引文
[1] http://www.opei.mow.org
    [2] http://www.epa.gov/opei/pubsinfo.htm
    [3] Moravec H P. The Stanford car and the CMU rover. Technical Report of the Robotic Institute at Camegie-Mellon University, Pittsburgh, 1983
    [4] Elfes A and Talukdar S N. Distributed control system for the CMU rover. Report of the Robotic Institute at Carnegie-Mellon University Pittsburgh, 1983
    [5] Jet Propulsion Laboratory Planetary Mission Summaries. Introduction and Overview. NASA-CR-147093, 1991(1): 641-652
    [6] EMATIA, R. SANZ, E. A. PUENTE. Increasing Intelligence in Autonomous Wheelchairs. Journal of Intelligent and Robotic System. 1998 (22): 211-232
    [7] Ooyarna, N. Achievements for robots operated in extreme environment. Trans. of Japanese Society of Mechanical Engineering. Vol. 9, No. 5, 1991: 623-627
    [8] Ikeda, W. and Nozaki, T. Development of a self-contained wall-climbing robot. Proc. of Int. Symp. on Advanced Robot Technology. 1991: 265-372
    [9] 罗公亮,秦世引.智能控制导论.浙江科学出版社.1997
    [10] 何斌.医用微型机器人动力学建模及其行为智能控制研究.博士论文.浙江大学.2001
    [11] Thorpe C., Hebert M., Kanade T. Toward Autonomous Driving: the CMU Navlab part Ⅰ-Perception. IEEE Expert 1991: 31-42
    [12] Thorpe C., Hebert M., Kanade T. Toward Autonomous Driving: the CMU Navlab part Ⅱ-Architecture and System. IEEE Expert 1991: 33-52
    [13] Thorpe C., Kanade T. Third Annual Report for Perception for Outdoor Navigation. CMU Technical Report. CMC-RI-TR-92-16, 1992
    [14] Brooks R. A. A Robust Layered Control System for A Mobile Robot. IEEE Journal of Robotics and Automation. 1986 (2): 14-23
    [15] Li Wei. Behavior based control of A mobile robot in unknown environments using fuzzy logic. Control theory and applications. Vol. 13, Apr. 1996
    [16] Stephen P. Behavior based robust fuzzy control. Proceedings of the 1998 IEEE ISIC/CIRA/ISAS Joint Conference, 1998
    [17] 曹志强,张斌,谭民.多移动机器人系统个体控制体系结构.机器人.23(5),2001:450-454
    [18] 赵亿文,谈大龙.多移动机器人合作系统中的单机控制体系结构研究.机器人.21(6),1999:421-425
    [19] Hu H. S. A Parallel Processing Architecture for Sensor-based Control of Intelligent Mobile Robot. Robot and Antonomous. Vol. 17(2), 1996: 235-257
    [20] 王干,林良民,颜国正.基于包容结构的移动机器人混合式控制结构.机器人.24(2),2002:171-176
    [21] Friendly Robotics: http://www.robotmow.com/does/aboutus.htm
    [22] Husqvarna, http://www.husqvarana.com/index_body.htm
    [23] Rob Warren Hicks, Ernest L. Hall. A survey of Robot Lawn Mowers. Proceedings of SPIE. Vol. 4197: 262-269
    [24] Nagata Katsuya etc. Self-propelled lawn-mowing Robot. 1997. JP9135606.
