含夹层盐穴建腔期围岩损伤灾变诱发机理及减灾原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国目前正进入盐穴能源储库大规模建造时期,而国内盐矿地层中含有大量的难溶或不溶夹层,使得盐穴储库建造变得更加困难,从而增加了盐穴储库建造过程中发生灾变的可能性。因此,充分掌握含夹层盐穴储库建腔期灾变诱发机理,并提出合理科学的减灾理论和方案,这是保障含夹层盐穴储库安全成功建造的关键。
     含夹层盐穴储库水溶建造期最为关键的至灾因素是围岩损伤破坏而诱发的系列灾害,如围岩大变形造成套管鞋破坏,夹层软化垮塌砸弯或砸断造腔套管,腔体应力集中过大导致围岩失稳等灾害。因此,论文重点在掌握含夹层盐穴建腔期围岩损伤诱发灾变的机理,并基于相应的灾变机理提出科学合理的减灾方法。
     (1)利用荧光法和细观分析手段对岩盐及夹层岩体表面裂隙扩展特征开展实验研究,掌握了盐岩、夹层和层状盐岩裂纹扩展扩展特征,并建立了针对张拉裂隙的裂纹起裂判据。研究发现晶粒尺寸、夹层矿物成份、层状岩盐中岩盐部分与夹层部分的交界面形态对裂纹演化扩展均有影响,一般粗晶粒岩盐的强度和变形能力均要小于高纯度细晶粒岩盐。
     (2)分析卤水、温度、应力加卸等因素对腔体围岩的影响,获得了建腔期围岩损伤弱化规律,指出卤水对盐岩主要表现为溶蚀作用而浸泡弱化作用非常小,而卤水浸泡是夹层弱化的最主要因素,温度升高会促进弱化作用。
     (3)通过三轴卸围压试验揭示了盐岩在建腔期的变形机理,并建立考虑卸荷效应和蠕变的损伤本构方程。指出在轴压恒定的情况下,随着围压逐渐减小,盐岩不会出现体积收缩而是一直表现为膨胀变形。当围压卸荷到一定值时会出现加速卸荷扩容,标志盐岩内部裂隙开始发育。当卸荷完成后,试件变形进入蠕变状态,其蠕变速率受卸荷完成时的偏应力和围压控制。
     (4)分析损伤盐岩在不同温度、湿度、应力环境下的损伤恢复特征,掌握盐穴建造期环境下盐岩损伤自愈合机理,建立了损伤与愈合的关系式。研究表明,试件内部张开性裂纹增多,越不利于损伤恢复,但通过一定的围压作用压合裂隙,对损伤恢复有帮助。在有水份补给的条件下,温度的升高会促进晶体内的晶粒再结晶作用,而仅有温度作用,且水分不断蒸发减少时,温度会抑制损伤恢复。
     (5)利用“选定物理法则”搭建了模拟含夹层盐穴建腔期流场的相似模型实验平台,获得了含夹层盐穴造腔期腔内流场运移规律,指出腔内流场可划分为6个作用区:浮羽流区、对流扩散区、饱和沉淀区、缓冲扩散区、边界溶蚀区和瀑布流区。试验发现,注水流量、套管间距及相应的空间位置、夹层赋存状态、夹层数量和注水循环方式对流场运移均有影响。另外计算发现,卤水的非均匀流动对夹层也会产生不同程度的扰动水压力,但这种动水压力相对于夹层自身重力而言非常小,故卤水流动产生的压力不足以使夹层垮塌破坏。
     (6)基于盐穴建腔期围岩损伤弱化机理提出相应的减灾方案。根据含夹层盐穴造腔特点及夹层水软化机理,建立了预测夹层弱化垮塌模型。并针对含夹层盐穴腔体形状不规则,不利于造腔控制,设计开发出能模拟含夹层盐穴建造的造腔软件,可较好地解决含夹层盐穴形状过度畸形诱发灾害。
     (7)通过自行研发的造腔软件模拟多夹层盐穴水溶造腔过程中的腔体形状扩展过程,选取几个关键造腔阶段,并同时考虑盐穴建造期围岩损伤弱化特征,获得了几个关键造腔阶段围岩损伤区域分布规律。
At present, China is turning into a large-scale construction period of salt cavernenergy storage. Owing to there existing a large number of undissolved or insolubleinterlayer in domestic salt mine which makes it more difficult and more possibility ofcatastrophe during storage construction period, so the keys to guaranteed salt cavernsafe and successful building were fully grasping the induced mechanism of catastrophebuilding in salt cavern with interlayer and putting forward the reasonable scientifictheory and scheme of reducing disaster.
     The most important induced factor during storage construction period was thedamage and failure of surrounding rock which caused a series of disasters. For instance,casing shoe damage aroused by large deformation of surrounding rock, casing smashedbending or breaking up by softening interlayer collapse, surrounding rock damage dueto the excessive stress concentration, etc. Therefore, the key points of this paper weremastering the mechanism of induced disaster by surrounding rock damage in storagebuilding in salt cavern with interlayer and proposing the reasonable scientific scheme ofreducing disaster based on corresponding disaster mechanism.
