应用形状记忆合金进行空间结构抗震监控的理论和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间结构因其能够满足许多特殊建筑功能要求而倍受青睐,尤其是近年来大跨空间结构越来越多地被人们采用,众多重要公共建筑以及许多城市的标志性建筑均采用了大跨空间结构。但发生地震时,这些建筑一旦破坏或倒塌,其直接或间接危害将非常大,因此深入研究网架或网壳等大跨空间结构的抗震性能,并采取必要的抗震监控措施是十分必要的。
     本文利用形状记忆合金(Shape Memory Alloy-SMA)材料的超弹性性能和电阻传感特性,通过理论分析和模型试验,设计并制作了2种集实时监测与抗震控制于一体的SMA抗震监测控制系统,并将其安装于2个空间模型结构中,进行了模拟地震振动台试验,其主要研究内容包括:
     (1)根据SMA材料在材性试验中滑移量大的特点,改进了常规材料材性试验的试验方法,对一种国产新型、化学成分为Ti-51%atNi、常温下为奥氏体状态的SMA丝进行了超弹性力学性能试验,并就加/卸载频率、应变幅值以及加/卸载循环次数等因素对这种SMA材料在其超弹性力学行为中所表现的内耗因子、阻尼耗能等特性进行了试验研究,探讨了其主要影响规律,提出了改进和提高SMA材料力学性能的制备建议。
     (2)在上述奥氏体SMA材料超弹性力学性能试验的基础上,结合唯相理论本构模型的建立思路和方法,提出并建立了2种新型的、能够较好反映材料加/卸载频率特点的SMA材料的超弹性本构模型,1种是曲线型的,1种是改进的直线型本构模型;采用理论分析和计算机模拟相结合的方法,利用MATLAB7.0编程软件,编制了上述2种本构模型的计算机分析程序,并进行了相应的数值模拟分析,同时将模拟分析结果与试验结果进行了对比,两者吻合较好。文中建立的2种本构模型不仅能够较好地反映SMA材料的超弹性力学性能,而且能够反映SMA材料的加/卸载频率,具有较好的理论和工程应用前景。
     (3)为研究奥氏体SMA材料的监测传感性能,研制了一套SMA材料电阻-位移传感动态测试系统,并对上述奥氏体SMA材料在静、动态加/卸载过程中的电阻变化率与其应变之间的关系进行了研究,考察了加/卸载应变幅值、加/卸载速率、SMA丝直径变化以及加/卸载循环次数等因素对奥氏体SMA材料电阻-应变传感特性的影响,并通过理论分析,对奥氏体SMA材料在静、动态加/卸载过程中,电阻变化率-应变变化关系曲线的线性度、迟滞、灵敏度以及重复性等性能进行了研究,系统地讨论了SMA材料监测传感性能的特点,为研制SMA静、动态监测系统提供了依据。
     (4)根据上述研究结果,将奥氏体SMA材料作为核心元件,利用其特殊的超弹性性能和电阻传感特性,通过理论分析和模型试验,提出并研制了2种新型的、具有位移放大功能和自复位功能的SMA被动抗震监测控制系统,讨论了系统的设计构造方法、工作原理和适用条件,分析了相应的复合传感/被动控制技术以及最大复用能力等,研究了位移幅值、加载频率、加载循环次数等因素对其传感特性和耗能性能的影响,考察了系统的稳定性,检验了系统耗能的有效性以及系统传感的准确性和灵敏度等,建立了相应的的力学分析和计算模型,同时研究了与主体结构的集成技术和识别方法。该系统不仅具有自传感性能和高效耗能复位特性,而且易于安装和替换,适用性较强,值得进一步开发和推广应用。
     (5)为了检验新型SMA被动抗震监测控制系统的有效性,对2种空间结构模型分别在未安装和安装新型SMA被动抗震监测控制系统后的模型结构进行了模拟地震振动台试验研究,试验分30种工况,输入EL-Centro地震波,地震加速度从200gal-1200gal,考察了新型SMA被动抗震监测控制系统的监测控制效果,特别是被动控制效果;同时,利用ANSYS有限元分析程序,分析了未安装和安装新型SMA被动抗震监测控制系统后模型结构在各种工况下的位移、加速度等地震反应,探讨了其控制机理和规律,检验了被动抗震监测控制系统的有效性和适用性:最后,还通过数值分析方法,选择不同的地震波和结构,对SMA被动抗震监测控制系统的设置数量、位置、局部控制与整体控制的效果等进行了研究,分析了相应的控制机理,提出了较好的被动控制方案。
     研究结果表明,文中建立的理论分析和计算模型等均具有较好的适用性,可以反映SMA材料特殊的物理力学特征,所研制的SMA被动抗震监测控制系统以及建议的被动抗震控制方案等均具有较好的监测控制效果,其减震控制效果一般可达30%左右,因此可用于空间结构的被动抗震控制与位移实时监测。
The large-span spatial structure is being adopted by a number of important public buildings in many cities for its advantages of meeting many special requirements of architectural functions. However, it'll do great harm once these buildings are damaged or collapsed during an earthquake. So it's very essential to study in-depth the seismic performance of space truss and latticed shell structures and to take the necessary measures for seismic monitoring.
