高温油藏聚合物驱及复合驱技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统研究了高温油藏条件下应用聚合物驱以及三元复合驱的可行性,对聚合物粘弹性在驱油过程中的作用及三元复合驱的驱油机理及配方筛选进行了深入探讨。在大量的国内外有关聚合物驱及三元复合驱理论和应用研究进展调研的基础上,对聚合物的热稳定性进行评价,研究聚合物流变性及粘弹效应对提高采收率的作用,考查了复合驱三种组分对界面张力的影响,并结合配方筛选和物模实验确定体系最佳配方。
     全文研究的主要内容有以下几个部分:
     1、聚合物的长期热稳定性研究。提出高温油藏进行聚合物驱时,聚合物的水解作用对保留粘度有积极作用。评价了两种稳定剂,其中低浓度多羟基化合物作为稳定剂,既提高了聚合物溶液的化学稳定性,又可以有效控制体系粘度的增长速度。
     2、利用流变研究方法研究聚合物的流变性,考查浓度对聚合物粘弹性的影响以及粘弹性对驱油效率的作用。得出浓度达到一定程度后(本实验所用两种聚合物浓度需达到1600mg/L),才会表现出明显的粘弹性。
     3、通过三种粘度相同、弹性不同的驱替液的渗流实验,得出具有弹性的聚合物提高驱油效率要高于弹性很低的黄原胶和没有弹性的甘油,说明弹性对提高驱油效率有积极作用,而粘性对提高驱油效率影响较小。
     4、物模实验。研究了不同浓度、不同段塞、不同渗透率级差条件下的聚合物提高驱油效率的大小,以及老化前后由于水解作用引起的粘弹性变化对提高采出程度的影响,实验得出适合该油藏条件的聚合物质量浓度为2000 mg/L,段塞尺寸为0.4-0.5PV。
     5、三元复合驱体系配方研究。当表面活性剂或碱的浓度处于一定的范围内时,复合体系的界面张力能取得最小值。复合体系的粘度主要由聚合物的浓度控制,表面活性剂的浓度不影响体系的粘度,而是影响体系界面张力的最主要因素。测定了三组分的静吸附量。研究结果证明了聚合物和碱对活性剂有明显的保护作用。
     6、开展了一系列复合体系的渗流实验。研究结果表明,界面张力大小是复合驱大幅提高采收率的主要因素。提出不同水油粘度比对驱油效率的影响,得出随着水油粘度比增大,提高采收率幅度不断增加,但在粘度比大于8.4后,增加幅度变缓。考虑吸附以及经济等因素影响,体系0.25%S-3+1500mg/L聚合物+0.5%Na_2CO_3由于保持了较高的粘度而具有较好的提高采收率效果,室内实验结果比水驱提高采收率22%。
This paper studies systematically about the feasibility application of the visco-elastic polymer flooding and Alkaline/Surfactant/Polymer(ASP) flooding under the conditions of high-temperature reservoir.In addition,the function of polymer visco-elastic and the displacement mechanism has been lucubrated.On the basis of studying a large number of domestic and foreign theoretical literature about polymer flooding and ASP flooding,we have studied the polymer thermal stability,the polymer rheological and viscoelastic effection on enhancing oil recovery under the conditions of high temperature,the three components of ASP flooding displacement mechanism,as well as their synergistic effect.Based on the results, polymer flooding and ASP flooding has been optimized and screened out.
     This dissertation is divided into the following sections,and will be descripted briefly:
     1,long-term thermal stability and visco-elasticity of polymer.Under the conditions of high-temperature,the stability of the polymer displacement fluid played a very important role. Two kinds of stabilizers were evaluated.It was first proposed that a low concentration of polyhydroxy compound stabilizer can enhance the chemical stability of the polymer solution, and can effectively control the viscosity grow rate.The results of physical simulation show that injection velocity on the polymer solution can increase flexibility,thereby it can enhance oil displacement efficiency.When the injection velocity is higher than 0.5mL/min,the system showed a higher viscoelasticity.Under the same viscosity conditions,the high viscoelastic polymer flooding oil displacement experiments can reach a relatively higher efficiency.
     2,Study of polymer theology.We examined the impact of polymer concentration on the viscoelasticity and viscoelasticity on the role of oil displacement efficiency.The results showed that it was only concentration reaching a certain degree that it shows significant viscoelasticity.