    [25] Donald Roy Airey. Autonomous Vehicle Navigation System and Mothod. US Patent NO. 6454036 2002
    [26] Chen. Robotic Lawn Mower. US Patent NO. 4694639 1987
    [27] Neil C. Rowe, Robert S. Alexander. Finding Optimal-Path Maps for Planning across Weighted Regions. The International Journal of Robotics Reserch Vol. 19, No.2, February 2000: 83-95
    [28] Alexander, R. S. Construction of Optimal-path Maps for Homogeneous-Cost_Regions Path-Planning Problems. Ph. D. thesis, Department of Computer Science, U. S. Naval Postgraduate School, Monterey, CA, 1988
    [29] Mitchell, J. S. B. An Algorithmic Approach to Some Problems in Terrain Navigation. Artificial Intelligence 37, 1988: 171-201
    [30] Paradi, A. M. 1985. Multi-Goal Real-Time Global Path Planning for an Autonomous Land Vehicle Using A High Speed Graph Search Processor. Proceedings of the 1985 IEEE Conference on Robotics and Automation, New York. IEEE Press: 161-167
    [31] Reif, J. H. Storer, J. A. Shortest Paths in the Plane with Polyhedral Obstacles. Journal of the ACM 41(5), 1994: 982-1012
    [32] Rowe, N. C. Richbourg, R. F. An Efficient Snell's-Law Method for Optimal-Path Planning Across Multiple Homogeneous-Cost Regions. International Journal of Robotics Research. (6). 1990: 48-66
    [33] Hwang, Y. K., Ahuja. Gross Notion Planning-A Survey. ACM Computing Surveys 24(3). 1992: 219-291
    [34] Lunelsky, V. J. etc. Dynamic Path Planning for a Mobile Robot Automation with Limited Information on eht Environment. IEEE Transaction on AC. 31 (11). 1986
    [35] Pizadeh, A., Snyder W. A Unified Solution to Converage and Search in Explored an Unexplored Terrains Using Indirect Control. IEEE conf. on Rob. and Auto., 1990
    [36] Y. Goto, A. Stenez. The CMU System for Mobile Robot Navigation. Proc. IEEE Int. Conf. Robotics and Automation. 1987: 99-105
    [37] Goto Y., Tentz. A. Mobile Robot Navigation: The CMU System. IEEE Expert, 2(4). 1987
    [38] R. C. Arkin. Motor Shema-based Mobile Robot Navigation. International Journal of Robotics Research. 8(4). 1989: 92-112
    [39] Kaichun Jiang, Lakmal D. S., S. W. E. Warles. A Shortest Path Planning Algorithm for Nonholonomiz Mohiu Robots. Journal of Intelligent and Robotic Systems. (24). 1999: 347-366
    [40] M. Weigl, B etc. Grid-based Mappling for Autonomous Mobile Robot. Robotics and Autonomous System. 11. 1993: 13-21
    [41] 袁曾任,高明.在动态环境中移动机器人导航和避碰的一种新方法.机器人.(2).2000:81-88
    [42] C. Hofner G. Schmide. Path Planning and Guidance Techniques for an Autonimous Mobile Robot. Robotics and Autonomous Systems. 1995 14(2-3): 199-212
    [43] A. Zelinsky. Using Path Transforms to Guide the Search for Findpath in ID. International Journal of Robotics Research. 1994 13(4): 315-325
    [44] R. N. De Carvalho, H. A. V. Dal. Complete Coverage Path Planning and Guidance for Cleaning Robots. Inter Symposium on Industrial Electronics, Guimaraes, Portugal. 1997: 677-682
    [45] H. Choset. Coverage of Knaow Space: the Boustropkedon Cellular Decomposition. Autonomous Robotics. 2000 9(3): 247-253
    [46] 李开生.通用擦窗机器人控制系统体系结构的研究和实现.博士论文.北京工业大学.2001