     Using the super-elastic properties and resistance sensing characteristics of shape memory alloys (Shape Memory Alloy-SMA) materials, through theoretical analysis and model tests, this paper designed and produced two kinds of SMA seismic monitoring and control system which were tested in the shaking table test of two spatial model structures. The main research contents include:
     (1) Aiming at avoiding the large slip of SMA materials in the test, the method of conventional material test was improved. The super-elastic mechanical properties of a new type of SMA wire with the chemical composition of Ti-51%atNi made in china were tested, which is the austenitic state at room temperature. The influences of adding/unloading frequency, strain amplitude and adding/unloading cycles on the internal friction factor, damping energy and other properties of SMA material were studied in the test. Additionally, this paper proposed some advices to improve and enhance the mechanical properties of SMA materials.
     (2) Based on the super-elastic mechanical properties of SMA materials mentioned above, combined with the establishment methods of constitutive model in phase-only theory, two new kinds of super-elastic constitutive model of SMA materials are put forward, which are respectively the curve constitutive model and the improved linear constitutive model. Combined with theoretical analysis and computer simulation, the computer analysis program of two kinds of constitutive models are finished by using MATLAB7.0 programming software, and the results of simulation analysis are in good agreement with and experiment results. The proposed two kinds of constitutive models are better to reflect the super-elastic mechanical properties of SMA materials and plus/unload frequency characteristics; therefore they have the good prospects of theoretical and engineering application.
     (3) A set of SMA materials resistance-displacement sensor dynamic testing system is developed for the study of monitoring sensor performance of austenite SMA materials. The relationship between resistance change rates and strain of austenitic SMA material was studied in the process of static and dynamic add/unloading; the impacts of add/unloading strain amplitude, add/unloading rate, diameter change of SMA wires and add/unloading cycles on the resistance-strain sensing characteristics of the austenitic SMA materials were discussed; the linearity, hysterics, sensitivity and repeatability of relationship curve between resistance change rates and strain were evaluated through theoretical analysis. Additionally the monitoring sensor performances of SMA materials are discussed systematically, which is provided for the development of static and dynamic monitoring system of SMA.
     (4) Based on the results above, taking the austenitic SMA material as a core component and using its special super-elastic properties and resistance sensing characteristics, two new kinds of SMA passive seismic monitoring control system with a function of displacement amplification and self-reset were proposed and developed through theoretical analysis. The design construction methods, working principles and application conditions of the system were discussed; the corresponding composite sensor/passive control technology and maximum reuse ability were analyzed; the impact of displacement amplitude, loading frequency, loading cycles and other factors on their sensing characteristics and energy performance were studied; the stability of the system, the effectiveness of the system's energy consumption, and the system sensor accuracy and sensitivity were examined; the corresponding mechanical analysis and computing model were established, and the integration of technology and identification methods with the main structure were studied. The system has the self-sensing performance, efficient energy consumption and self-reset features, additionally it's easy to install and replace, which is worthy of further development and application.
     (5) In order to test the effectiveness of this SMA passive seismic monitoring and control system, the earthquake shaking table tests were carried on two kinds of spatial structure model, which were respectively installed and not installed the new SMA passive seismic monitoring and control system. There were 30 conditions in the test, in which EL-Centro earthquake wave was adopted with acceleration of 200gal-1200gal, and the monitor and control effects of SMA passive seismic monitoring and control system, especially the effects of passive control, were studied. At the same time, using ANSYS finite element analysis program, the displacement, acceleration and other seismic responses of the model structure with and without this new system in a various conditions were analyzed; its control mechanism and rules were discussed, and the effectiveness and applicability of passive seismic monitoring and control system were examined. Finally, using numerical analysis methods with different types of seismic waves and structures, the effects of the number, location, local control and overall control of SMA passive seismic monitoring and control system were studied; the corresponding control mechanism was analyzed and the better passive control programs were put forward.
     The results show that the theoretical analysis and computational model established in this paper has better applicability, which can reflect the unique physical and mechanical characteristics of SMA materials; Both the developed SMA passive seismic monitoring and control system, and the proposed passive seismic control scheme have better monitoring control effect, and the effect of damping control can be up to 30%. Therefore it can be used for the passive seismic control and displacement real-time monitoring of spatial structure.
