层状云系降水结构特征及飞机人工增雨作业的综合观测分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在发展的云系中找出合适的云降水结构是人工影响天气成功的关键,卫星、雷达和飞机等是分析云宏微观结构和作业条件及效果的主要手段,然而各种观测各有优缺点,人工增雨作业的条件监测识别和效果分析都十分困难。如何结合卫星雷达等遥感手段和飞机观测资料,对综合分析云的宏微观结构特征,研究人工增雨作业条件和播云效果十分重要,也是提高人影作业科学水平的关键。
     本文利用2009年4月18日和2010年4月20日两次人工增雨外场试验,综合利用卫星、雷达、加密探空、雨量及飞机云物理等观测,分析了播云前后云系宏微观结构特征以及地面降雨量的变化。主要结果有:
     1)2009年4月18日张家口地区的降水云系为积层混合云,云中过冷水丰沛,具有很好的可播性,强可播区占作业云体的主要部分;云的可播性与雷达回波有一定的对应关系,C波段雷达回波的强弱与降水粒子谱呈现较好的相关性,与云滴谱相关性相对较弱;播云作业过后,云中小云粒子浓度减少,大云粒子和降水粒子浓度增加,雷达回波的相应位置出现亮带;作业影响区和对比区的雨量对比分析显示,作业过后近三小时内降水增加。
     2)2010年4月20日山西地区的降水云系为典型的层状云降水,云顶高度约为8km,云中过冷水含量不高,可播性较差,大值区域主要集中在2500m-4500m高度上,大云粒子的直径随着高度的增加而增大;水平分布上,各种粒子大小分布较均匀,浓度略有起伏,且降水粒子浓度大值区对应的小云粒子浓度较低,而其浓度低值区对应的小云粒子浓度较高,此次降水的主要成因可能为冰水转换机制。作业过后,云顶高度有降低趋势,雷达回波整体变化并不明显,降水略有增加。
Finding the right cloud precipitation microphysical characteristics in growing cloud is the key point of weather modification, satellite, radar and plane are the major ways to research into cloud macro and micro structure,however, every observation way has its advantages and disadvantages, the condition monitoring and effect analysis of artificial precipitation are very hard.. So, how to combine remote sensing methods,such as satellite and radar, and plane observation data, is very important to comprehensively analyze cloud macro and micro structure characteristics, which is also the key to improve the science level of weather modification.
     Combining the observations of satellite, radar, intensive air sounding, rainfall and plane cloud physics, the paper make a research on two artificial precipitation field experiments, which are operated on thel8th,April,2009and the20th,April,2010respectly. After analyzing cloud macro and micro structure characteristics and the change of ground precipitation before and after cloud seeding. The main results conclude as follows:
     1) The precipitation cloud of20th, April,2010, which happened in Zhang jiakou, Hebei province, is convective-stratiform mixed clouds with large amount of super-cooled liquid water, and is very suitable to be seeded. During the seeding event, the regions which are suitable to seed are the main part of operated clouds. There's some corresponding relationship between the cloud seeding ability and radar echoes. The intensity of C-band radar echoes is in good relationship with precipitation particle spectrum, but in weak relativity of cloud particle spectrum. After seeding, the concentration of small-particle decreased, while large cloud droplets and raindrops concentration increased, and radar echo showed a bright band in the relevant position. Comparison analysis of target zone with control areas, it shows that rainfall increased in about three hours after seeding.
     2)The precipitation cloud of Shanxi district.20th,April,2010,is typical stratiform cloud precipitation, the cloud top is about at the height of8km, liquid water content in cloud is not high.and the seedable is not very well, the area with maximum value mainly focus on the height of2500km to4500km. The diameters of big cloud particles rise with height; However, it shows a uniform particle distribution in horizontal,, the density has slightly ups and downs.What's more, the maximum value area of precipitation particles corresponding to the low density of small cloud particles, but its low density area corresponding to high density small cloud particles. This precipitation case may be triggered by the ice-water switching mechanism. After the operation, the cloud top has the tendency to lower, the overall change of radar echo is not obvious, and the precipitation increases slightly.