     3,By three different elastic fluids but in the same viscosity flow experiments,we obtained that elasticity has a positive effect on enhancing oil recovery,while the viscosity is less.
     4,Physical flow experiments.We studied different concentrations polymer,different size and different penetration effect on the improving the efficiency,as well as changes in visco-elasticity caused by hydrolysis effected on enhancing oil recovery.It is obtained from experiments that the suitable polymer concentration is 2000 mg / L,and the slug size is 0.4-0.5PV.
     5,Formulation of ASP flooding system.It showed that the composite system can achieve the minimum interfacial tension when the surface-active agent and alkali concentration was in a certain range.The viscosity was controlled mainly by the concentration of polymer,while surfactant concentration does not affect the viscosity,but it is the most important factor of effecting the interfacial tension system.We measured the static adsorption capacity of the three components.The results proved that the polymer and alkali has obvious protective effect on the of agents adsorption.
     6,A series of porous media flow experiments by ASP system have been done.The results showed that interfacial tension is the major factor of substantially increasing EOR,especially when the interfacial tension reached 10~(-4) magnitude system,the effect is particularly evident. It is the first time to be proposed that different water-oil viscosity ratio has the impact on oil displacement efficiency.It is also obtained that with the water-oil viscosity ratio increased, the enhanced oil recovery rate is increasing.Meanwhile,the rate of increase slowed down when the viscosity ratio is more than 8.4.As the result,the range of the polymer concentration should be 1000~1500mg / L.Considering the absorption as well as economic and other factors,the system should be adoped as 0.25%QY-3 +1500 mg / L polymer +0.5% Na_2CO_3.As it can maintain a high viscosity,the system has a good effect on enhanced oil recovery of 22%.
引文
Ahmad Meradi-Araghi. Hydrolysis and precipitation of polyacry-lamides in hard brines at elevated temperature[J]. SPERE,May,1987,189-198.
    CLARK S. R., PITTS M. J. Design and application of an alkaline-surfactant-polymer recovery system to the West Kiehl Field[R].SPE17538,1998.
    D.F.James,D.R.Mclaren.Non-Newtonian Flow in Porous Media—a Laboratory Study of Polymer Solutions[J]. Fluid Mech., 1975,70,733-745.
    D.L.Dauben , D.E.Menzie.Flow of Polymer Solutions Through Porous Media[J]. JPT,1967,1065-1073.
    David J.Pye.Improved Secondary Recovery by Control of Water Mobility[J]. JPT, 1964,911-916.
    
    Doe P H,Schechter R S,Wade W H J.Colloid Interface Sci,1977,59:31.
    E.J. Kolodziej. Mechanisms of Microgels Formation in Xanthan Biopolymer Solutions[J].SPE16730,SPE Annual Technical Conference and Exhibition held in Dallas, Texas, 27-30 September, 1987.
    E.J. Kolodziej. Transport Mechanisms of Xanthan Biopolymer Solutions in Porous Media[J].SPE18090,SPE Annual Technical Conference and Exhibition held in Houston, Texas, 2-5 October, 1988.
    
    F. G. de Gennes. Coil-Stretch Transition of Dilute Flexible Polymers Under Ultrahigh Velicity Gradients[J]. Chem. Phys. ,1974,60:5030-5037.
    
    G. Chauveteau, N. Kohler. Influence of Microgels in Xanthan Polysaccharide Solutions on Their Flow Through Various Porous Media[J].SPE9295, SPE Annual Technical Conference and Exhibition held in Dallas, Texas, 2-5 September ,1980.
    H.L.Chang.Polymer Flooding Technology-Yesterday,Today,and Tomorrow[J]. SPE,August 1978, 1113-115.
    J. Heemskerk, R. Janssen-van Rosmalen,R. J. Holtslag, D. Teeuw. Quantification of Viscoelastic Effects of Polyacry Lamide Solution[J]. SPE/DOE 12652,1984.
    J.Heemskerk,R.J.Rosmalen,R.Jholtslag,et al.Quantification of viscoelastec effects of polyacuylamide solutions[J].SPE12652,SPE/DOE Fourth Symposium on Enhanced oil Recovery held in Tulsa,OK,April15-18.
    
    Jaideep Chatterjee, Darsh T.Wasan.A kinetic model for dynamic interfacial tension variation in an acidic oil/alkali/sufactant system[J].Chemical Engineering Science, 1998,53(15):2711-2725.