引文
[1]胡聿贤.地震工程学[M].地震出版社,2006
    [2]周福霖.工程结构减震控制.北京:地震出版社,1997
    [3]J.T.P.Yao. Concept of structure control[J]. ASCE, Journal of Structural Division, 1972,98(7):1567-1574
    [4]欧进苹.结构振动控制[M].北京:科学出版社,2003
    [5]车荣钫.橡胶隔震垫[J].劳动保护,1980,11(39):29
    [6]刘志刚;陆寿仙.多层房屋隔震方案的探讨[J].工程抗震与加固改造,1983,4:19-23
    [7]田千里.隔震器在核电站抗震设计中的应用[J].噪声与振动控制,1986,3:28-32
    [8]赵振东.地震工程中隔震研究的现状与展望[J].世界地震工程,1986,4:15-21
    [9]日本建筑学会.隔震结构设计[M].北京:地震出版社,2006
    [10]Farazad Naeim, James M. Kelly. Design of Seismic Isolation Structures:From Theory to Practice[M[. New York:John Wiley& Sons,1999
    [11]Kelly J M, Skinner R I and Heine A J. Mechanisms of Energy Absorption in Special Device for Use in Earthquake-Ressistant Structures [J].Bull., N.Z. National Society for Earthquake Engineering,,1972,5(3):63-88
    [12]欧进苹,关新春.土木工程智能结构体系的研究与发展[J].地震工程与工程振动,1999,19(2):21-28
    [13]任亚.抗震结构的消能支撑在塑性阶段的作用[J].工程抗震与加固改造,1980,2:18-20
    [14]任亚.带消能支撑建筑物的种类及在地震作用下的性能[J].工程抗震与加固改造,1980,2: 20-24
    [15]任亚.抗震建筑消能支撑综述[J].工程抗震与加固改造,1981,1:39-56
    [16]周福霖.隔震、消能减震和结构控制技术的发展和应用(上)[J].世界地震工程,1989,4:16-20
    [17]周福霖.隔震、消能减震和结构控制技术的发展和应用(上)[J].世界地震工程,1990,1:7-17
    [18]张祖光,赵彤.高层框架—核心简体结构体系消能减震装置的研究[J].天津大学学报,1990,2:1-8
    [19]李树信,姚谦峰.软钢实体圆锥棒的限位、消能性能研究[J].西安建筑科技大学学报(自然科学版),1992,3(24):243-249
    [20]周福霖,S.F.Stiemer, S.Cherry.隔震消能体系结构地震反应的定量控制(英文)[J].地震工程与工程振动,1993,1(13):30-39
    [21]Mahmoodi P. Structural Dampers[J]. ASCE, Journal of Structural Division, 1969,95(8):1661-1672
    [22]Keel C J, Mahmoodi P. Designing of Viscoelastic Dampers for Columbia Center Building[J]. ASCE, Building Motion in Wind NY,1986:66-82
    [23]Nielsen E J, Lai M L, Soong T T, et al. Viscoelastic damper overview for seismic and wind application[C]. Proceedings of the First World Conference on Structural Control. Los Angeles, California,1994,3:42-51
    [24]周云.粘弹性阻尼减震结构设计[M].武汉理工大学出版社.2006
    [25]周云.粘滞阻尼减震结构设计[M].武汉理工大学出版社.2006
    [26]周云.摩擦耗能减震结构设计[M].武汉理工大学出版社.2006
    [27]Kobori T et al. Experimental Study on Active Variable Stiffness System-Active Seismic Response Controlled Structure[C]. Proceedings of 4th World Congress Council on Tall Building and Urban Habitat,1990:561-572
    [28]Kawashima K, Unjoh S, Iida H and Mukai H. Effectiveness of the Variable Damper for Reducing Seismic Response of Highway Bridges[C]. Proceedings of Second US-Japan Workshop on Earthquake Protective Systems for Bridges, PWRI, Tsukuba Science City, Japan,1992:479-493
    [29]Shinozuka M, Constantinou M C and Ghanem R. Passive and Active Fluid Dampers in Structural Applications[C]. Proceedings of US/China/Japan Workshop on Structural Control, Shanghai, China,1992
    [30]Mizuno T, Kobori T, Hirai J, Yoshinori M and Niws N. Development of Adjustable Hydraulic Damper for Seismic Response Control of Large Structures. DOE Facilities Programs, Systems Interaction, and Active/Inactive Damper[J]. ASME, New Orleans, LA,1992,229:163-170
    [31]Shinozuka M and Ghanem R. Use of Variable Dampers for Earthquake Protection of Bridge[C]. Proceedings of Second US-Japan Workshop on Earthquake Protective Systems for Bridges, Tsukuba Science City, Japan,1992: 507-516
