垃圾渗滤液处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先通过对垃圾填埋场渗滤液产生过程的分析,明确了渗滤液的水质特征,得出早期渗滤液与晚期渗滤液在水质、可处理性等方面存在较大差异,渗滤液的处理在某种程度上应是渗滤液在填埋场中生物净化的继续与强化。渗滤液处理的难点不仅是早期渗滤液含有高浓度的有机污染物(COD),而更重要的是晚期渗滤液含有高浓度的氨氮及相应的低C/N的水质特点。
     为了处理高浓度氨氮、低C/N渗滤液,国内外科研人员进行了大量的研究,提出了好氧反硝化、厌氧氨氧化和短程硝化反硝化,好氧反硝化菌可以利用硝化过程中充足的碳源进行反硝化;厌氧氨氧化是在缺氧条件下,以NO_2~-为电子受体,直接把氨氧化成氮气;短程硝化反硝化将除氮过程控制在亚硝化阶段,不但节省了反硝化过程中的碳源,而且减少了能量的消耗。但是以上这些方法存在的主要问题是,投资太高,技术可靠性不够成熟。
     本试验的第一部,着重探讨了序批式好氧反应器与垃圾填埋体联合处理垃圾渗滤液的可行性。试验发现采用序批式好氧反应器处理污染物浓度较高的垃圾渗滤液时,当COD负荷为0.91kg/m~3/d时,硝化反应还可以正常进行,当高于该负荷时,硝化细菌就会由于失去空间而受到抑制,从而使硝化反应失败。同时,采用序批式好氧反应器处理高浓度氨氮的废水时,存在严重的吹脱问题。
     本试验的第二部分进行垃圾填埋体独立试验。利用第一和第二部分试验,本文建立了回灌条件下,厌氧垃圾填埋体中氨氮析出总体模型,该模型表达式为:
     垃圾填埋体出水氨氮=进水氨氮未被降解部分+进水中有机氮经氨化作用产生的氨氮+填埋体降解产生的氨氮。具体关系见下式(式中各个参数代表的意义见第6章):
    
    ,、~、_,。。、,‘习蝙、。二、劝.~;、.,“蝙二,泊.,仍*
    又JvJ石少2=UvJ石少一JI}~二一一二,叭zy注从少1,g},叭JvC少一宁JZ}二犷一下,l,‘,丫l丫J3、场JJ
     又凡+。少又凡十。/
     本文着重讨论了垃圾厌氧填埋场达到稳定后温度对模型的
    影响。研究显示温度与填埋体中氨氮的析出呈二次函数关系,本
    试验的最佳方程为:Y=1.3512梦+2.29“x+639.39(其中,Y、
    X、R代表意义见式6一l),与实验数据进行拟和,一其相关性系数
    扩可以达到0.9185,从而验证了该二次函数关系的正确性。
     本试验的第三部分采用连续式好氧反应器进行试验,将新老
    垃圾渗滤液配比,以提高老垃圾渗滤液的可生化性,从而解决了
    老垃圾渗滤液难处理的问题。在本部分试验中,老新垃圾渗滤液
    混合配比为2:3时,此时进水COD和氨氮浓度分别为:498736
    mg/L和493 .54 mg几,CoD和氨氮容积负荷分别为1 .54kg/ m3zd
    和o.4kg/ m3zd,出水eoo浓度为357.57m叭,去除率可达92.530,0,
    出水氨氮浓度为135.67,去除率可达72.51%。
     连续好氧反应部分实验的系统是个开放的系统,当序批式反
    应器出水经回流系统进入垃圾厌氧填埋体时,填埋体中的污染物
    经过溶解、冲刷等作用会进入试验系统,所以在讨论系统总氮去
    除率时,试验采用如下式子:系统总氮去除率二系统总氮去除总量
    /反应器进水总氮:(好氧反应器进水总氮一出水总氮+垃圾柱进水硝
    酸盐氮+垃圾柱进水亚硝酸盐氮一垃圾柱出水硝酸盐氮一垃圾柱出水
    亚硝酸盐氮)/反应器进水总氮。渗滤液在序批式好氧反应器中的
    HRT越大,系统总氮去除率越高。但是这种增加有一定限度,本
    试验中当好氧反应器HRI,从48h增加到60h时,总氮的去除效率
    只增加了0.08%,因此本试验总氮去除率的最佳好氧反应器HRI,
    为48h。回流比越大,总氮去除率越高。但是回流比增加,好氧反
    应器进水中老垃圾渗滤液的比例也会增加,老垃圾渗滤液的增加
    势必会降低混合废水的可生化性,增加了后续处理的难度。综合
    考虑以上因素,本试验的最佳回流比为:2/3。
     垃圾填埋体可以为反硝化提供有机物,解决反硝化过程中的
    碳源问题,同时实验结果显示反硝化功能非常强大,在最大体积
    