    
    Jie Yang, Weihong Qiao, Zongshi Li, et al. Effects of branching in hexadecylbenzene sulfonate isomers on interfacial tension behavior in oil/alkali systems [J].Fuel,2005,84:1607-1611.
    Kim Y.H.Wasan D.T.Effect of demulsifier portioning on the demulsification of water-in-crude oil emulsions[J].Ind.eng.chem.res.1996,(35):63.
    Lehrstuhl fur strmungsme chanik. Porous Medium Flow of The Fluid A1: Effects of Shear and Elongation[J]. Jounnal of Non-Newtonian Fluid Mechanics, 1994, 50:119-131
    Li G B,Brooks B W.Prediction of average number of radicals per particle for emulsion polymerization[J].Polym SciPart A:Polym Chem, 1993,31:2397.
    M.Bagassi, G. Chauveteau, J. Lecourtier, et al. Behavior of Adsorbed Polymer Layer inShear and Elongational Flows[J]. Macromolecules, 1989, 22(1):262-266.
    
    Mohammad Ranjbar, Juergen Rupp, Guenter Pusch, Ruediger Meyn. Quantification and Optimization of Viscoelastic Effects of Polymer Solutions for Enhanced Oil Recovery[J]. SPE/DOE24154, 1992.
    N. Mungan, FW. Smith, J.L. Thompson. Some Aspects of Polymer Floods[J]. JPT,1996,1143-1150
    
    Nomura m,Kubo M.Kinetics of emulsion copolymerization.(III).Prediction of theaverage numer of radical perparticlein an emulsion copolymerization system[J]. ApplPolySci,1983,28:2767-2776.
    Paul Davison and Eric Mentzer.Polymer Flooding in North Sea Reservoirs[J].SPE, June391982,352-353.
    R. D. Hester, L. M. Flesher, C. L.McCormick. Polymer Solution Extension Viscosity Effects During Reservoir Flooding[J]. SPE/DOE27823, 1994.
    R. Hass, F Durst. Viscoelastic Flow of Dilute Polymer Solutions in Regularly Packed Beds[J]. Rheol Acta, 1982,21 (4/5):566-571.
    
    R. J. Marshall, A. B. Metzner. Flow of Viscoelastic Fluids Through Porous Media.I&EC Fundamentals[J],1967,6(3):393-400.
    Rudin J,Wasan D T.Mechanisms for lowering of interracial tension in alkali/acidic oil system:effect of added surfactant[J].Ind.Eng.Chem.Res.,1992,31(5):1899-1906.
    Ryles RG.Chemical stability limits of water soluble polymer used in oil recovery process[J].SPERE.Feb,1988,23-35.
    S.Hejri,G.P.Willjite,D.W.Green.Development of Correlations to Predict Flocon 4800Biopolymer Mobility in Porous Media[J].SPE/DOE17396,SPE/DOE Enhanced Oil Recovery Symposium held in Tulsa,Oklahoma,17-20 April,1988.
    S.Rodriguez,C.Romero,M.L.Sargenti,et al.Flow of Polymer Solutions through Porous Media[J].Journal of Non-Newtonian Fluid Mechanics,1993,49:63-85.
    Tong,Z.S.A Study at Microscopic Flooding Mechanism at Surfactant/Alkali/Polymer[J].SPE 39667,1998.
    W.B.Gogarty.Mobility Control with Polymer Solutions[J].SPE.J,1967,161-173.
    W.B.Gogarty.Micellar/PolymerFlooding-AnOverview[J].SPE-AIME,August 1978,1087-1089.
    W.J.Cannella,C huh,R.S.Seright.Prediction of Xanthan in Porous Media[J].SPE18089,SPE Annual Technical Conference and Exhibition held in Houston,Texas,2-5 October,1988.
    Wang Demin,Cheng Jiecheng,et al.Viscous-elastic Polymer can increase micro scale displacement efficiency in cores[C].SPE63227,2000:1-10.
    陈瑞.三元复合驱用表面活性剂研究进展[J].日用化学品科学,2008,31(11):23-26.
    陈绍炳,李学军.部分水解聚丙烯酰胺的水溶液性质[J].油田地面工程,1991,10(5):36-41.
    陈业泉,曹绪龙,王得顺,等.胜利油区复合驱油体系研究及表面活性剂的作用[J].精细石油化工.2001.(5):20-22.
    陈业泉,曹绪龙,王得顺,等.胜利油区复合驱油体系研究及表面活性剂的作用[J].精细石油化工.2001.(5):20-22.