    [32]Kobori T et al. Seismic Response Controlled Structure with Active Variable Stiffness System[J]. Earthquake Engineering and Structural Dynamics,1993:22: 925-941
    [33]Patten W N. New Life for the Walnut Creek Bridge Via Semi-Active Vibration Control[J]. Newsletter of the International Association for Structural Control, 1997,2(1):4-5
    [34]Kobori T. Pant, Present and Future in Seismic Control in Civil Engineering Structures[C]. Proceedings of 3rd World Conference on Structural Control, Wiley, New York,2003:9-14
    [35]Greninger A B, Mooradian V G.. Trans. AIME,1938,128:337-343
    [36]王社良,沈亚鹏.形状记忆合金的力学特性及其工程应用[J].工业建筑,1998,28(3):31-35
    [37]吴晓东,吴建生等.NiTi形状记忆合金丝的电阻与应力、应变的关系研究[J].功能材料,1998,29(2):161-164
    [38]李海燕,杜彦良,李建英,侯平,张莺燕.NiTi合金薄带的电阻变化率——应变关系研究[J].材料科学与工程,1999,17(3):67-70
    [39]姜平,周一丹,邱自学.NiTi超弹丝的信息传感及其信息处理系统[J].仪表技术与传感器,2002,10:4-8
    [40]Miyazaki S, Ohmi Y, Otsuka K. Characteristics of deformation and transformation pseudoelasticity in SMA alloy [J].J.of Physics,1982,43(4): 255-260
    [41]Krzysztof Wilde, Paolo Gardoni, Yozo Fujino. Base isolation system with shape memory alloy device for elevated highway bridges [J]. Engineering Structures, 2000,22(2):222-229
    [42]王社良,巨生国,苏三庆.形状记忆合金的动力响应特性及振动控制[J].西安建筑科技大学学报,1999,31(1):14-17
    [43]王社良,苏三庆,沈亚鹏.形状记忆合金拉索被动控制结构地震响应分析[J].土木工程学报,2000,33(1):68-74
    [44]王社良.形状记忆合金在结构控制中的应用[M].西安:陕西科学技术出版社,2000
    [45]Birman V.Review of mechanics of shape memory alloy structures [J]. Applied Mechanics Reviews,1997,50(11):629-645
    [46]Feng Z.C., Li D.Z. Dynamics of a mechanical system with a shape memory alloy bar[J].J. of Intelligent Material System and Structures,1996,6(7):399-410
    [47]Higashino M, Aizawa A, Clark P.W. Experimental and analytical studies of structural control system using shape memory alloy [A]. Proceedings of the 2nd International Workshop on Structural Control,1996:221-232
    [48]Clark P, Aliken I, Kelly J, et al. Experimental and Analytical Studies of Shape Memory Alloy Dampers for Structural Control [A]. Proceedings of SPIE,1995: 241-251
    [49]倪立峰,李爱群等.工程结构的SMA超弹性减振技术及应用研究[J].工业建筑,2003,33(6):1-3
    [50]左晓宝,李爱群,倪立峰等.超弹性形状记忆合金丝(SMA)力学性能的试验研究[J].土木工程学报,2000,37(12):10-16
    [51]韩玉林,李爱群,林萍华.基于形状记忆合金阻尼器的框架振动控制试验研究[J].东南大学学报(自然科学版),2000,30(4):16-20
    [52]Witting P R, Conzzarelli F A. Shape memory alloy structure damper:material properties, design and seismic testing [R]. Technical Report NCEER-92-0013, 1992:78-81
    [53]李惠,毛晨曦.新型SMA阻尼器及结构地震反应控制试验研究[J].地震工程与工程振动,2003,23(1):133-139
    [54]李惠,毛晨曦,欧进萍.形状记忆合金(SMA)被动消能减振体系的设计与参数分析[J].地震工程与工程振动,2001,21(4):54-59
    [55]毛晨曦,李惠,欧进萍.形状记忆合金被动阻尼器及结构地震反应控制试验研究和分析[J].建筑结构学报,2005,26(3):38-44
    [56]D. Bernardini, F. Brancaleoni and C. Valente:A Finite Element Model for the Simulation of Shape Memory Alloys Based Seismic Protection Devices, Proceedings of The 11th European Conference on Earthquake Engineering, Balkema, Rotterdam,1998
    [57]I.D. Aiken, D. K. Nims and J. M. Kelly. Comparative Study of Four Passive Energy Dissipation Systems. Bull, N. I. Nay, Soc. for Earthquake, Vol.25, No.3, 1992
    [58]Y. Adachi. Experimental Study on Seismic Response Control of Bridge by Damper Device Using Shape Memory Alloy.2WCPC, Japan,1996
    [59]姚兴田,周一丹,邱自学.NiTi形状记忆合金丝的力传感特性及其机理研究[J].机械工程材料,2002,26(3):35-37