    [47] Y. Fu, S. Y. T. Larg. Fuzzy Logic Based Mobile robot Area Filling with Vision System for Indoor Environments. Symposion on Computational Intelligence in Robotics and Automation Monterey, USA. 1999: 326-331
    [48] A. Y. Zomaya, M. R. Wright. On the Path Planning Problem in the Vicinity of Obstacles. Cybernetics and Systems. 1998 (29): 807-868
    [49] 张学孚,陆怡良.磁通门技术.第一版.北京:国防工业出版社,1995
    [50] Noguchi N., Ishii K., Terao H. Development of An Agriculture Mobile Robot Using a Geomagnetic Direction Sensor and Image Sensors. Journal of Agricultural Engineering Research, 1997(67): 1-15
    [51] 徐秉铮,张百灵等.神经网络理论与应用.第1版.广州:华南理工大学出版社,1994
    [52] 杨行峻,郑君里.人工神经网络与盲信号处理.第1版.北京:清华大学出版社,2003
    [53] M. Rosenblum, Larry S. Davis. An Improved Radical Basis Function Network for Visual Autonomous Road Following. IEEE Transactions on Neural Networks. 1996 V7(5): 1111-1120
    [54] 刘文菊,郭景.RBF神经网络中心选取OLS算法的研究.天津工业大学学报.2002 21(2):71-73
    [55] 徐士良.计算机常用算法.第2版.北京:清华大学出版社,1995
    [56] 周建钦,赵志远.排序和查找理论及算法.第1版.北京:科学出版社,1993
    [57] Lumelsky V., Mukhopadhyay S., Sun K. Sensor-based Terrain Acquisition: the "Sightsee" Strategy. Proc. of the 28th Conference on Decision and Control. Tampa, Florida, 1989: 1157-1161
    [58] V. Lumelsky, S. Mukhopadhyay, Kang Sun. Sensor-Based Terrain Acquisition: a "Seed Spreader" Sreategy. IEEE/RSI International Workshop on intelligent Robots and System'89. 1989:4-6
    [59] C. W. Warren. A Technique for Autonomous Underwater Vehicle Route Planning. IEEE Journal of Oceanic Engineering. 1990 15(3): 199-204
    [60] R. A. Brooks. A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation. 1986 RA-2(1): 14-23
    [61] D. Fox, W. Burgard, S. Thrun. The Dynamic Window Approach to Collision Avoidance. IEEE Robotics and Automation Magazine. 1997 4(1): 23-33
    [62] R. C. Arkin. Behavior-Based Robotics. MIT Press. 1998
    [63] Noreils F. R., Chatula. Control of Mobile Robot Actions. IEEE Int Conf. on Robotics and Automation. 1989: 701-712.
    [64] Noreils F. R., Chatula R. G. A General Structure for Mobile Robot Action Control. IEEE/RSJ International Workshop on Intelligent Robots and Systems, Tsukuba, Japan. 1989: 550-556
    [65] Noreils F. R., Raja G. Plan Execution Monitoring and Control Architecture for Mobile Robots. IEEE Trans on Robotics and Automation. 1995 11 (2): 255-266.
    [66] Chatila R., Alami R., Degallaix B., Laruelle H. Integrated Planning and Execution Control of Autonomous Robots Actions. Proe Int Conf. on Robotics and Automation. France. 1992: 2689-2696
    [67] 冯文镛.物品自动运送机器人(ACR)原型系统控制体系结构研究.博士论文.浙江大学.2001
    [68] Houcine Hassan, Jose Simo, Alfons Crespo. Flexible Real-time Mobile Robotic Architecture Based on Behavioural Models. Engineering Applications of Artificial Intelligence. 2001(14): 685-702
    [69] 江志斌.Petri网及其在制造系统建模与控制中的应用.第11版.机械工业出版社,2004
    [70] Siripun Thongchai. Intelligent Control and Learning Techniques for Mobile Robots. Doctor Dissertation. Vanderbilt University. Tenessee 2001
    [71] 孙增圻等.智能控制理论与技术.第一版.北京:清华大学出版社,1997
    [72] S. Thrun, A. Bucken, W. Burgard, D. Fox, T. Frohlinghaus, D. Hennig, T. Hofmann, M. Krell, T. Schmidt. Map Learning and High-speed Navigation in RHINO. Artificial Intelligence and Mobile Robots: Case studies of successful Robot Systems, MIT Press, Cambridge 1998: 21-52