    负荷为1 .29/n13的条件下,99%的硝酸盐氮和亚硝酸盐氮实现了反
    硝化。
The quality characteristics of the leachates from municipal landfills was determined through the analysis of the production process of leachates in landfills in this paper .It was concluded that there are large differences in quality and treatment is the continuation and intensified of the purification in landfills. The difficulty of leachate treatment is not only the organic pollutants of high concentration in the early leachate, but also the high ammonium concentration and low C/N ratio of the old leachates.
    In order to treat the landfill leachate, recent years, people found aerobic denitrification, Anaerobic Ammonium Oxidation (ANAMMOX) and nitrification/denitrification via nitrite. In the process of aerobic denitrification, there are enough carbon resources for denitrification. In the process of ANAMMOX, ammonium is converted to nitrogen gas under anoxic conditions with nitrite as the electron acceptor. Nitrification/denitrification via nitrite can save lots of carbon resources and energy. But, to our regret, these new ways
    65
    
    
    need high investment and further research on the appliance.
    In the first part of our test, the feasibility of united treatment of SBR and anaerobic landfill is discussed. We find that, nitrification in the SBR will be destroyed when the COD load is higher than 0.91 kg/m3/d. We also find that a lot of ammonium is tripped in the SBR.
    In the second part, the anaerobic landfill test is built only. Through above research, we put forward the mathematical model of the concentration of ammonium in the landfill leachate of stable landfills under recirculating. The function is seen in the next page. We found that the relationship between the temperature and the concentration of ammonium was quadritic after the municipal anaerobic landfills were stable. The best function is: Y= 1.3811 X2 + 2.2964 X + 639.39 and the correlation-R2 is 0.9185.
    In the third part of our test, the feasibility of united treatment of continuous aerobic reactor and anaerobic landfill is discussed. The influent of the reactor is mixtures of new and old landfill leachate. In this way, the degradability is improved. When the rate between new and old landfill leachate is 2:3, influent COD and ammonium are
    66
    
    4987.36 mg/L and 493.54 mg/L, the volume loads of influent COD and ammonium are 1.54kg/ m3/d and 0.4kg/ m3/d, the effluent concentrations of COD and ammonium are 357.57mg/L and 135.67 mg/L. The removal rates of COD and ammonium are 92.83% and 72.51%, respectively.
    At the same time, we also find that when the volume load is 1.2g/m3, the 99% of the NOX-N is removed in the anaerobic landfill.
引文
1 刘爱东,城市生活垃圾场建设与水污染防治,内蒙古环境保护,2000,12(4),35~37
    2 喻晓,垃圾渗滤液污染特性及其处理技术研究和应用趋势,环境科学与技术,2002,25(5),43~45
    3 郭璇华,垃圾填埋场渗出液中有害成分的研究,中国环境监测,2002,18(2),42~44
    4 蒋海涛,城市垃圾填埋场渗滤液的水质特性,环境保护科学,2002,28,11~13
    5 沈耀良 等,垃圾填埋场渗滤液处理特性的分析,江苏环境科技 1999,2,5~7
    6 Ehrig.H.J, Treatment of Sanitary Landfill Leachate:Biological Treatment, Waste Management & Research, 1984, 2:131~152
    7 Azevedo B.D. et al, The effect of ammonia loading and operating temperature on nitrification and denitrification of a high ammonia landfill leachate. Can,J.of Civ.Eng, 1995, 22(3), 524~534
    8 Knox.K, Practice and trends in landfill in the UK. ISWA Symposium process,Technology and Environmental Impact of Sanitary landfill, Cagliari,Italy, 1987
    9 Blakey N.C. et al, Anaerobic lagoons and UASB reacters: laboratory experiments.In:Landfilling of Waste:leachate, London, Elsevier Applied Science, 1992
    10 Jarls J.M. et al, Combination of UASB pre-treatment and reverse osmosis. In:Landfilling of Waste:leachate, London, Elsevier Applied Science, 1992
    11 Miceal P.Campbell et al, Biological Treatment of Hazardous Waste Landfill Leachate: A Comparative Study of Fixed Film Reactors, Innovative Technology Site Remediation Hazardous Waste Manage. Proc. of Natl. Conf. 1995, 125~132
    12 王琳,垃圾填埋渗滤液的处理方法,城市环境与城市生态,1998,11(1),25~28
    