     (1) Using fluorescence and mesoscopic analysis method to carry out experimentalresearch on expansion characteristics of surface crack on salt rock and interlayer, notonly it was mastered but also a criterion of causing crack aimed at tension fracture hadbeen built. The research found that the grain size, mineral composition of interlayer, theinterface shape between salt rock and interlayer in layered salt rock both had effects onthe evolution and extension of crack. In generally, the strength and deformation abilityof coarse grain salt rock were less than fine grain salt rock with high purity.
     (2) From the analysis of influence of cavity surrounding rock caused by brine,temperature, stress of loading and unloading and other factors, it acquired the damageweakening rule of cavity construction period. The experiment results show that brinemainly showed dissolution effect on salt while soak weakening effect was hardlyexisting. The main factor leading interlayer to weakening was brine soak also it can bepromoted with increasing temperature.
     (3) Through the confining pressure reduction tests, it revealed the deformationmechanism of salt rock in cavity construction period and setted up a constitutiveequation of damage considering unloading effect and creep. In the process of constant axial pressure and confining pressure decreasing gradually, the salt rock would notappear volume shrinkage but expansion deformation. It would appear acceleratedunloading flash when the confining pressure decreases to a certain value which marksthe internal crack began to develop. After unloading was completed, the deformation ofthe specimen turned into creep whose rate was controlled by partial stress and confiningpressure.
     (4) Through the analysis of self-healing characteristics of damaged salt rock indifferent temperature, humidity and stress, the self-healing mechanism in salt cavityconstruction period had been mastered and a relation between damage and healing hadbeen established. The research showed that with more internal opening crack inspecimen more disadvantageous to self-healing, but if the cracks were consolidated bycertain confining pressure it would have some help. Higher temperature would promotethe intracrystalline grain recrystallization under water supply, but only undertemperature effect, with moisture continuously losing it would restrain self-healing.
     (5) A similar model experimental platform of flow field in construction period ofsalt caverns was established based on the similar theory of "selected laws of physics ". Itacquired the migration law of flow field and indicated that it could be divided into sixrole zones: buoyant plume zone, convection-diffusion zone, buffer diffusion zone,saturated precipitation zone, border dissolution zone and waterfall flow zone. It foundthat the water flow, casing spacing, corresponding space position, occurrence state andquantity of interlayer and cycle mode of water injection affected the migration of flowfield. In addition, the non-uniform flow of brine also could produce different degree ofdisturbance water pressure to interlayer based on the calculation, but this hydrodynamicpressure was very smaller than its own gravity that was not enough to lead interlayer tocollapse and destroy.
     (6) A corresponding scheme of reducing disaster had been proposed based on themechanism of the damage and weakening of surrounding rock in construction period ofsalt caverns. A model to predict the weakening and collapse of interlayer also had beenestablished according to the characteristics of cavity construction with interlayer and thewater softening mechanism of interlayer. Aimed at the salt cavern shape with interlayerwas not regular and it was disadvantageous to control cavern shape, a cavernconstruction software of Salt Cavern Builder V1.0(SCB1.0) had been developed whichcould simulate cavity construction with interlayer and better solve disasters caused byirregular shape of the cavity.
     (7) Through simulating the process of cavity shape expansion in solution miningfor salt cavern with many interlayer by the cavern construction software SCB1.0,selecting several key cavern construction stages and considering the characteristics ofdamage and weakening of surrounding rock in salt cavern construction, a regularity ofdistribution of damage zone of surrounding rock was found.
引文
[1] Berest P. etc, Lon-term evolution of sealed cavern, Solution mining Research Institute file98-4-SMRI,1998.
    [2] Bays C A. Use of Salt Solution Cavities for Under-ground Storage, Symp. On Salt, NorthernOhio Geol Soc.1963.564.5.
    [3] Consenza P H, Ghoreychi M, et al. In-situ rock permeability for long term safety assessmentof storage[J]. International Journal of Rock Mechanics&Mining Science,1999,24:509-526.
    [4] THOMS R L, GEHLE R M. A brief history of salt cavern use [C]//The8th World SaltSymposium,[S. l.]: Elsevier,2000,1:207-214.
    [5]杨春和,梁卫国,魏东喉.中国盐岩能源地下储存可行性研究[J].岩石力学与工程学报,2005,24(24):4409-4417.
    [6] Chan K.S. Munson, D.E. Bodner, S.R. Fossum. Cleavage and creep fracture of rock salt[J].Acta Material,1995,44:3553-3565.
    [7]威瑟斯庞P A.编著,王驹等译.世界放射性废弃物地质处置,北京:原子能出版社,1999,PI.10.
    [8] Wawersik W.R., Stone C.M. Characterization of pressure records in inelastic rockdemonstrated by hydraulic fracturing measurements in salt[J]. International Journal of RockMechanics and Mining Science&Geomechanics Abstracts,1989,26(6):613-627.