    [73] R. C. Arkin. Motor Schema Based Navigation for a Mobile Robot: An Approach to Programming by Behavior. Pro. of IEEE Conf. on Robotocs and Automation. 1987: 264-271
    [74] R. C. Arkin. Motor Schema-Based Mobile Robot Navigation. International Journal of Robotics Reasearch. 1989 8(4): 92-112
    [75] R. A. Brooks. A Robust Layered Control System for a mobile Robot. MIT A. I. Memo. 1985: 864
    [76] J. K. Rosenblatt. DAMN: a Distributed Architecture for Mobile Navigation. PHDThesis.Carnegie Mellon University. 1997
    [77] L. Morenpo, M. A. Salichs etal. Neural Networks for Mobile Robot Piloting Control. Neural Networks for Robotic Control: Theory and Applications. 1996: 137-161
    [78] O. Khatib. Real-time Obstacle Avoidance for Manipulators and Mobile Robots. International Journal on Robotics Research. 1986 5(1): 90-98
    [79] Jun Ota. Motion Skills in Multiple Mobile Robot System. Robotics and Autonomous System. 1996(19): 57-65
    [80] S. G. goodridge, M. G. Kay, R.C. Luw. Multilatered Fuzzy Behavior Fusion for Real-time Reactive Control of Systems with Multiple sensors. IEEE Tran. on Industrial Electronics. 1996: 387-394
    [81] A. Safiotti. Fuzzy Logic in Autonomous Robotics: Behavior Coordination. Proceedings of the Sixth IEEE International Conference on Fuzzy Systems. 1997 V1: 573-578
    [82] E. Tunstel. A Coordination of Distributed Fuzzy Behaviors in Mobile Robot Control. Proceedings of 1995 IEEE International Conference on Systems, Man and Cybernetics. 1995 V5: 4009-4014
    [83] 黄毓瑜,曹作良,E.L.Hall.移动机器人区域充满运行的计算机模拟.机器人.1989 3(1):33-39
    [84] 胡林,边秀举,阳新玲.草坪科学与管理.第1版.北京:中国农业大学出版社,2001
    [85] Consumer Reports. Consumers Union of U. S., Inc. September 2000: 15
    [86] Ercan, Umut, Acar. Complete Sensor-based Coverage of Unknown Spaces: Incremental Construction of Cellular Decompositions. PHDThesis. Carnegie Mellon University Pittsburgh, Pennshlvania. 2002.5
    [87] Milnor J.莫尔斯理论.北京:科学出版社,1988
    [88] Parodi, A. M. 1985. Multi-Goal Real-Time Global Path Planning for an Autonomous Land Vehicle Using A High Speed Graph Search Processor. Proceedings of the 1985 IEEE Conference on Robotics and Automation. New York: IEEE Press: 161-167
    [89] 王朝瑞.图论.第一版.北京:北京理工大学出版社,1997
    [90] 肖位枢.图论及其算法.航空工业出版社,1993
    [91] 中国人民解放军总装备部军事训练教材编辑工作委员会.计算流体力学及应用.第一版.北京:国防工业出版社,2003
    [92] 吴子牛.计算流体力学基本原理.第一版.北京:科学出版社,2001
    [93] P. A. Hhagen, W. Chon, R. S. Amano. Experimental Study of Aerodynamics Around Rotating Blades in a Lawnmwer Deck, Proceedings of ASME FEDSM'02 ASME 2002 Fluids Engineering Division Summer Meeting, Canada, 2002, July: 67-74
    [94] 中华人民共和国林业行业标准—草坪割草机安全要求:LY1202.5-2001.第一版.中国标准出版社:2001
    [95] 安部正人.汽车的运动和操纵.第一版.北京:机械工业出版社,1998
    [96] 尤昌德.现代控制理论基础.第一版.北京:电子工业出版社,1996
    [97] 庄继得.汽车地面力学.第一版.北京:机械工业出版社,1980
    [98] M. G.培克.地面—车辆系统导论.北京:机械工业出版社,1978
    [99] Min-Hsiung Hung, David E. Orin. Dynamic Simulation of Actively-Coordinated Wheeled Vehicle Systems on Uneven Terrain. Proceedings of the 2001 IEEE International Conference on Robotics & Automation. Seoul, Korea. May 21-26, 2001: 779-786