    丁颖.表面活性剂在三次采油中的应用与展望[J].内蒙古石油化工.2004,30(2):121-123.
    董秀勤,窦云芹.三次采油复合驱表面活性剂性能概述[J].油气田地面工程,2007,26(9):58-59.
    杜巧云,葛虹.表面活性剂基础及应用[M].中国石化出版社.1996.23-29.
    冯连玉译.EOR聚合物的流动特性-低剪切速率下的流变性质(一)[J].国外油田工程,1992,(3):17-19.
    付美龙,赵林.碱/聚合物复合驱溶液中聚丙烯酞胺的稳定性[J].武汉化工学院学报,2000,22(3):23-26.
    付美龙.聚合物驵溶液中溶解氧对聚合物稳定性的影响[J].两南石油学院学报,1999,21(1):71-73.
    高树棠,苏树林译.聚台物驱提高石油采收率[M],北京:石油工业出版社.1996:67-69.
    葛稚新,刘卫东,黄炎章.复合驱油体系中碱对地层的伤害[J].油田化学,2006,23(4):362-368.
    郭东红,张飞宇.三次采油表面活性剂的研究与应用进展[J].应用科技,2008,16(7):13-15.
    韩杰,孔柏岭,吕晓华.不同油藏温度条件下HPAM水解度与黏度变化规律[J].油田化学,2006,23(3):235-240.
    韩炜,程鹏燕,王双德,等.ASP驱油过程中碱对地层伤害的实验研究[J].油田化学,1996,13(3):248-252.
    韩显卿,高有瑞.孔隙介质中滞留聚合物粘弹性的测定方法研究[J].西南石油学院学报,1992,14(1):8-17.
    韩显卿,蒲万芬.多孔介质中滞留聚合物分子的粘弹效应模型[J].西南石油学院学报,1989,11(2):50-56.
    韩显卿,汪伟英,徐英.孔隙介质中HPAM的粘弹特性其对驱油效率的影响[J].SPE30013.
    韩显卿.孔隙介质中滞留聚合物分子的粘弹效应系数[J].西南石油学院学报,1988,10(4):59-63.
    韩显卿.利用聚合物的粘弹效应调整吸水剖面的研究[J].石油学报,1993,14(4):76-82.
    何平笙.高聚物的力学性能[M].合肥:中国科技大学出版社,1997.
    何勤功,古大治.油田开发用高分子材料[M].北京:石油工业出版社,1990:58.
    侯吉瑞,刘中春,夏惠芬,等.三元复合体系的粘弹效应对驱油效率的影响[J].油气地质与采收率,2001,8(3):61-64.
    侯吉瑞,吴文祥.化学驱原理与应用[M].北京:石油工业出版社.1998.
    华西苑,赵国玺.混合表面活性剂水溶液的表面吸附[J].化学通报,1994,30(5):8-10.
    计秉玉.对大庆油田进一步开展三次采油技术研究工作的几点意见[J].大庆石油地质与开发,2003,22(6):60-62.
    康万利,董喜贵.三次采油化学原理[M].北京:化学工业出版社.1997:109-119.
    康万利.大庆油田三元复合驱化学剂作用机理研究.第一版[M].北京:石油工业出版 社,2001.58-59.
    孔柏岭.罗九明高温油藏条件下聚丙烯酰胺水解反应研究[J].石油勘探与开发,1998,25(6):67-69.
    李彩虹,张玉亮,王晓明,等.聚合物溶液流变性研究Ⅰ-聚合物溶液粘滞特性[J].大庆石油学院学报,1994,18(2):129-132.
    李彩虹,张玉亮,王晓明,等.聚合物溶液流变性研究Ⅱ-不同浓度聚合物溶液的流变模式[J].大庆石油学院学报,1994,18(2):133-138.
    李福军,营广胜,王德喜,等.聚合物溶液流变特性试验研究[J].石油钻采工艺,1997,19(2):72-74.
    李干佐,郭荣等编著.微乳液理论及其应用[M].北京:石油工业出版社,1995,360-365.
    李险峰,赵得禄.含HPAM的复合驱溶液流变性研究[J].油田化学,1997,14(4):366-68.
    廖广志,王启民.化学复合驱原理及应用[M].石油工业出版社.1999:23-27.