    [9]苏欣,张琳,李岳.国内外地下储气库现状及发展趋势[J].天然气与石油,2007,25(4):l-7.
    [10] James Tobin. U.S. Underground Natural Gas Storage Developments:1998-2005[R]. EnergyInformation Administration, Office of oil and Gas, October2006.
    [11]赵克烈,注采气过程中地下盐岩储气库可用性研究[博士学位论文,D].中国科学院武汉岩土力学研究所,2009.
    [12] Djebbar Tiab, Erie C Donaldson. PetroPhysics-theory and Practice of measuring reservoirrock and fluid transport Properties(2nd Edition)[M]. Gulf Professional Publishing,2004,554-670.
    [13] Berest P, Bergues J, Brouard B. Review of static and dynamic compressibility issues relatingto deep underground salt caverns[J]. Int J Mech Min Sci,1999,36(8):1031-1049.
    [14] Berest P, Brouard B. Safety of Salt Caverns Used for Underground Storage[J]. Oil&GasScience and Technology,2003,58(3):361-384.
    [15] John K Warren. Evaporites: Sediments, Resources and Hydrocarbons[M]. Springer BerlinHeidelberg,2006:937-938.
    [16] Ralf Eickemeier, Wim A Paar, Stefan Heusermann. Hengelo brine fieldrevisited“determination of allowable loading of Pillars”[C]. Proceedings of2004TechnicalMeeting Berlin, Germany,2004.
    [17] Sambeek, Van L L.Stability analysis of inactive cavern clusters: Hengelo brinefleld[R].Respec topical report RSI-1793, Revision2,RESPEC,2004.
    [18] Urai J L,Bekendam R F.Pillar deformation induced subsidence,Stage2. GeoControl ReportS00612, RESPEC,2006.
    [19] Allen V. Cavity formation in massive salt with a two-well system,Solution mining ResearchInstitute file70-0003-SMRI,1970.
    [20] Chang C, Vliet G C, Saberian A, Natural convection mass transfer at salt-brine interfaces,ASME paper,76-HT-33,1976.
    [21] Daniel C, Anthony J R. Experimental studies of salt cavity leaching via fresh water injection,SPE:13308.
    [22] Durie R W, Jessen F W. Mechanism of dissolution of salt in the formation of underground saltcavities, SPE:478,1964.6
    [23] Kazemi H, Jessen F W, Mechanism of flow and controlled dissolution of salt in solutionmining, SPE:1007, December1664.
    [24]王安明.层状盐岩变形机理及非线性蠕变本构模型[D],硕士学位论文,中国科学院武汉岩土所,2008.
    [25]刘江.层状盐岩力学特性试验研究及其理论分析[D],硕士学位论文中国科学院武汉岩土所,2006.
    [26]袁敬伟.层状岩盐储气库夹层与岩盐的差异变形和稳定性分析[D],硕士学位论文河北工业大学,2008.
    [27]李建中,李海平.建设地下储气库保障_西气东输_供气系统安全[J].能源安全,2003,11(6):26-29.
    [28]何建英,张登庆.岩盐开采与石油储备库建设[J].中外能源,2006,11(3):7-11.
    [29] Famer I W, Gilbert M J. Dependent strength reduction of rock salt. The first conference on theMechanical Behavior of salt. Trans Tech publications1981:381-388.
    [30] Hunsche U, Albricht H. Results of true triaxial strength tests on rock salt Engineering fracturemechanics35(4/5),1990:867-877.
    [31] Hunsche U. Fracture experiments on cubic rock salt samples.The first Conference on theMechanics Behavior of salt. Trans Tech publication1981:169-179.
    [32] Hunsche U. A failure criterion for natural polycrystalline rock salt. Advances in ConstitutiveLaws for Engineering Material. Proc. ICCLEM. Eds. Fan Jinghong and S.Murakami,International Academic Publ.1989Vol.2:1043-1046.
    [33] Wallner Skrotzki. An estimate of the brittle transition in salt. The first Conference on theMechanical Behavior of salt. Trans Tech publications1981:381-388.
    [34] Hansen F.D.,Mellegard K.D.and Senseny P.E.. Elasticity and strength of the natural rock salt.The Mechanical Behavior of Salt Proc. Ist Conf. Eds.H.R.Hardy, Jr.and M.Langer, Trans TechPubl. Clausthal-Zellerfeld,1981:71-83.
    [35] Michel Aubertin. On the physical oring and modeling of kinematic and isotropic hardening ofsalt. The3rd Conference on the Mechanical Behavior of salt. Trans Tech publications1996:1-17.
    [36] Popp T, Schulze O, Kern H. Permeation and development of dilatancy and permeability inrock salt. The5th conference on the mechanical behavior of salt, Mecasalt V, Bucharest,August9-11,1999.
    [37] Stormont J C. Conduct and interpretation of gas permeability measurements in rock salt[J]. IntJ Mech Min Sci,1997,34(3-4):303.el-303.ell.