    [100] L. Clifmans, H. Ramon. The Influence of Tyres on the Dynamic Behavior of a Lawn Mower. Jounal of Terramechanics. 1996, Vol. 33(4): 195-208
    [101] Lin Ke Wang. Theory and Experimental Investigation of Tracking Control of Wheeled Mobile Robots. Master Paper. Concordia University, Montreal. Quebee. Canada. March 2002
    [102] D'Andrea-Novel B., Bastin G., Campion G. Modeling and Control of Nonholonomic Wheeled Mobile Robots. Proc. IEEE Int. Conf. Robot and Automat. 1991: 1130-1135
    [103] Murray R. M., Sastry S. S. Nonholonomie Motion Planning: Steering Using Sinusoids. IEEE Trans. on Automat. Contr. 1993 38(5): 700-716
    [104] Brockett R. W. Asymptotic Stability and Feedback Stabilization. Differential Geometric Control Theory. Birkhauser, Boston. 1983: 181-191
    [105] Jiang Z P, Pomet JP. BackStepping-Based Adaptive Controllers for Uncertain Nonholonomic Systems. Inoc. Conf. Decision Control. 1995: 1573-1578
    [106] Saverio Mascolo. Backstepping Design for Controlling Lorenz Chaos. Proceedings of the 36th Conference on Decision & Control. U. S. A. 1997: 1500-1501
    [107] Ola Harkegard, S. Torkel Glad. A Backstepping Design for Flight Path Angle Control. Proceedings of the 39th IEEE, Conference on Decision and Control, Australia. 2000: 3570-3575
    [108] H. Shim, J. Byun, Nam H. Jo, Jin H. Seo. Backstepping Design for Disturbed Virtual Controls. Proceedings of the American Control Conference. U. S. A. 1998: 2071-2075
    [109] 董文杰,霍伟.链式系统的轨迹跟踪控制.自动化学报.200026(3):310-316
    [110] Pomet J. B., Samson C. Time-Varying Exponential Stabilization of Nonholonomic Systems in Power Form. INRIA Report. 1993: 21-26
    [111] Samson C. Control of Chained Systems: Application to Path Following and Time-varying Point-Stabilization of Mobile Robots. IEEE Trans. on Automat. Contr. 1995 40(1): 64-77
    [112] Bloch A. M., Reyhanoglu M., Mclamroch N. H. Control and Stabilization of Nonholonomic Dynamical Systems. IEEE Trans. on Automat. Contr. 1992 37(11): 1746-1757
    [113] Brockett R. W., Asymptotic Stability, Feedback Stabilization. Differential Geometric Control Theory. Birkhauser, Boston. 1983: 181-191
    [114] Samson C., Ait-Abderrahim K. Feedback Control of a Nonholonomic Wheeled Cart in Cartesian Space. Proc. of IEEE Int. Conf. on Robot. And Automat. 1991: 1136-1141
    [115] Astolfi A. On the Stabilization of Nonholonomic Systems. Proc of IEEE Int. Conf. Decision and Control. 1994: 3481-3486
    [116] Campion, G, etal. Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots. IEEE Trans. Robot. and Automat., 1996, 12(1): 47-61
    [117] 陈正江.户外自主移动机器人体系结构与控制系统研究.硕士论文.2003
    [118] G. Campion, G.Bastin, B.Novel. Structural Properties and Classification of Kinematic Models of Wheeled Mobile Robots. IEEE Trans. On Robotics and Automation, 1996,12(1):47-62
    [119] Kenan Ezal, Zigang Pan, Peter V. Kokotovic. Locally Optimal and Robust Backstepping Design. IEEE Transactions on Automatic Control, 2000, V.45(2): 260-271
    [120] Jiangxiang Zhao, Ioannis Kanellakopoulos. Flexible Backstepping Design for Tracking and

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700