    [60]金嘉陵.NiTi形状记忆合金丝的力学和电阻特性[J].上海钢研,2000,4:7-13
    [61]金嘉陵,迟永晖.NiTi形状记忆合金丝的力学和电阻特性的同步测量[J].上海金属,2001,23(2):41-45
    [62]姜平,邱自学,周一丹.SMA传感特性及其信号处理[J].电子测量与仪器学
    报,2002,16(4):60-63
    [63]姜平,周一丹,邱自学.NiTi超弹丝的信息传感及其信息处理系统[J].仪表技术与传感器,2002,10:4-8
    [64]李海燕,杜彦良,李建英,侯平,张莺燕.NiTi合金薄带的电阻变化率——应变关系研究[J].材料科学与工程,1999,17(3):67-70
    [65]吴晓东,吴建生等.NiTi形状记忆合金丝的电阻与应力、应变的关系研究[J].功能材料,1998,29(2):161-164
    [66]姜平,邱自学,周一丹.SMA传感特性及其信号处理[J].电子测量与仪器学报,2002,16(4):60-63
    [67]骆英,陶宝祺.土木工程智能结构中传感器原理与应用[J].江苏理工大学学报(自然科学版),2000,21(5):9-13
    [68]朱玉田,原一郎等.形状记忆合金的动态加热控制方法研究[J].机械工程材料,2004,28(6):7-9
    [69]朱玉田,萩原一郎,毛利泰裕.形状记忆合金智能复合材料自修复中传感与控制方法研究[J].机械工程学报,2005,3:21-29
    [70]周智,欧进萍.用于土木工程的智能监测传感材料性能及比较研究[J].建筑技术,2002,33(4):270-272
    [71]吴晓东,王征,吴建生.用于智能材料与结构的NiTi丝的电阻特性研究[J].上海交通大学学报,1998,32(2):80-83
    [72]毛晨曦.结构地震损伤监测与控制的SMA智能系统[D].哈尔滨工业大学,2006
    [1]杨杰,吴月华.形状记忆合金及其工程应用.合肥:中国科学技术大学出版社,1993
    [2]欧进萍,关新春.土木工程智能结构体系研究与进展[J].地震工程与工程振动,1999,19(2):21-28
    [3]舟久保熙康等.形状记忆合金[M].产业图书(日),1985
    [4]王社良.形状记忆合金在结构控制中的应用[M].西安:陕西科学技术出社,2000
    [5]Birman V.Review of mechanics of shape memory alloy structures [J]. Applied Mechanics Reviews,1997,50(11):629-645
    [6]D. Bernardini, F. Brancaleoni and C. Valente:A Finite Element Model for the Simulation of Shape Memory Alloys Based Seismic Protection Devices, Proceedings of The 11th European Conference on Earthquake Engineering, Balkema, Rotterdam,1998
    [7]I.D. Aiken, D. K. Nims and J. M. Kelly. Comparative Study of Four Passive Energy Dissipation Systems. Bull, N. I. Nay, Soc. for Earthquake, Vol.25, No.3, 1992
    [8]赵祥.应用形状记忆合金进行古塔结构抗震保护的理论和试验[D].西安建筑科技大学,2008
    [9]孟和.形状记忆合金阻尼器在底部薄弱结构中的应用研究[S].西安建筑科技大学,2006
    [10]Sheliang Wang, Xindong Zhao, Yijie Ding, Xiang Zhao. The Seismic Response Analysis of Isolation Structure with Shape Memory Alloy Re-centring Dampers [R].3rd China-Japan-US Symosium on Structural Health Monitoring& Control, October 13-16,2004
    [11]Wang Sheliang, Zhao Xiang. Research on damp capacity of passive isolation device based on shape memory alloy[R]. Proc. Of the ISSEYE-8,2004,469-473
    [12]Clark P, Aliken I, Kelly J, et al. Experimental and Analytical Studies of Shape Memory Alloy Dampers for Structural Control [A]. Proceedings of SPIE,1995: 241-251
    [13]Otsuka K, Shimizu K. Psedoelasticity and shape memory effects in alloys. Inter. Met. Rev.1986,31:93-114
    [14]Miyazaki S, Otsuka K. Development of shape memory alloys. ISU International.1989,29:353-377
    [15]王社良,巨生国,苏三庆.形状记忆合金的动力响应特性及振动控制[J].西安建筑科技大学学报,1999,31(1):14-17
    [16]中华人民共和国建设部.建筑抗震设计规范(GB50011-2001)[M].北京:中国建筑工业出版社,2001
    [17]周福霖.工程结构减震控制.北京:地震出版社,1997
    [18]胡聿贤.地震工程学[M].地震出版社,2006
    [19]周福霖.隔震、消能减震和结构控制技术的发展和应用(上)[J].世界地震工程,1990,1:7-17
    [1]王社良.形状记忆合金在结构控制中的应用[M].陕西科学技术出版社,2000
    [2]Muller I. A model for a body with shape memory. Arch. Rat. Mech. Anal.,1979, 70(1):61-77
    [3]王社良,马怀忠,沈亚鹏.形状记忆合金在结构抗震控制中的应用.西安建筑科技大学学报,1998,30(2):115-118
    [4]Tanaka K. A thermomechanical sketch of shape memory effect:one-dimensional tensile behavior. Res. Mech.,1986,18(2):251-263
    [5]Sato Y, Kanaka K. Estimation of energy dissipation in alloys due to stress induced martensitic transformation. Res. Mech.,1988,28(2):252-263