    [38] Cristescu, N..(1993a) A general constitutive equation for transient and stationary creep of rocksalt. Int. J. Rock Mech. Min. Sci and Geomech Abstr.1993(30),2.125-140.
    [39] Hampel, A., Hunsche, U., Weidinger, P., and Blum,W.. Description of the creep of rocksalt with the composite model-Ⅱ. Steady-state creep. Mechanical Behavior of salt. Proc.4thConf. Eds. Hardy and M.Langer. Trans Tech Publ. Clausthal-Zellerfeld.287-299.
    [40] Hunsche, U.. Result and interpretation of creep experiments on rock salt. The MechanicalBehavior of salt. Proc.1st Conf. Eds. H.R. Hardy, Jr., and M.Langer, Trans Tech Publ.,Clausthal-Zellerfeld,1981:159-167.
    [41] Hunsche, U. Uniaxial and triaxial creep and failure tests on rock: experimental technique andinterpretation. Visco-Plastic Behavior of Geomaterials. Eds. N.D. Cristescu, and G. Gioda,Springer-verlag, Wien-New York,1994:1-53.
    [42] Lux,K.H. and Heusermann, S.. Creep tests on rock salt with changing load as basia for theverification of theoretical material laws. Proc.6th Int. Symp on salt. Eds. B.C. Schreiber andH.L.Harner. The salt Institute, Alexandria, USA.1983, Vol.1:417-435.
    [43] Senseny, P.E. Determination of a constitutive law for salt at elevated temperature and pressure.Measurement of Rock Properies at Elevated Pressure and Temperature. ASTM STP869, Eds.H.J.Pincus and E.R.Hoskins. ASTM, Philadelphia,1985:55-71.
    [44] Munson, D. and Wawersik, W. Constitutive modeling of salt behavior-state of the technology.Proc7th Int. Conger. On Rock Mechanics. Ed. W. Wittke. Balkema, Rotterdam,1993(3):1797-1810.
    [45] Munson, D.E. Devries, K.,Fossum, A.F. and Callahan, G.D.. Extension of the M-D model fortreating stress drops in salt. The Mechanical Behavior of salt. Proc.3rd Conf. Eds.Hardy&M.Langer, Trans Tech Publ., Clausthal-Zelleefeld.1996:31-44.
    [46] Aubertin, M.Gill, D.E. and Ladanyi,B.. Constitutive equation with internal state variables forthe inelastic behavior of soft rocks. Appl. Mech. Reviews. ASME(1994)47(6-2):97-101.
    [47] Aubertin, M.. On the physical origin and modeling of kinematic and isotropic hardening ofsalt. The Mechanical Behavior of salt. Proc.3rd Conf. Eds. M.Ghoreychi, P.Berest,H.R.Hardy, Jr.and M.Langer. Trans Tech Publ., Clausthal-Zellerfeld.1996:3-17.
    [48] Vogler, S. and Blum, W.. Micromechanical modeling of creep in term of the composite model.Proc,4th Int. Conf. On creep and Fracture of Engineering Materials and Structures. Eds. B.Wilshire and R.W. Evans. The Institute of Materials. London:67-69.
    [49] Wawersik, W.. Determination of steady state creep rates and activation parameters for rocksalt. Measurement of Rock Properties at Elevated Pressure and Temperatures. ASTM STP869.Eds.H.J. Pincus and E.R. Hoskin.. ASTM, Philadephina,1985:72-92.
    [50] Wawersik, W.R. and Zeuch, D.H.. Modeling and mechanicstic interpretation of creep of rocksalt below200℃. Tectonophysics121:125-152.
    [51]杨春和,殷建华.盐岩应力松弛效应的研究[J].岩石力学与工程学报,1999,18(3):262-265.
    [52]杨春和,白世伟,吴益民.应力水平及加载路径对盐岩时效的影响[J].岩石力学与工程学报,2000,19(3),270-275.
    [53]吴文,徐松林,杨春和等.盐岩冲击特性试验研究[J].岩石力学与工程学报,2004,23(21):3613-3620.
    [54]高小平,杨春和,吴文等.温度效应对盐岩力学特性影响的试验研究[J].岩土力学,2005,26(11):1175-1178.
    [55]刘江,杨春和,吴文等.盐岩短期强度和变形特性试验研究[J].岩石力学与工程学报,2006,25(增l):3104-3109.
    [56]吴文,杨春和.盐岩的压缩试验研究与损伤模型[J].岩石力学与工程学报,2006,25(增2):3709-3713.
    [57]杨春和,马洪岭,刘建锋等.循环加、卸载下盐岩变形特性试验研究[J].岩土力学,2009,30(12):3562-3568.
    [58]高小平,杨春和,吴文.岩盐时效特性实验研究[J].岩土工程学报,2005,27(5):558-561.
    [59]杨春和,高小平,吴文.盐岩时效特性试验研究与理论分析[J].辽宁工程技术大学学报,2004,23(6):764-766.