引文
[1]赵增亮,层状云的微物理结构探测研究.D.博士学位论文(北京大学)2010年
    [2]濮江平,层积云物理结构观测及其反演技术研究.D.博士学位论文(南京信息工程大学)2010年
    [3]Grabowski W W, Wu W X, Moncrieff M W. Cloud resolving modeling of t ropical clouds systems during Phase III:Effects of cloud microphysics. J. A tmos. Sci., 1999,56:2384~2402
    [4]Rangno,A.L.and Hobbs P V.,microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean.Q.J.R.Meteorol.Soc.2005,131:639-673
    [5]Houze R A, Hobbs P V, Herzegh P H, et al. Size dist ributions of precipitation particles in frontal clouds. J.A tmos.Sci.,1979,36:156~162
    [6]Parson s D B. Meso-scale and micro-scale structure and organization of clouds and precipitat ion in midlatitude cyclones, Pt.7, form at ion, development, interact ion, and dissipation of rainb ands [J]. AtmosSc,i 1983,40(3):9-579.
    [7]Lo K K, Passarelli R E. The growt h of snow in winter storms:An airborne observational study. J. A tmos. S ci.
    [8]Gorden G L, Marwitz J D, Bradford M. Hydrometeor distributions in California rainbands. Conference on Cloud Physics, Chicago,1982.207~210
    [9]Fleishauer, R.P., V.E.Lrason.T.H.Vonder Haar, Observed microphysical structure of mid-level mix-phase clouds J.Atoms. Sci.,2002,59,1779-1804
    [10]Gamache J F, Houze R A Jr, Mesoscale air motions associated with a tropical squall line. Mon. Wwa. Rev.,1982,110:118-135
    [11]ZhiEn Wang, Knneth, Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors, Journal of Applied meteorology, Otc.2001,40:1665~1682
    [12]ZhiEn Wang, Knneth, Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part I:Algorithm Description and Comparison with In Situ Data, Journal of Applied meteorology.Mar.2002,41:218~229
    [13]ZhiEn Wang, Knneth, Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II:Midlatitude Cirrus Microphysical and Radiative Properties, Journal of the atmospheric sciences.Jul.2002:2291~2302
    [14]Knneth, ZhiEn Wang, Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical Model, Journal of Applied meteorology.Jun.2002:620~628
    [15]游来光,马培民,胡志晋.北方层状云人工降水试验研究.气象科技.2002,30 (增刊):19-56
    [16]胡志晋,秦瑜,王玉彬.层状冷云数值模式.气象学报.1983,41(2):194~202
    [17]胡志晋.层状云人工增雨机制、条件和方法的探讨.应用气象学报.2001,12(增刊):10~13
    [18]洪延超,周非非.“催化供给”云降水形成机理的数值模拟研究.[J]大气科学.2005,29(6):885~896
    [19]余兴,戴进,姚展宇.过冷层状云播云催化剂扩散的数值试验.[J]气象学报,2005,63:14-21
    [20]游景炎,段英,游来光,云降水物理和人工增雨技术研究,气象出版社,1994年10月,155~163
    [21]段英,吴志会,石立新,飞机人工增雨催化条件的研究.生态农业研究,1998年3月第6卷第1期,80-83
    [22]杨文霞,牛生杰,魏俊国,等,河北省层状云系微物理结构的飞机观测研究.高原气象,2005,24(1);84-90
    [23]陶树旺,刘卫国,胡志晋,等,层状冷云人工增雨可播性实时识别技术研究应用气象学报,2001年3月第12卷(增刊),14-22
    [24]余兴,Daniel Rosenfeld. Satellite retrieved microphysical properties of AgI seeding tracks in supercooled layer clouds.16. AMS Conf. on Planned and Inadvertent Weather Modification, San Diego, CA (USA),8-14 Jan 2005
    [25]张佃国,2003年秋季北京及周边地区气溶胶谱分析和云系微物理飞机探测研究.硕士学位论文(南京信息工程大学),2006年
    [26]张佃国;郭学良等,2003年8~9月北京及周边地区云系微物理飞机探测研究大气科学,2007年7月第31卷第4期,596~610
    [27]张佃国;郭学良等,北京及周边地区2003年夏秋季气溶胶和云滴分布特征南京气象学院学报,2007年6月第30卷第3期.,402-410
    [28]赵仕雄,德力格尔,涂多彬.黄河上游降水云层对流特性及降水微结构机制研究.[J]高原气象,2003,22(4):385-392
    [29]周毓荃,苏爱芳,吴蓁等.河南冷锋气旋层状降水云系多尺度结构和降水物理机制的观测研究.[J]气象学报,2005,63:79-87
    [30]濮江平,郑国光、姚展予等.北京初秋—侧层积云飞机探测作业的微物理结构分析.[J]气象学报,2005,63:70-78
    [31]周毓荃,陈英英李娟等.用FY-2C/D卫星等综合观测资料反演云物理特性产品及检验.气象,2008,34(12):27-35.