    廖广志,杨振宇,刘奕.三元复合驱中超低界面张力影响因素研究[J].大庆石油地质与开发,2001,20(1):40-42.
    林梅钦,高树棠.大庆原由中活性组分的分离与分析[J].油田化学.1998,15(1):29-31.
    刘风歧,汤心颐.高分子物理[M].北京:高等教育出版社,1995.
    刘华,张禹负.生物聚合物驱油体系流变性研究[J].石油大学学报,1995,19(4):41-44.
    刘建军,宋义敏,潘一山.ASP三元复合体系驱油微观机理研究[J].辽宁工程技术大学学报.2003,22(3):226-228.
    刘伟成,颜世刚,姜柄南,等.在用碱的化学驱油中硅铝垢的生成Ⅱ碱与岩芯组分成垢机理性能[J].油田化学,1996,13(1):68-71.
    刘伟成,颜世刚,姜柄南,等.在用碱的化学驱油中硅铝垢的生成Ⅰ碱与高岭土的成垢和性能[J].油田化学,1996,13(1):64-67.
    刘奕,张子涵.三元复合驱乳化作用对提高采收率影响研究[J].日用化学品科学,2000,23:124-127
    刘振宇,许元泽.聚丙烯酰胺溶液微观流变特性的研究[J].油田化学,1996,13(2):145-148.
    刘振宇,翟云芳.非牛顿流体在多孔介质中的非稳态流动[J].大庆石油学院学报,1995,19(4):18-21.
    罗平亚,李华斌.大庆油田疏水缔合聚合物-碱-表面活性剂三元复合驱提高采收率研究[J]. 大庆石油地质与开发,2001,20(6):1-4.
    马广彦.耐盐聚台物HPAM与高台盐油藏聚台物驱油物理模拟[J].油田化学,1995,(4):353-357.
    马涛,汤达祯,张贵才,等.表面活性剂在油水界面的吸附行为[J].应用化工,2007,36(10):1017-1020.
    聂小斌,刘娟.油田水中聚丙烯酞胺的凝胶色谱法分析[J].大庆石油地质与开发,1997,16(3):11-14.
    沈平平,袁士义,邓宝荣,等.化学驱波及效率和驱替效率的影响因素研究[J].石油勘探与开发,2004,31(增刊):1-4.
    沈平平,袁士义,邓宝荣,等.化学驱波及效率和驱替效率的影响因素研究[J].石油勘探与开发,2004,31(增刊):1-4.
    宋考平,王雷.非牛顿—牛顿复合油藏渗流试井解释方法[J].石油学报,1996,17(1):82-85.
    隋智慧,林冠发,朱友益,等.三次采油用表面活性剂的制备与应用及其进展[J].日用化学工业,2003,33(2):105-109.
    孙德君,匡洞庭.驱油用超高分子量聚丙烯酰胺的合成[J].精细石油化工.2001(5)17-20.
    唐钢.三元复合驱驱油效率影响因素研究[D].四川:西南石油学院,2005.
    唐金星,昌润珍,陈铁龙.聚合物溶液宏观流变性研究[J].河南石油,1996,10(2):30-35.
    佟曼丽,郭小莉.聚合物稀溶液流经多孔介质时的粘弹效应及其表征[J].油田化学,1992,9(2):145-150.
    佟曼丽.聚合物稀溶液在多孔介质中的粘弹效应[J].天然气工业,1987,7(1):64-71.
    汪崎生.水平井拟塑性流体流变参数和压降对产量的影响[J].江汉石油学院学报,1992,14(2):36-43.
    汪伟英.聚合物粘弹性及其对驱油效率的影响[D].南通:西南石油学院,1994,12-13.
    汪伟英.孔隙介质中聚合物溶液的粘弹性及流变性[J].江汉石油学院学报,1994,16(4):54-63.
    汪伟英.利用聚合物粘弹效应提高驱油效率[J].断块油气田,1995,5(2):27-29.
    汪伟英.聚合物驱最佳驱油速度的选择[J].石油钻采工艺,1996,18(1):66-75.
    王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率[J].石油学报,2000,21(5):45-51.
    王德民,程杰成.粘弹性流体平行于界面的力可以提高驱油效率[J].石油学报,2002,23(5):48-52.
    王德民.对大庆油田持续发展有影响的四项工艺技术与方法的探讨[J].大庆石油地质与开发,2002,21(1):10-19.