    [60]韦立德,杨春和,徐卫亚.基于细观力学的盐岩蠕变损伤本构模型研究[J].2005,24(23):4253-4258.
    [61]陈锋,李银平,杨春和.云应盐矿盐岩蠕变特性试验研究[J].2006,25(增1):3022-3027.
    [62]胡其志,冯夏庭,周辉.考虑温度损伤的盐岩蠕变本构关系研究[J].岩土力学,30(8):2245-2248.
    [63]尹雪英,杨春和,李银平.层状盐岩体三维Cosserat介质扩展本构模型的程序实现[J].岩土力学,2007,28(7):1415-1421.
    [64]李银平,刘江,杨春和.泥岩夹层对盐岩变形和破损特征的影响分析[J].岩石力学与工程学报,2006,25(12):2461-2466.
    [65]李银平,蒋卫东,刘江等.湖北云应盐矿深部层状盐岩直剪试验研究[J].岩石力学与工程学报,2007,26(9):1767-1772.
    [66]杨春和,李银平,屈单安等.层状盐岩力学特性研究进展.[J].力学进展,2008,38(4):484-494.
    [67]施锡林,李银平,杨春和等.卤水浸泡对泥质夹层抗拉强度影响的试验研究[J].岩石力学与工程学报,2009,28(11):2301-2308.
    [68]梁卫国,赵阳升.岩盐力学特性的试验研究[J].岩石力学与工程学报,2004,23(3):391-394.
    [69]梁卫国,徐素国,赵阳升等.盐岩蠕变特性的试验研究[J].岩石力学与工程学报,2006,25(7):1386-1390.
    [70]梁卫国,杨春和,赵阳升等.层状盐岩储气库物理力学特性与极限运行压力[J].岩石力学与工程学报,2008,27(1):22-27.
    [71]梁卫国,徐素国,莫江等.盐岩力学特性应变率效应的试验研究[J].岩石力学与工程学报,2010,29(1):43-50.
    [72]邱贤德,庄乾城.岩盐流变特性的研究[J].重庆大学学报,1995,18(4):96-103.
    [73]邱贤德,姜永东,阎宗岭等.岩盐的蠕变损伤破坏分析[J].重庆大学学报,2003,26(5):106-108.
    [73]邱贤德,姜永东,张兰等.岩盐流变特性与卸荷损伤本构关系研究[J].中国井矿盐,2003,34(4):21-24+31.
    [74]邱贤德,邵明康,张兰等.岩盐流变特性与工程应用研究[J].中国井矿盐,2004,35(6):16-19.
    [75]严仁俊,熊玉霞,裴小彬等.四川三迭系盐岩力学性质实验研究[J].钻采工艺,2004,27(4):101-102.
    [76]任中俊,彭向和,万玲等.三轴加载下盐岩蠕变损伤特性的研究[J].应用力学学报,2008,25(2):212-217.
    [77] Lemaitre J. Micro-mechanics of crack initiation[J]. Engineering Fracture Mechanics.1990(42):87~99.
    [78] Lemaitre J. How to Use Damage Mechanics[J]. Nuclear Engineering and Design.1984(80):233~245.
    [79] Lemaitre J. Local Approach of Fracture[J]. Engineering Fracture Mechanics.1986(5):523~537.
    [80] Hult J. Continuum Damage and Fracture[J]. Theory and Applications.1979(14):233~347.
    [81] Krajcinovic D. Constitutive Equation for Damaging Materials[J].Application Mater.1989(8):117~119.
    [82]刘学文,林吉中,哀祖贻.应用声发射技术评价材料疲劳损伤的研究[J].中国铁道科学,1997,18(4):74-81.
    [83]史瑾瑾等.岩石冲击损伤特性与冲击压力的实验研究[J].现代矿业,2009,(6):24-26.
    [84]张慧梅,杨更社.冻融与荷载耦合作用下岩石损伤模型的研究[J].岩石力学与工程学报,2010,29(3):471-476.
    [85]曹文贵,张升.基于Mohr-Coulomb准则的岩石损伤统计分析方法研究[J].湖南大学学报,2005,32(1):43-47.
    [86]杨圣奇,徐卫亚,苏承东.考虑尺寸效应的岩石损伤统计本构模型研究[J].岩石力学与工程学报,2005,24(24):4484-4490.
    [87]韦立德,徐卫亚,杨春和.考虑塑性变形的岩石损伤本构模型初步研究[J].岩石力学与工程学报,2005,24(增2):5598-5603.
    [88]李树春,许江,李克钢.基于初始损伤系数修正的岩石损伤统计本构模型[J].四川大学学报,2007,39(4):41-44.
    [89]朱其志,胡大伟,周辉.基于均匀化理论的岩石细观力学损伤模型及其应用研究[J].岩石力学与工程学报,2008,27(2):266-272.
    [90]刘洋,赵明阶.基于分形与损伤理论的岩石声–应力相关性理论模型研究[J].岩土力学,2009,30(增1):47-52.
    [91]于天庆,钱济成.损伤理论及其应用[M].北京:科学出版社,1993.