    [6]Tanaka K, Sato Y. Phenomenological description of the mechanical behavior of shape memory alloys. Trans. J of SME,1992,53(491):1368-1373
    [7]Raniechi B, Lexcellent C, Tanaka K. Thermodynamic models of pesudoelastic behavior of shape memory alloys. Arch. Mech.,1992,44(3):383-392
    [8]Lin P, Tobushi H, Tanaka K, Hattori T. Deformation properties associated with martenstic and R-phase transformation in TiNi shape memory alloy. Trans. J of SME,1994,60(569A):126-133
    [9]Liang C, Rogers C A. One-dimensional thermomechanical constitutive relations of shape memory alloys. J. Intell. Mater. Syst. And Struct.,1990,1(1):207-234
    [10]Liang C, Rogers C A. A multi-dimensional thermomechanical constitutive relations of shape memory alloys. J. Eng. Math.,1992,26(3):429-443
    [11]Brinson L C. One-dimensional constitutive behavior of shape memory alloy: thermomechanical derivation with non-constant material functions and redefined maretnsite internal variable. J. Intell. Mater. Syst. And Struct.,1993,4(2):229-242
    [12]Brinson L C, Lammering R. Finite element analysis of the behavior of shape memory alloys and their applications. Int. J. Solids Struct.,1993, 30(23):3261-3280
    [13]Boyd J G, Lagoudas D C. Thermomechanical response of shape memory composites. J. Intell. Mater. Syst. and Struct.,1994,5(3):382-390
    [14]Ivshi Y, Pence T J. A thermomechanical model for a variant shape memory materials. J.Intell. Mater. Syst. and Struct.,1994,5(4):455-473
    [15]Ivshi Y, Pence T J. A constitutive model for hysteretic phase transition behavior. Int. J. Eng. Sci.,1993,32(4):681-704
    [16]王社良,苏三庆,沈亚鹏.形状记忆合金拉索被动控制结构地震响应分析.土木工程学报,2000,33(1):68-74
    [17]Bertran A. Thermo-mechanical constitutive equations for the description of shape memory effects in alloys. Nuclear Eng.& Design,1982,74(1):173-182
    [18]Achenbach M, Berlin I M. Creep and yield in martensitic transformations. Ingenieur Arch.,1983,53(2):73-83
    [19]Achenbach M, Atanackovic T, Muller I. A model for memory alloys in plain strain. Inc. Jour. Solid& Struct.,1986,22(2):171-193
    [20]Achenbach M. A model for an alloy with shape memory. Int. J. Plasticity,1989, 5(2):371-391
    [21]Graesser E J, Cozzarelli F A. Shape memory alloys as a new material for aseismic isolation. J. Eng. Mech., ASCE,1991,117(11):2590-2608
    [22]Graesser E J, Cozzarelli F A. A proposed three-dimensional constitutive model for shape memory alloys. J.Intell. Mater. Syst. and Struct.,1994,5(1):75-83
    [23]Diani M, Sabar H., Berveiller M. Micromechanical modeling of the transformation induced plasticity phenomenon in steels. Int. J. Eng. Sci.,1995, 33(13):1921-1932
    [24]Sun Q P, Hwang H C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloy. J. Mech. Phys. Solids,1993,41(1):1-17
    [25]Boyd J G, Lagoudas D C. A thermodynamical constitutive model for shape memory materials. Part I. the monolithic shape memory alloy. Int. J. Plasticity, 1996,12(6):805-842
    [26]Boyd J G, Lagoudas D C. A thermodynamical constitutive model for shape memory materials. Part II. the shape memory alloy composite material. Int. J. Plasticity,1996,12(7):843-873
    [27]王健,沈亚鹏,王社良.形状记忆合金的本构关系.上海力学,1998,19(3):185-195.
