多向聚集极限波浪的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极限波浪是波浪的一种极限情况,它会对海上船只和结构物产生极强的破坏力,目前受到了普遍的重视,大量的研究结果表明,波能聚焦是产生极限波浪的重要机理之一。因此,本文通过物理模拟和数值模拟两种方法对由波能聚焦产生的极限波浪及其破碎波进行了研究。
     本文首先给出了聚焦极限波浪的产生方法,即波能聚焦法。并且通过线性理论分析了聚焦波浪的影响因素,得出影响聚焦波浪特征的主要参数应包括:聚焦波高、中心频率、频率宽度、频谱类型、方向分布宽度及水深等。
     同时,采用波能聚焦的方法在三维水池中成功地产生了极限波浪和破碎波浪,通过物模实验对多向聚焦极限波浪的特性进行了研究。实验考虑了不同聚焦波高、频谱类型、水深对极限波浪和破碎波浪的影响,较系统地分析了波浪聚焦和破碎过程中的波面特性、破碎指标、频谱变化及能量损失等问题。研究结果表明了聚焦波高、频谱类型、水深以及方向分布都将影响到波浪的聚焦及破碎,其中波高越大、水深越浅波浪越容易破碎,在相同水深的情况下,等波幅分布的波浪较等波陡分布的波浪更容易破碎。同时对几种常用的破碎指标进行了分析研究。
     除了物理模拟实验,本文还采用了数值模拟的方法,对聚焦波浪进行了分析研究。首先,建立了能够模拟完全非线性波浪的数值模型,考虑到计算三维水波问题需很大的计算量,所以采用了高阶谱方法,在这种方法中采用快速傅立叶变换求解偏微分方程,具有较高的计算效率和精度。但是这种方法要求计算域具有周期性,为了能够模拟波浪的产生,在谱方法的基础上,引入造波边界,建立了完整的数值模拟水池。并采用典型的算例对模型进行了验证。
     同时利用所建立的数值模型对二维和三维聚焦极限波浪进行了系统的模拟分析。考虑了聚焦波浪的各种影响因素,研究了聚焦波面,最大波峰值、聚焦点的偏移、波面的几何参数,聚焦过程中的频谱变化及聚焦波浪的水动力特性。研究结果表明假定聚焦波高的大小、频率宽度、中心频率、方向分布和水深等对波浪的聚焦特性有较大影响,研究成果对聚焦波浪的应用具有重要的参考价值。
     最后,对高阶谱方法做了进一步的扩展,建立了能够模拟波浪在规则地形上传播的数学模型,通过与实验结果比较,两者吻合较好,说明建立的模型是有效的。
     本文通过物理实验模拟和数值模拟两种方法,研究了聚焦极限波浪,对其特性有了一定的了解,对今后进一步研究聚焦波浪对结构物的作用打下了基础。
The extreme wave is one kind of limited wave, which imposes large or extreme forces on ship and offshore structures. Recently, it has been paid a considerable attention to. A lot of research indicated that wave focusing is one of the most important mechanisms that contributed to the extreme wave. In this paper, the extreme waves generated by wave focusing method are studied by physical experiment and numerical simulation.
     At the beginning of this paper, the method of focusing wave generation was introduced. The influencing factors are discussed through linear theory, such as, assumed amplitude, central frequency, frequency band, spectral distribution, directional distributional band and water depth.
     In the third chapter, the extreme and breaking waves were generated using focusing wave method in three-dimensional wave basin, considering effects of different assumed amplitudes, spectral distributions, water depth and directional distributions. The focusing wave surface characteristics, breaking criteria, the change of spectrum and energy loss are discussed. The results show that wave focusing and breaking are strongly affected by assumed focusing amplitude, frequency spectra, water depth and directional distribution. The waves with larger amplitude and shallower water depth are easier to break. For the same water depth, the waves with constant wave amplitude are easier to break than those of constant wave steepness.
     In the following chapters, the numerical model was developed based on the high-order spectral (HOS) method. The method has the properties of fast convergence and low computational costs, owing to using the fast Fourier transformation (FFT) method to solve the differential equations. It permits the fully-nonlinear simulation of gravity-wave evolution within periodic unbounded 3-D domains. But the original surface and velocity potential should be given.. In order to simulate the generation of focusing waves, the model is developed by introducing wave maker boundary.
     In the sixth chapter, the 2-Dand 3-D focusing waves were numerically studied using the developed numerical model, considering different parameters. The characteristics of the focusing wave including surface elevations, maximum crest, the shift of focusing point, surface parameters and the change of frequency spectra are discussed. The results indicate that the nonlinearity of the focusing wave becomes obviously with the increase of assumed
     focusing amplitude and central frequency, the decrease of directional distribution and water depth.
     Finally, the numerical model was developed to simulate the wave propagation over regular bottom. The numerical results were compared with experimental results. The comparisons show that the model is available.
     The extreme waves are studied through experimental and numerical method. The results lay the foundation for the study of interaction between wave and structures.
引文
[1] Cummins P. The impulse-response function and ship motion. Schiffstechnik Forschungsh Schiffbau Schiffsmaschineubau, 1962,9:101-109.
    [2] Davis M, Zarnick. Testing ship models in transient waves. Proc. Fifth Symp. on Naval Hydrodynamic, Washington, PC, Office of Naval Research, 1964:509-540.
    [3] Rapp R J, Melville WK. Laboratory study of steep and breaking waves. Transactions Philosophical of the Royal Society of London, 1990, A331: 735-800.
    [4] Kway H L, Lob Y S, Chan, E S. Laboratory study of deep-water breaking waves. Ocean Engineering, 1998,25(8):657-676.
    [5] Baldock T, Swan C, Taylor P. A laboratory study of nonlinear surface waves on water. Philos. Roy. Soc. London, 1996,452A: 649-676.
    [6] Baldock T.E. Nonlinear transient water waves:[ PhD dissertation].London: University of London, 1996.
    [7] She K, Greated CA, Easson WJ. Experimental study of three-dimensional wave breaking. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 1994,120(1): 20-36.
    [8] She K, Greated CA, Easson WJ. Experimental study of three-dimensional wave kinematics. Applied Ocean Research, 1997,19: 329-343.
    [9] Johannessen TB. The effect of directionality on the nonlinear behavior of extreme transient ocean waves:[PhD dissertation].London: University of London, 1997.
    [10] Wu CH, Nepf HM. Breaking criteria and energy losses for three-dimensional wave breaking, Journal of Geophysical Research, 2002,107(C10) 41-1-18.
    [11] Hong, K and Liu S. The directional characteristics of breaking waves generated by the directional focusing in a wave basin, Proceedings of 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, 2002.
    [12] Hong K, Meza E, Liu S. Energy dissipation and transfer in breaking waves generated by directional and multi-frequency focusing in deep water, Proceedings of the Fourteenth International Offshore and Polar Engineering Conference, Toulon, France, 2004.
    [13] Gibson RS, Swan C. The evolution of large ocean waves: the role of local and rapid spectral changes, P R SOC. A, 2007,463: 21-48.
    [14] 柳淑学,洪起庸.三维极限波浪的产生方法及特性,海洋学报,2004,6:133-142.
    [15] 裴玉国,张宁川,张运秋.利用波浪频谱数值模拟畸形波的方法探究.海洋学报,2007,3:172-178.
    [16] 庞红犁,极端波浪作用下海上结构物高频共振响应的数值模拟研究:(博士学位论文),天津:天津大学,2003.
    [17] Chaplin J. On frequency-focusing unidirectional waves. Journal of Offshore and Polar Engineering, 1996,6(2): 131-137.
    