    [92]陈剑文.盐岩的温度效应及细观机理研究[D博士学位论文].中国科学研究员武汉岩土所,2008.
    [93]王者超.盐岩非线性蠕变本构模型研究[D硕士学位论文].中国科学研究员武汉岩土所,2006.
    [94] Poirier JP. Creep of crystals—high-temperature deformation processes in metals, ceramicsand minerals[M]. Cambridge: Cambridge university press,1985,184.
    [95] Urai JL, Spiers CJ, Zwart HJ, et al. Weakening of rock salt by water during long-term creep[J].Nature,1986,324:554–557.
    [96] Drury MR, Urai JL. Deformation-related recrystallization processes[J]. Tectonophysics,1990,172(3-4):235-253.
    [97] Nancy S.Brodsky. Crack Closure end Healing Studies in WIPP Salt Using CompressionalWave Velocity and Attenuation Measurements. Test Methods and Results,1990.
    [98] Kwai S.Chan, Darrell E.Munson, Arlo F.Fossum et al. A Constitutive Model ForRepresenting Couple Creep, Fracture, and Healing in Rock Salt[J].1996.
    [99] Chan K S, Munson D E, Bonder S R. Recovery and healing of damage in WIPP salt[J].International Journal of Damage Mechanics,1998,7(2):143-166.
    [100] Kerry L.DeVries, Joel D.Nieland, Joe L.Ratigan. Feasibility Study for Lowering theMinimum Gas Pressure in Solution-Mined Caverns Based On Geomechanical Analyses ofCreep-Induced Damage and Healing[M]. U.S. Department of Energy Federal TechnologyCenter, Morgantown, West Virginia,1998.
    [101] Takenchi S, Argon A S. Steady-state creep of single-phase crystalline matter at hightemperature[J]. Journal of Materials Science,1976,11:1542-1566.
    [102] Twiss RJ. Theory and applicability of a recrystallized grain size paleopiezometer[J]. Pure andApplied Geophysics,1977,115:227-244.
    [103] De Bresser JHP, Ter Heege JH, Spiers CJ. Grain size reduction by dynamic recrystallization:can it result in major rheological weakening[J]. International Journal of Earth Sciences,2001,90:28-45.
    [104] Watanabe T, Peach CJ. Electrical impedance measurement of plastically deforming haliterocks at125degC and50MPa[J]. Journal of Geophysical Research,2004,107(B1): pp.ECV2-1.
    [105] Ter Heege JH, De Bresser JHP, Spiers CJ. Dynamic recrystallization of wet syntheticpolycrystalline halite: dependence of grain size distribution on flow stress, temperature andstrain[J]. Tectonophysics,2005,396(1-2):35-57.
    [106] Voyiadjis, G.Z., Shojaei, A. and Li, G.(2010). A Thermodynamic Consistent Damage andHealing Model for Self Healing Materials[J]. International Journal of Plasticity,2010,27(7):1025-1044.
    [107]梁卫国,徐素国,赵阳升.损伤岩盐高温再结晶剪切特性的试验研究[J].岩石力学与工程学报,2004,23(20):3413-3417.
    [108]余丽珍.岩盐封闭性评价技术在含油气系统中的应用[J].资源环境与工程,2008,22(3):348-353.
    [109] Tillerson J.R. Geomechanics investigations of SPR crude oil storage caverns[R].SANN79-2031C, Sandia National Laboratories, Albuquerque, NM,1979.
    [110] Gerhard Staupendahl and Manfred W. Schmidt. Field investigation of the long termdeformational behavior of a10000m3cavity at the asse salt mine[C]. The mechanicalbehavior of salt proceeding of the first conference. Clausthal, trans tech publications.1981:511-525.
    [111] Pierre Berest and Duc Nguyen Minh. Deep underground strorage cavities in rock salt:interpretation of situ date from French and foreign sites[C]. The mechanical behavior of saltproceedings of the first conference. Clausthal, trans tech publications.1981:555-571.
    [112] Preece D.S. Foley J.T. Finite element analysis of salt caverns of salt caverns employed in theStrategic Petroleum reserve[A]. In: Proc.6th International symposium on salt[C].1983:49-63.
    [113] Preece D.S. Foley J.T. Lont-term performation predictions for SPR salt caverns[R].SAND83-2343, Sandia National Laboratories, Albuquerque, NM,1984.
    [114] Hoffman E.L. Effects of cavern spacing on the performance and stability of gas-filled storagecaverns[R]. SAND92-2575, Sandia Nationa Laboratories, Albuquerque, NM1992.
    [115] Hoffman E.L. Effects of cavern depth on surface subsidence and storage loss of gas-filledstorage caverns[R]. SAND92-0053, Sandia National Laboratories, Albuquerque, NM1992.
    [116] Hoffman E.L., Ehgartner B.L.. Using three dimensional structural simulations to study theinteractions of multiple excavations in salt[R]. Sandia National Laboratories, Albuquerque,NM1997.