    [28]Berveiller M, et al. Thermomechanical constitutive equations for shape memory alloys. J. Phys. IV,1 Colloque,1991, C.4
    [29]Patoor E. et al. On micromechanics of thermoelastic phase transition. Proc. Plasticity 93,1993
    [30]Falk F. Model free energy, mechanics and thermodynamics of shape memory alloy. Acta. Metallurgical,1980,28(8):1773-1780
    [31]Falk F. One-dimensional model of shape memory alloys. Arch. Mechanics,1983, 35(1):63-84
    [32]Falk F. Pseudoelasic stress-strain curves of polycrystalline shape memory alloys calculated from crystal data. Int. J.Eng.Sci.,1989,27(1):277-284
    [33]Maugin S. Cadet S. Existence of solitary waves in martensitic alloys. Int. J. Eng. Sci.,1991,29(2):243-258
    [34]Abeyartane R, Knowles J K. Kinetic relations and the propagation of phase boundaries in solids. Arch Rational Mech.,1991,114(1):119-154
    [35]Abeyartane R, Knowles J K. A continuum model of a thermoelastic solid capable of undergoing phase reansitions. J. Mech. Phy. Solids,1993,41(4):541-571
    [36]Chein H W. Stress-induced phase transformation in solids and the associated double-well potentials. Int. J. Solids Struct.,1995,32(3/4):525-542
    [37]毛晨曦,李惠,欧进萍.形状记忆合金被动阻尼器及结构地震反应控制试验研究和分析[J].建筑结构学报,2005,26(3):38-44
    [38]左晓宝,李爱群等.形状记忆合金的超弹性一维本构模型及其简化[A].中日结构减振及健康监测研讨会暨第三界中国结构抗震控制年会论文集[C].上海,2002:1-9
    [39]薛素铎,董军辉等.一种新型形状记忆合金阻尼器.建筑结构学报,2005,26(3):45-50
    [1]M. Carbello, Z. J. Pu and K. H. Wu. Variation of Electrical Resistance and the Elastic Modulus of Shape Memory Alloys under Different Loading and Temperature Conditions [J]. Intell. Master. Syst. Struct.1995,6:6557-6565
    [2]G. Airodi, M. Pozzi and G. Riva. The Electrical Resistance Properties of Shape Memory Alloys[C]. Material Research Society Symp. Proc. (Material Research Sosiety),1997:459-464
    [3]姜平,周一丹,邱自学.NiTi超弹丝的信息传感及其信息处理系统[J].仪表技术与传感器,2002,10:4-8
    [4]李海燕,杜彦良,李建英,侯平,张莺燕.NiTi合金薄带的电阻变化率——应变关系研究[J].材料科学与工程,1999,17(3):67-70
    [5]吴晓东,吴建生等.NiTi形状记忆合金丝的电阻与应力、应变的关系研究[J].功能材料,1998,29(2):161-164
    [6]姜平,邱自学,周一丹.SMA传感特性及其信号处理[J].电子测量与仪器学报,2002,16(4):60-63
    [7]姚兴田,周一丹,邱自学.NiTi形状记忆合金丝的力传感特性及其机理研究[J].机械工程材料,2002,26(3):35-37
    [8]M. Pozzi, G. Airodi. Electrical Transport Properties of Shape Memory Alloys. Materials Science and Engineering A:Structural Materials:Properties, Microstructure and Processing.1998,273(12):300-304
    [9]G. Airodi, M. Pozzi. Electrical Transport Properties of Shape Memory Alloys under a Stress Strate[J]. Journal of Engineering Materials and Technology, Transactions of ASME.1999,12(1):108-111
    [10]X. D. Wu, Y. Z. Fan and J. S. Wu. A Study on The Variations of Electrical Resistance for NiTi Shape Memory Alloy Wires during the Thermo-Mechanical Loading. Materials and Design[J].2000,21:511-515
    [11]金嘉陵.NiTi形状记忆合金丝的力学和电阻特性[J].上海钢研,2000,4:7-13
    [12]金嘉陵,迟永晖.NiTi形状记忆合金丝的力学和电阻特性的同步测量[J].上海金属,2001,23(2):41-45
    [13]骆英,陶宝祺.土木工程智能结构中传感器原理与应用[J].江苏理工大学学报(自然科学版),2000,21(5):9-13
    [14]朱玉田,原一郎等.形状记忆合金的动态加热控制方法研究[J].机械工程材料,2004,28(6):7-9
    [15]朱玉田,萩原一郎,毛利泰裕.形状记忆合金智能复合材料自修复中传感与控制方法研究[J].机械工程学报,2005,3:21-29
    [16]杨凯,辜承林等.用于柔性机械手的形状记忆合金驱动器滑模控制研究[J].中国机械工程,2004,15(20):1794-1797
    [17]周智,欧进萍.用于土木工程的智能监测传感材料性能及比较研究[J].建筑技术,2002,33(4):270-272