    [18] Greenhow M, Vinje T, Brevig P et al. A theoretical and experimental study of the capsize of Salter's Duck in extreme waves. J. Fluid Mech.,1982,118: 221-239.
    
    [19] Mansard EPD, Funke ER. A new approach to transient wave generation. Proc. 18~(th) Int. Conf. on Coastal Engineering, ASCE, 1982:710-724.
    
    [20] Kim CH, Randall RE, Krafft MJ et al. Experiment study of kinematics of large transient wave in 2-D wave tank,OTC6364,1900:195-202.
    
    [21] Longuet-Higgins MS. Breaking waves in deep or shallow water. Proc. 10~(th) Conf, on Naval Hydrodynamics, MIT, 1974:597-605.
    
    [22] 俞聿修.随机波浪及其工程应用.大连:大连理工大学出版社,2002.
    
    [23] Stokes GG, Supplement to a paper on the theory of oscillatory waves, Mathematical Physical Oceanography, 1980, 1.
    
    [24] Michell JH, On the highest waves in water, Phil. Mag., 1893, 5(36):430-437.
    
    [25] Longuet-Higgins MS," Fox MJH, Theory of the Almost-highest Wave:The Inner Solution, J. of Fluid Mechanics, 1977,80: 721-741.
    
    [26] McCowan J, On the Highest Wave of Permanent Type, Phil, Mag, 1894, 5(38):351-357.
    
    [27] Goda YA, Synthesis of Breaker Indices, Trans. Of ASCE, 1970, 2:227-229.
    
    [28] Li YC, Dong GH, Wave breaking phenomena of irregular waves conbined with opposing current, China Ocean Engineering, 1993, 7(2): 197-206.
    