    王德民.粘弹性流体的特殊性对油藏工程、地面工程及采油工程的影响[J].大庆石油学院学报.2001,25(3):46-52.
    王东,李杰训,魏立新.三元复合驱采出液影响乳状液稳定的因素[J].油气地面工程,2008,27(3):44-46.
    王景良.三元复合驱用石油磺酸盐表面活性剂的研究进展[N].国外油田工程,2000-12.
    王新海.聚合物驱数值模拟主要参数的确定.石油勘探与开发,1990,9(3):69-75.
    王新平,唐季安.聚丙烯酰胺和表面活性剂相互作用的研究.科学通报1997,42(7)30-31.
    伍晓林,刘庆梅,张国印,等.新型弱碱表面活性剂在三次采油中的应用[J].日用化学品科学,2006,29(10):31-34.
    夏惠芬,孔凡顺,吴军政,等.聚合物的弹性效应对驱油效率的作用.大庆石油学院学报.2004,28(6):29-31.
    夏惠芬,王德民,刘中春,等.粘弹性聚合物溶液提高微观驱油效率的机理研究.石油学报,2001,22(4):60-65.
    夏惠芬,王德民,王刚,等.聚合物溶液在驱油过程中对盲端类残余油的弹性作用.石油学报,2006,27(2):72-76.
    夏惠芬,张云祥,张玉亮,等.三元复合体系在多孔介质中的流变性[J].大庆石油学院学报,1999,23(4):18-21.
    邢义良,郎兆新,张丽华.幂律流体不稳定径向流的数值解法.石油大学学报(自然科学版),1997,21(2):36-39.
    徐桂英,顾影慧.粘度法研究HPAM与RSO_3Na之间的相互作用.物理化学学报.1992.8(3):191-193.
    许元泽.高分子结构流变学.北京:科学出版社,1988.
    闫雪,王宝辉,隋欣,等.弱碱三元复合驱硅质垢形成影响因素及机理研究.南京师范大学学报,2009,9(3):42-46.
    杨承志.化学驱提高石油采收率.第一版.北京石油工业出版社,1999.87.
    杨付林,王德民,杨希志,等.高浓度、大段塞聚合物驱油效果研究.石油与天然气化工,2003,32(5):298-301.
    杨付林,杨希志,王德民,等.高质量浓度聚合物驱油方法.大庆石油学院学报.2003,27(4): 24-26.
    杨清彦,宫文超,贾忠伟.大庆油田三元复合驱驱油机理的研究.大庆石油地质与开发,1999,18(3):24-26.
    杨清彦,贾忠伟,张洪兴.聚合物溶液粘弹性对驱油效率的影响.勘探开发研究院渗流力学研究室,1999(12),1-18.
    叶仲彬.提高采收率原理.北京:石油工业出版社,2000.144-145.
    岳湘安.非牛顿流体力学原理与应用.北京:石油工业出版社,1996.
    张宏方,王德民,王立军.不同类型聚合物溶液在多孔介质中的渗流规律研究.新疆石油地质,2002,23(5):72-75.
    张宏方,王德民,王立军.聚合物溶液在多孔介质中的渗流规律及提高驱油效率的机理.大庆石油地质与开发,2002,26(1):48-51.
    张景存.三次采油[M].北京:石油工业出版社,1995.
    张晓芹,关恒.改善二类油层聚合物驱开发效果的途径[J].大庆石油地质与开发,2005,24(4):81-83.
    张晓芹,关恒.改善二类油层聚合物驱开发效果的途径[J].大庆石油地质与开发,2005,24(4):81-83.
    张艳红,李丽.提高注入井聚丙烯酞胺粘度的研究.黑龙江大学自然科学学报,1999,16(4):27-29.
    赵长久,鹿守亮,李新峰.极限含水条件下三元复合驱及聚合物驱提高采收率效果分析.石油勘探与开发,2007,34(3):354-358.
    赵长久,赵群,么世春.弱碱三元复合驱与强碱三元复合驱的对比[J].新疆石油地质,2006,27(6):728-730.
    赵福麟.采油化学.第一版.东营:石油大学出版社.1994.91.
    赵翰卿.大庆油田河流-三角洲沉积的油层对比方法[J].大庆石油地质与开发,1988,7(4):25-31.
    赵翰卿.对储层流动单元研究的认识与建议[J].大庆石油地质与开发,2001,20(3):8-10.
    朱步瑶.表面活性剂复配规律.日用化学工业.1988(4):131-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700