    [117]余海龙,谭学术,李通林等.岩盐溶腔稳定性的相似模拟设计原则和依据[J].西安矿业学院学报,1994,14(4):64-67.
    [118]陶连金,姜德义.岩盐溶腔稳定性的非线性大变形分析[J].北京工业大学学报,2001,27(1):64-67.
    [119]刘新荣,姜德义,许江等.岩盐溶腔围岩应力分布规律的有限元分析[J].重庆大学学报,2003,26(2):39-41.
    [120]刘新荣,姜德义,谭晓慧.岩盐溶腔覆岩沉降和变形规律的研究[J].化工矿物与加工,1999,(7):21-24.
    [121]姜德义,任松,刘新荣等.岩盐溶腔顶板稳定性突变理论分析[J].岩土力学,2005,26(7):1099-1103.
    [122]刘保县,姜德义,刘新荣.岩盐溶腔顶板稳定性分析及其控制[J].重庆大学学报,2007,30(3):133-135.
    [123]任松,姜德义,杨春和.复杂开采沉陷分层传递预测模型[J].重庆大学学报,2009,32(7):823-828.
    [124]任松,姜德义,刘新荣等.岩盐溶腔井组间矿柱稳定性突变理论分析.
    [125]张强勇,陈旭光,张宁交等.变气压风险条件下层状盐岩地下储气库注采气大型三维地质力学试验研究[J].岩石力学与工程学报,2010,29(12):2410-2419.
    [126]任松,姜德义,杨春和等.岩盐水溶开采沉陷新概率积分三维预测模型研究[J].岩土力学,2007,28(1):133-138.
    [127]杨强,刘耀儒,冷旷代,等.能源储备地下库群稳定性与连锁破坏分析[J].岩土力学,2009,30(12):3553-3562.
    [128]王清明,盐类矿床水溶开采,北京:化学工业出版社,2003.
    [129]杨春和,李银平,陈锋.层状盐岩力学理论与工程.北京:科学出版社,2009
    [130] Durie R. W. Jessen F·W·The influence of surface features in the salt dissolutionprocess.SPE1004,1964.9
    [131]肖长富,阳友奎,吴刚等.岩盐溶解特性及其传质过程的研究[J].重庆大学学报,1993,16(2):51-57.
    [132]吴刚,肖长富,邱贤德.岩盐溶解速率的研究[J].化工矿山技术.1992,21(1):19-24
    [133]刘成伦,徐龙君,鲜学福.长山岩盐动溶的动力学特征[J].重庆大学学报(自然科学版),2000,23(4):58-71.
    [134]杨骏六,杨进春,邹玉书.岩盐水溶特性的试验研究[J].四川联合大学学报(工程科学版),1997,1(2):74-80.
    [135]梁卫国,李志萍,赵阳升.盐矿水溶开采室内试验的研究[J].辽宁工程技术大学学报,2003,22(1):54-57.
    [136]徐素国,梁卫国,赵阳升.钙芒硝岩盐溶解特性试验研究[J].太原理工大学学报,2005,36(6):253-255.
    [137] KAWAMOTO T. Deformation and fracturing behavior of discontinuous rock mass damagemechanics theory[J]. International Journal of Numerical Analysis Method in Geomechanics,1988,12(1):1-30.
    [138]汤艳春.考虑岩盐应力与溶解耦合效应的盐腔溶腔机理研究[博士学位论文,D].中国科学院武汉岩土所,2007.
    [139]陈锋.盐岩力学特性及其在储气库建设中的应用研究[博士学位论文,D].中国科学院武汉岩土所,2006.
    [140]刘江.层状盐岩力学特性试验研究及其理论分析[博士学位论文,D].中国科学院武汉岩土所,2006.
    [141]马洪岭.超深地层盐岩地下储气库可行性研究[博士学位论文,D].中国科学院武汉岩土所,2010.
    [142]吴文.盐岩的静_动力学特性实验研究与理论分析[博士学位论文,D].中国科学院武汉岩土所,2003.
    [143]徐寿文,冯西桥.损伤力学][M].北京:清华大学出版社,1997.
    [144] NISHIYAMA T,KUSUDA H.Identification of pore spaces and microcracks using fluorescentresins[J].International Journal of Rock Mechanics and Mining Sciences and GeomechanicsAbstracts,1994,31(4):369–375.
    [145] CHEN Youqing. OBSERVATION OF MICROCRACKS PATTERNS IN WESTERLYGRANITE SPECIMENS STRESSED IMMEDIATELY BEFORE FAILURE BY UNIAXIALCOMPRESSIVE LOADING [J].International Journal of Rock Mechanics and MiningSciences and Geomechanics Abstracts,2008,27(12):2440–2448.
    [146]曹树刚,刘延保,李勇,等。煤岩固–气耦合细观力学试验装置的研制[J]岩石力学与工程学报,2009,28(8):1681-1690
    [147]李世愚,和泰名,尹祥础岩石断裂力学导论中国科学技术大学出版社2010
    [148]于骁中.岩石和混凝土断裂力学.中南工业大学出版社,1991
    [149]李术才.加锚断裂节理岩体断裂损伤模型及其应用[博士学位论文, D].中科院武汉岩土力学研究所,1996
    [150]《正交试验法》编写组.正交试验法[M].北京:国防工业出版社,1976.