    [29] Kjeldsen S, Lystad M, and Myrhaug D. Forecast of breaking waves on the Norwegian continental shelf. Norwegian Meteorological Institute and Norwegian Hydrodynamic Laboratories, Division Ship and Ocean Laboratory, Trondheim, Norway, 1981.
    
    [30] Kjeldsen S and Myrhaug D. Breaking waves in deep water and resulting wave forces, 11th Off shore Technical Conference, Houston, Tex., 1979.
    
    [31] Kjeldsen S, Myrhaug D. Wave-wave interactions, current-wave interactions and resulting extreme waves and breaking waves, 17th Conference on Coastal Engineering, Am. Soc. of Civ. Eng., Sydney, N. S. W. Canada, 1980
    
    [32] Snyder R L, Kennedy R M. On the formation of whitecaps by a threshold mechanism, Part I: Basic formalism. J. Phys. Oceanogr., 1983, 13:1482-1492.
    
    [33] Dawson T H, Kriebel D L, Wallendorf L A. Breaking waves in laboratory generated JONSWAP seas. Appl. Ocean Res., 1993,13:85-93.
    
    [34] Longuet-Higgins M S. Accelaration in steep greavity. J. Phy. Oceanogr., 1985,15:1570-1579.
    
    [35] Melville W K, Rapp R J, Chan E S, Wave breaking , turbulence and mixing. The Ocean Surface, 1985: 413-418.
    [36] lwata K, Tomita W K. Variation of potential and kinematics wave energy in the surf zone. Proceedings of the 23rd Conference on Coastal Engineering, 1992,1:336-349.
    [37] Nepf H M, Wu C H, Chan E S. A comparison of two-and three-dimension wave breaking. Journal of Physical Oceanography, 1997,28:1496-1510.
    [38] Fochesato C, Grilli S, Diad F. Numerical modeling of extreme rogue waves generated by directional energy focusing, Wave Motion, 2007,44:395-416.
    [39] Longuet-Higgins M S, Cokelet E D, The deformation of steep surface waves on wave. A numerical method of computation. Proc. R. Soc. Lond.,1976, A350:1-26.
    [40] Grilli S T, Sylvia V, Philip W. Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Engineering Analysis with Boundary Elements, 2002,26:301-313.
    [41] Hart Tao, Zhang Qinghe, Pang Hongli, Qin Chongren. Generation and properties of Freak waves in A Numerical Wave Tank. China Ocean Engineering, 18 (2):281-290.
    [42] 孙大鹏,李玉成.数值水槽内的阻尼消波和波浪变形计算.海洋工程,2000,18(10):1-6.
    [43] Wu G X, Eatock Taylor R. Finite element analysis of two dimensional nonlinear transient water waves. Applied Ocean Research, 1994,16:363-372.
    [44] Wu G X, Ma Q W, Eatock Taylor R. Numerical simulation of sloshing waves in a 3D tank based on a finite element method, Applied Ocean Research, 1998,20:337-355.
    [45] Hu P, Wu G X, Ma Q W. Numerical simulation of nonlinear wave radiation by a moving vertical cylinder. Ocean Engineering, 2002,29(14):1733-1750.
    [46] Wang C Z, Khoo B C. Finite element analysis of two-dimensional nonlinear sloshing problems in random excitations. Ocean Engineering, 2005,32:107-133.
    [47] 邹志利,邱大洪,王永学.VOF方法模拟波浪槽中二维非线性波.水动力学研究与进展A辑,1996,11(1):93-103.
    [48] 任冰,王永学.非线性波浪对结构物的冲击作用.大连理工大学学报,1999,39(4):562-566.
    [49] Dommermuth D G, Yue D K P. A high-order spectral method for the study of nonlinear gravitywaves. Journal Fluid Mechanics, 1987,184: 267-288.
    [50] West B, Brueckner K, Janda R, Milder M and Milton R A new numerical method for surface hydrodynamics, J. Geophys. Res., 1987,92:11803-11824.
    [51] Craig W, Sulem C. Numerical simulation of gravity waves. J. Comp. Phys., 1993,108(1):73-83.
    [52] Ducrozet G, Bonnefoy F, Touze D L, et al. 3-D HOS simulation of extreme waves in openg seas. Natural Hazards and Earth System Science, 2007,7:109-122.
    [53] Agnon Y, Bingham H B. A non-periodic spectral method with application to nonlinear water waves. European Journal Mech. B/Fluids, 1999,18:527-534.
    [54] Bonnefoy F, Touze D L, Ferrant P. A fully-spectral 3d time-domain model for second-order simulation of wavetank experiments. Part A: Formulation, implementation and numerical properties. Applied Ocean Research, in press.