    [18]吴晓东,王征,吴建生.用于智能材料与结构的NiTi丝的电阻特性研究[J].上海交通大学学报,1998,32(2):80-83
    [19]韩宝国,关新春,欧进萍.碳纤维水泥石压敏传感器电极的实验研究[J].功能材料,2004,35(2):262-264
    [20]陈德池.传感器及其应用[M].北京:中国铁道出版社.1993
    [21]郭爱芳,王恒迪.传感器原理及应用[M].西安电子科技大学出版社.2007
    [22]孟立凡,蓝金辉.传感器原理与应用[M].北京:电子工业出版社.2007
    [23]何道清.传感器与传感器技术[M].北京:科学出版社.2004
    [24]康健.传感器的线性度及其线性化处理[J].电子质量(自动化与仪表卷):26-29
    [25]招惠玲.传感器独立线性度的分析与计算[J].计测技术,2003,4:35-36
    [26]毛晨曦.结构地震损伤监测与控制的SMA智能系统[D].哈尔滨工业大学,2006
    [1]彭文屹,曾少鹏,章少青.形状记忆合金在土木工程上的应用进展[J].热处理技术与装备.2007,28(5):1-5
    [2]禹奇才,刘春晖,刘爱荣.一种放大位移型SMA阻尼器的减震控制分析[J].地震工程与工程震动.2008,28(5):151-156
    [3]赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性[M].北京:国防工业出版社,2002.170
    [4]倪立峰,李爱群,左晓宝等.形状记忆合金超弹性阻尼性能的试验研究[J].地震工程与工程振动,2002,22(6):129-134
    [5]Clark P W, Aiken ID, Higashino M, et al. Experimental and analytical studies of shape memory alloy dampers for structure control [C]//Proc. of SPIE,2445: 241-251
    [6]Higashino M, Aizawa A, Clark PW, et al. Experimental and analytical studies of structure control system using shape memory alloy [C]//Proceedings of the Second International Workshop on Structure Control, HongKong,1996:221-229
    [7]王社良,苏三庆,沈压鹏.形状记忆合金拉索被动控制结构地震响应分析[J].土木工程学报,2000,33(1):56-62
    [8]李惠,毛晨曦.新型SMA耗能器及结构地震反应控制试验研究[J].地震工程与工程振动,2003,23(1)1:133-139
    [9]刘春晖,禹奇才,刘爱荣.基于新型形状记忆合金阻尼器的减振研究[J].广州大学学报,2005,4(2):166-170
    [10]李翼龙等.X形和三角形SMA阻尼器的阻尼力模型[J].地震工程与工程振动,2002,22(6):109-114
    [11]禹奇才,刘爱荣,姚远.新型SMA粘滞阻尼器的试验研究[J].中山大学学报(自然科学版).2008,47(6):120-123
    [12]ROBERT C K. Structural damping with shape-memory alloy:one class device[C]. SPIE,1995,2445-240
    [13]MAURO Doclce, DONATELLO Cardone, Robero Marnetto. Implementation and testing of passive control devices based on shape memory alloys [J]. Earthquake Energy and Structure Dynamics,2000,29:945-968
    [14]PETER W C. Experimental and analytical studies of shape memory alloy dampers for structure control [C]. SPIE,1995,2445:241-251
    [15]彭刚,李黎,唐家祥.SMA耗能器的阻尼特性分析及器件设计方法[J].固体力学学报,2003,24(1):109-112
    [16]姜袁,赵家成,彭刚.SMA耗能器的阻尼性能试验研究[J].振动工程学报,2004,17(1):31-34
    [17]黄襄云,王凤华,高强.SMA超弹性阻尼特性的试验研究[J].广州大学学报,2004,8(1):46-52
    [18]Hongwei Ma, Chongdu Cho. Feasibility study on a superelastic SMA damper with re-centring capability[J]. Materials Science and Engineering A 473 (2008) 290-296
    [19]王奇,刘海卿.应用SMA-粘滞阻尼器的框架结构减震效果数值模拟分析[J].辽宁工程技术大学学报(自然科学版),2009,28卷增刊:298-300
    [20]薛素铎,卞晓芳,李彬双.一种新型形状记忆合金阻尼器[J].建筑结构学报,2005,26(3):44-49
    [21]王社良.形状记忆合金在结构控制中的应用[M].陕西科学技术出版社,2000
    [22]濮良贵,纪名刚.机械设计[M].高等教育出版社(第六版),1996
    [23]周云.粘弹性阻尼减震结构设计[M].武汉理工大学出版社,2006
    [24]周云.金属耗能减震结构设计[M].武汉理工大学出版社,2006
    [25]《建筑抗震设计规范》(GB 50011-2001)[M].北京:中国建筑工业出版社,2001
    [1]沈祖炎,陈扬骥.网架与网壳[M].同济大学出版社,2004
    [2]朱礼敏.大跨空间结构采用粘滞阻尼器的减震分析和优化设计[D].中国建筑科学研究院,2007
    [3]R. W. Clough著,王光远等译.结构动力学(第二版)[M].北京:科学出版社,2007
    [4]王刚.带缝空心R.C.剪力墙结构试验研究[D].西安:西安建筑科技大学,2005
    [5]熊仲明,王社良主编.土木工程结构试验[M].北京:中国建筑工业出版社,2006
    [6]姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社,1996
    [7]郝文化.ANSYS7.0实例分析与应用[M].北京:清华大学出版社,2001
    [8]张朝晖.ANSYS8.0结构分析及实例解析[M].北京:机械工业出版社,2006
    [9]刘坤.ANSYS有限元方法精解[M].北京:国防工业出版社出版社,2005
    [10]龚曙光.ANSYS工程应用实例解析[M].北京:机械工业出版社,2003
    [11]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700