    
    13 周爱姣 等,高压脉冲放电等离子体处理垃圾渗滤液,武汉城市建设学院学报,2001,18(3~4),44~47
    14 陈玉成 等,城市生活垃圾渗滤液土地处理的模拟研究,城市环境与城市生态,2001,14(2),
    15 赵庆良 等,垃圾渗滤液中的氨氮对微生物活性的抑制作用,环境污染与防止,1998,20(6),1~4
    16 刘疆鹰,大型垃圾填埋场渗滤水氨氮衰减规律,环境科学学报,2001,21(3),323~327
    17 王宗平 等,垃圾渗滤液预处理——氨吹脱,给水排水,2001,27(6),15~19
    18 倪佩兰 等,垃圾填埋渗滤液氨氮的吹脱处理工艺技术研究,环境卫生工程,2001,9(3),133~135
    19 赵庆良 等,化学沉淀法去除垃圾渗滤液中的氨氮,环境科学,1999,20(5),90~92
    20 孙英杰 等,生活垃圾填埋场渗滤液中氨氮的脱除,给水排水 2002,28(7),35~37
    21 Enzymatic treatment of sanitary landfill leachate, Chemosphere 2001, 44, 1103~1108
    22 Nitrification of anaerobically pretreated municipal landfill leachate at low temperature, Water Research, 34(5), 1435~1446
    23 袁居新 等,垃圾渗滤液处理中的高效生物脱氮现象,中国给水排水,2002,18(3),76~78
    24 J.P.Y. Jokela, Biological nitrogen removal from municipal landfill leachate:low-cost nitrification in biofilters and laboratory scale in-situ denitrification, Water Research, 2002, 36, 4079~4087
    25 Denitrification in a Carbon and Nitrogen Removal System for Leachate Treatment--erformance of a Upflow Sludge Blanket (USB) Reactor,Water Science Technology, 1999, 40(8),145~151
    26 刘锦霞,膜生物反应器脱氮除磷工艺的研究进展,城市环境与城市生态,2001,14(2),27~29
    27 SuwanY., Single stage-single sludge nitrogen removal by an activated sludge process with cross flow filtration[J], Wat.Res, 1992, 9, 1149-1157
    
    
    28 李军 等,生活垃圾渗滤液处理中试研究,中国给水排水,2002,18(3),1~6
    29 李旭东 等,垃圾填埋场渗滤液处理工艺研究,应用与环境生物学报,1999,5,143~146
    30 方士 等,两级SBR—PAC吸附混凝法处理垃圾渗滤液的研究,浙江大学学报(农业与生命科学版)2002,28(4),435~439
    31 王里奥,垃圾渗滤液处理的试验研究,重庆大学学报(自然科学版),2002,25(2),99~102
    32 Christine Helmer, Simultaneous nitrification/denitrification in an aerobic biofilm system, Wat.Sci.Tech, 1998, 37(4-5):183~187
    33 Christine Helmer, et al, Nitrogen loss in a nitrifying biofilm system, Wat. Sci. Tech, 1999, 39(7):13~17
    34 堵国成 等,好氧同时硝化—反硝化脱氮微生物的混合培养,无锡轻工大学学报,2002,21(5):515~518
    35 吕锡武 等,溶解氧及活性污泥浓度对同步硝化反硝化的影响,城市环境与生态,2001,14(1):33~35
    36 赵宗生 等,高氨氮渗滤液处理的好氧反硝化工艺研究,中国环境科学,2002,22(5):412~415.
    37 周少奇,方汉平,低COD/N-NH4+比废水同时硝化反硝化生物处理策略,环境污染与防治,2000,22(1):18~21.
    38 Freitag.A. Growth of Nitrobacter by dissimilatoric nitrate reduction, FEMS Microbiol. Lett, 1987, 48:105~109.
    39 Mulder A, Kuenen J G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 1995,16:177~184.
    40 Konrad Egli, et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol. 2001, 175:198~207.
    41 郑平,Jetten M S M,厌氧氨氧化菌基质转化特性的研究,浙江农业大学学报,1997,23(4):409~413.
    42 赵宗生,垃圾填埋场渗滤液水质与处理技术研究,博士论文
    
    
    43 王志盈 等,低溶氧下生物流化床内亚硝化过程的选择特性研究,西安建筑科技大学报,2000,32(1):4~6
    44 Mulder J W et al, N-removal by SHARON[A], IAWQ conference, 1997:30~31
    45 汪慧贞 等,生物脱氮工艺的新发展-半硝化和厌氧氨氧化水处理技术,2002,28(5):308~310
    46 Jettern MSM et al, Towards a more sustainable wastewater treatment system, War. Sci. Tech, 1997, 35(9):171~180
    47 国家环保局《水和废水监测分析方法》编委会,水和废水监测分析方法,第三版,北京:中国环境科学出版社,1997.
    48 赵由才 等,填埋场垃圾降解规律研究,环境科学学报,200020(6):736~740
    49 汤厚宽 等,细菌生长速率与温度关系的微量热法研究,,湖北农学院学报,1999 19(2):17~173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700