    [55] Bonnefoy F, Touze D L, Ferrant P. A fully-spectral 3d time-domain model for second-order simulation of wavetank experiments. Part B: Validation, calibration versus experiments and sample application. Applied Ocean Research, in press.
    [56] Goda. A comporative review on the functional forms of directional wave spectrum. Coastal Eng. J., 1999,41(I):1-20.
    [57] Benjamin T, Feir J, The disintegration of wave trains in deep water, J fluid Mech, 1967, 27:327-329.
    [58] Duncan J H, An experimental investigation of breaking waves produced by a towed hydrofoil, Proc. R. Soc. London, Set. A, 1981, 377:331-348.
    [59] Bonmarin P, Geometric properties of deep water breaking waves, J. Fluid Mech., 1989,209:405-433.
    [60] 李玉成,董国海.不规则波在逆流中的破碎,海洋通报,1993,12(5):1-8.
    [61] 李玉成,崔立芳,于洋等,平缓岸坡上波浪谱的变形及破碎,中国工程科学,2000,2(5):51-59.
    [62] Thorpe SA, Dynamical process of transfer at the sea surface, Prog. Oceanogr.,1995, 35:315-352.
    [63] Pergrine DH, Breaking waves on beaches, Annu. Rev. Fluid Mech., 1983, 15, 149-178.
    [64] Longuet-Higgins MS, Stewart RW, The change in amplitude of short gravity waves on steady non-uniform current, J. Fluid Mech., 1961, 10:529-549.
    [65] Banner M, Phillips OM, On the incipient breaking of small scale waves, J. Fluid Mech., 1974, 77: 825-842.
    [66] honguet-Higgins M. On wavebreaking and equilibrium spectrum of wind, Proc. R. Soc. London, 1969, A(310): 151-159.
    [67] Tulin MP, Li j, On the breaking of energetic waves, Int. J. offshore Polar Eng., 1992, 2: 46-53.
    [68] 董国海,浅水区波浪的变形及破碎:(博士学位论文),大连:大连理工大学,1992.
    [69] Easson WJ, Breaking waves, Offshore Tech. Rep. 0R0-96-035, U. K. Health and Safety Executive, London. 1997.
    [70] 楼顺里,曹露洁,田纪伟,深水破碎判据的研究,Ⅰ.破碎波判据的研究概率及计算方法,海洋学报,1996,18(3):12-20.
    [71] 楼顺里,曹露洁,田纪伟,深水破碎判据的研究,Ⅱ.一种风浪破碎判据的模型即实测结果分析,一海洋学报,1996,18(4):19-25.
    [72] Sand SE, Mynett AE. Directional wave generation and analysis. Proceedings of IAHR Seminar, Lausanne, Switzerland, 1987:209-235.
    [73] Takayama T. Theory of oblique waves generated by serpent type wave-makers. Coastal Engineering in Japan, 1984,27:1-19.
    [74] 李木国,柳淑学,张群等,蛇形多向不规则波造波机产生波浪的方法及特性,大连理工大学学报,2003,43(3):354-361.
    [75] Skyner DJ. The mechanics of extreme water waves:[PhD dissertation].Edinburgh: The University of Edinburgh, 1992.
    [76] Johannessen TB, Swan C, Nonlinear transient water waves-part I, A numerical method of-computation with comparisons to 2-D laboratory data, Appl. Ocean Res., 1997, 19: 293-308.
    [77] Vinje T, Brevig P. Nonlinear ship motion. Proc. 3rd Intl. Symp. Num. Ship Hydro., Paris, 1981.
    [78] Orszag SA. Numerical simulation of incompressible flows within simple boundaries: accuracy. J. Fluid Mech., 1971,49,75-112.
    [79] Wei G, Kirby T. Time-dependent numerical code for extended Boussineaq equation. J. Waterway, Port, Coast and Oc. Eng., ASCE, 1995,121(5):251-261.
    [80] 柳淑学,俞聿修,赖国璋等,数值求解Boussinesq方程的有限元法,水动力学研究与进展,2000,15:399-410.
    [81] Bingham HB, Agnon Y. A fourier-boussinesq method for nonlinear water waves. European Journal of Mechanics B/Fluids, 2005, 24:255-274.
    [82] Dean RG. and Dalrymple P,A. Water wave mechanics for engineers and scientists.Prentice-hall inc.,1984.
    [83] Larsen J, Dancy H. Open boundaries in short wave simulations-a new approach. Coastal Eng., 1991,6A(2):99-109.
    [84] Taylor PH, Haagsma IJ. Focusing of steep wave groups on deep water. In International Symposium: Waves-Physical and Numerical Modelling, UBC, Vancouver, 1994:862-870.
    [85] Davis AS, Heathershaw AD. Surface-wave propagation over sinusoidally varying topography. J. Fluid Mech.,1984,144:419-443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700