    [151]韩放,纪洪广,张伟.单轴加卸荷过程中岩石声学特性及其与损伤因子关系[J].北京科技大学学报,2007,29(5):452-455.
    [152]蔡美峰.岩石力学与工程[M].科学出版社,2002.
    [153]杨仕教,曾晟,王和龙.加载速率对石灰岩力学效应的试验研究[J].岩土工程学报,2005,27(7):786–788.
    [154]周宏伟,何金明,武志德.含夹层盐岩渗透特性及其细观结构特征[J].岩石力学与工程学报,2009,28(10):2068–2073.
    [155] Tang C A, Xu X H. Evolution and propagation of material defects and Kaiser effect function.Journal of Seismological Research,1990,13(2):203–213.
    [156]许江,李树春,唐晓军,等.单轴压缩下岩石声发射定位试验的影响因素分析[J].岩石力学与工程学报,2008,27(4):765–772.
    [157]张晖辉,颜玉定,余怀忠.循环载荷下大试件岩石破坏声发射试验[J].岩石力学与工程学报,2004,23(21):3621–3628.(
    [158]万志军,李学华,刘长友.加载速率对岩石声发射活动的影响[J].辽宁工程技术大学学报:自然科学版,2001,29(1):469–471.
    [159]殷正钢.岩石破坏过程中的声发射特征及其损伤试验研究[硕士学位论文, D].长沙:中南大学,2005.
    [160]尹贤刚,李庶林,唐海燕.岩石破坏声发射平静期及其分形特征研究[J].岩石力学与工程学报,2009,28(增2):3383–3390.
    [161]孙成栋.岩石声学测试[M].北京:地质出版社,1981:124-128.
    [162] Krajcinovic D. Statistical aspects of the continuous damage theory[J]. International Journal ofSolids and Structures,1982,18(7):551-562.
    [163] Wawersik W R, Fairhurat C.A. study of brittle rock fractures in laboratory compressionexperiments[J]. International Journal Rock Mechanics Mine Sciences,1970,7(5):56-575.
    [164]曹文贵,张升,赵明华.基于新型损伤定义的岩石损伤统计本构模型探讨[J].岩土力学,2006,27(1):41–46.
    [165]张国军.夹层软泥化过程及其化学动力学模拟[硕士学位论文, D].江苏:河海大学,2007.
    [166] Alkana H, Cinarb Y, Pusch G. Rock salt dilatancy boundary from combined acousticemission and triaxial compression tests[J]. International Journal of Rock Mechanics andMining Sciences,2007,44(1):108–119.
    [167]罗谷风.结晶学导论[M].北京:地质出版社,1985.
    [168]钱海涛,谭朝爽,李守定等.应力对岩盐溶蚀机制的影响分析[J].岩石力学与工程学报,2010,29(4):757-763.
    [169]刘亮明,吴延之.剪切应力作用下晶质矿物的化学行为及其地质意义[J].地质与勘探,1996,32(4):26-31.
    [170] George Z. Voyiadjis, Amir Shojaei. Continuum Damage-Healing Mechanics with Introductionto New Healing[J]. International Journal of Damage Mechanics,2012,21(4):391-414.
    [171]刘艳辉,李晓,李守定,等.盐岩地下储气库泥岩夹层分布与组构特性研究[J].岩土力学,2009,30(12):3627-3633.
    [172]赵志成.盐岩储气库水溶建腔流体输运理论及溶腔形态变化规律研究[博士学位论文D].河北:中国科学院渗流流体力学研究所,2003.
    [173]吴乘胜,杨骏六.单井对流法水溶采矿的数学模型[J].力学与实践,2003.25(1):11-13.
    [174]万玉金.在盐层中建设储气库的形状控制机理[J].天然气工业,2004.24(9):130-132.
    [175]江守一郎.模型实验的理论与应用[M].郭廷伟,李安定译.北京:科学出版社,1986.
    [176]施锡林,李银平,杨春和,等.盐穴储气库水溶造腔夹层垮塌力学机制研究[J].岩土力学,2009,30(12):3615-3620.
    [177]施锡林,李银平,杨春和,等.卤水浸泡对泥质夹层抗拉强度影响的试验研究[J].岩石力学与工程学报,2009,28(11):2301-2308.
    [178]梁卫国,张传达,高红波,等.盐水浸泡作用下石膏岩力学特性试验研究.岩石力学与工程学报,2010,29(6):1156—1163.
    [179]姜德义,邱华富,易亮.,等大尺寸型盐造腔相似试验研究[J].岩石力学与工程学报,2012,31(9):1746-1755.
    [180]魏东吼.金坛盐穴地下储气库造腔工程技术研究[硕士学位论文, D].华东:中国石油大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700