    [32]刘晓春;毛节泰.云中液水含量与云光学厚度的统计关系研究.北京大学学报(自然科学版),2008年01期.115-120
    [33]陈英英;唐仁茂;周毓荃等.FY-2C/D卫星微物理特性参数产品在地面降水分析中的应用.气象,2009年02期.
    [34]周毓荃,蔡淼,欧建军等.云特征参数与降水相关性的研究.[J]大气科学学报,2011,34;641~652
    [35]李红斌,何玉科,姚展予,等,多普勒雷达速度场特征在人工增雨作业中的判据指标应用.[J]气象,2008年6月第6期,102-106
    [36]李红斌,胡志群,张家伟等,多普勒天气雷达速度场特征及在人工增雨中的应用.气象科学,2009年8月第4期,564-568
    [37]王慧娟,云中液态水的探测研究,南京信息工程大学硕士研究生论文,2008年
    [38]刘卫国,苏正军,王广河等,2003,新一代机载PMS粒子测量系统及应用.应用气象学报,14(增刊),11-18
    [39]Ge Verver, Masatomo Fujiwara. Performance of the Vaisala RS80A/H and RS90 Humicap Sensors and the Meteolabor "Snow White" Chilled-Mirror Hygrometer in Paramaribo, Suriname[J]. Journal of Atmospheric and Oceanic Technology,2006,23(11):1506~1518
    [40]R. A.Ferrare, S. H. Melfi, D. N. Whiteman, etc. A Comparison of Water Vaper Measurements Made by Raman Lidar and Radiosonde[J]. Journal of Atmospheric and Oceanic Technology,1995,12(6):1177~1195
    [41]Junhong Wang, Harold L. Cole, David J. Carlson, etc. Correction of humidity Measurement Errors from the Vaisala RS80 Radiosonde-Application to TOGA COARE Data[J]. Journal of Atmospheric and Oceanic Technology,2002,19(7):981~1002
    [42]H. Vomel, H. Selkirk, L. Miloshevich, etc. Radiation Dry Bias of the Vaisala RS92 Humidity Sensor [J]. Journal of Atmospheric and Oceanic Technology,2007,24(6):953-963
    [43]T. M. Suortti. Tropospheric Comparisons of Vaisala Radiosondes and Balloon-Borne Frost-Point and Lyman-a Hygrometer during the LAUTLOS-WAVVAP Experiment [J]. Journal of Atmospheric and Oceanic Technology,2008,25(2):149-166.
    [44]游来光,北方层状云人工降水研究科学进展报告,1991,37-39
    [45]陈保国,栗珂,雷恒池,等,典型层状云系催化试验的云物理响应研究[J],高原气象,2010,29(4);1036-1042
    [46]Daniel Rosenfeld, William L. Woodley. Effects of Cloud Seeding in West Texas: Additional Results and New Insights. J. Appl. Meteor.,1993,32:1848~1866.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700