甲醛、环氧氯丙烷交联壳聚糖树脂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在开发一种性能良好的新型交联壳聚糖树脂(AECTS)。
     采用壳聚糖为原料,甲醛为预交联剂,环氧氯丙烷为交联剂,通过反相悬浮交联法制备出新型壳聚糖树脂,考察了操作条件对合成树脂性能的影响,并用红外光谱、扫描电镜、X射线衍射、热重分析表征其结构。结果表明:甲醛用量、环氧氯丙烷用量、乳化剂用量、搅拌速度、壳聚糖浓度、酸处理条件对树脂性能的影响较大;按最佳合成条件可制备出耐酸性能好、吸附能力强、机械强度好、孔隙率较高的壳聚糖树脂。壳聚糖经交联处理后,结晶能力下降,热稳定性有所降低。
     合成了甲醛、环氧氯丙烷交联壳聚糖(AECTS)-Cu、Ni、Co配合物,用FTIR、WXRD、TGA和DSC对配合物进行了结构表征。结果表明:Cu~(2+)、Ni~(2+)、Co~(2+)与AECTS中氨基、羟基发生配位而被吸附;树脂吸附金属离子后,结晶度下降、含水量增加、水的结合牢固程度降低、热稳定性变差、热分解残余物显著增加。对AECTS吸附Cu~(2+)、Ni~(2+)、Co~(2+)的机理、吸附前后材料性能的变化原因和Cu~(2+)在树脂中所处的化学环境等进行了深入的分析和讨论。
     研究了AECTS对Cu~(2+)、Ni~(2+)、Co~(2+)的吸附热力学行为以及溶液中介质种类的不同对金属离子吸附量的影响。结果表明:AECTS主要以配位形式吸附Cu~(2+)和Ni~(2+),以配位形式和物理吸附形式吸附Co~(2+);AECTS对Cu~(2+)和Ni~(2+)的吸附符合Langmuir等温方程,属于单分子层吸附;AECTS对Co~(2+)的吸附同时符合Frundlich模型和Langmuir模型;不同介质对树脂吸附Cu~(2+)、Ni~(2+)、Co~(2+)的影响大小顺序为HCl>CdCl_2>MgCl_2>NaCl,但作用机理差别较大。
     测定了不同温度下AECTS自水中吸附苯甲酸的等温线,计算了吸附过程的热力学参数,并用Freundlich方程对实验数据进行拟合,发现该方程适用于所研究的吸附体系。体系的热力学与吸附机理密切相关,当苯甲酸浓度较低时,吸附为放热过程,体系熵减少,降温有利于吸附;当苯甲酸浓度较高时,吸附为吸热过程,体系熵增加,升温有利于吸附。
Our aim is to develop a novel type crosslinked chitosan resin (AECTS) with
    good properties in this paper.
    With chitosan as the raw material, a new type chitosan resin was prepared through inverse suspension crosslinking by formaldehyde and epichlorohydrin. The effect of the operating conditions on the properties of the resin was investigated. The structure of the resin was characterized by FTIR, WXRD and TGA. The results revealed that the dosage of formaldehyde, epichlorohydrin and emulsifier, the stirring speed, the chitosan concentration and the treatment conditions with hydrochloric acid affected the properties of the resin largely. A strong-acid-resistance, high-capacity, good-strength, large-porosity chitosan resin was obtained under the optimum reaction conditions. The crystalline grade of crosslinked chitosan reduced and the thermal stability decreased.
    The complex of AECTS with Cu2+, Ni2+, Co2+ were systhesized and characterized by FTIR, WXRD, TGA and DSC. The results of those analysis showed that the adsorption was realized through binding -NH2 and -OH groups in AECTS with ions. Compared with AECTS, the structure and properties of AECTS-Cu, AECTS-Ni and AECTS-Co had changed. The crystalline grade reduced; The water content increased; The combination firmness degree of water decreased; The thermal stability reduced, and the decomposition residue improved remarkably. In this paper the adsorption mechanism of AECTS with Cu2+, Ni2+ and Co2+, the transformation reason of material performance before and after adsorbing, the chemical environment of ions in AECTS and so on were deeply analysized and discussed.
    The adsorption thermodynamics properties of AECTS with Cu2+, Ni2+ and Co2+ and the influence of different media on adsorption were studied. The results showed that AECTS adsorbed Cu2+ and Ni2+ mainly by complexation, the experimental data fit well into the Langmuir adsorption isotherm and the process obeyed the formation
    
    
    of monolayer adsorption. AECTS adsorbed Co2+ mainly by complexation and physical style, the experimental data fit well into the Langmuir and Freundlich adsorption isotherm at the same time. The effect order of media was HCl>CdCl2>MgCl2>NaCl, and their effect mechanism differed greatly.
    The adsorption isotherms of benzoic acid from water onto the novel resin had been determined at different temperatures and the thermodynamic parameters in adsorption process had been calculated. The experimental results fit with Freundlich equations well. The thermodynamics of the systems related closely to the adsorption mechanisms. When the concentration of benzoic acid was low, the adsorption was an exothermal process with the system's entropy decreasing, and the decrease of temperature did benefit to the process. When the concentration of benzoic acid was high, the adsorption was an endothermal process with the system's entropy increasing, and the increase of temperature did benefit to the process.
引文
[1] 黄诒森.生物化学[M].第三版.北京:人民卫生出版社,1998.22-48.
    [2] 丁维功,赵德山,江世益.中国医学化学进展[M].上海:百家出版社,1996.215-216.
    [3] 王绍文,姜风有.重金属废水治理技术[M].北京:冶金工业出版社,1993.1
    [4] 丁明,曾桓兴.铁氧体工艺处理含重金属污水研究现状及展望[J].环境科学,1992,13(2).
    [5] 费维扬.面向21世纪的溶剂萃取技术[J].化工进展,2000(1):11~13.
    [6] 张永锋,许振良.重金属废水处理最新进展[J],工业水处理,2003(6):1-5
    [7] Rorrer GL, Hsien T Y, Way J D. Synthesis of porous2magnetic chitosan beads for removal of cadmiumions fromwastewater[J].Ind. Eng. Chem.Res.,1993,32(9):2170-2178.
    [8] Shukla S R, Jawed M. Column studies on metal ion removal by dyed celluloic materials[J].J.Appl.Polymer Sci.,1992,44(5):903-910.
    [9] Khan S A, Riaz2ur2Rehman A, Khan M A. Adsorption of chromium(Ⅲ), chromium(Ⅵ) and silver(Ⅰ) on bentonite [J].Waste Man2age.,1995,15(4): 271-282,
    [10] 程树培,崔益斌,杨柳燕.高絮凝性微生物育种生物技术研究与应用进展[J].环境科学进展,1995,12(1):65~69.
    [11] 张建梅.重金属废水处理研究进展[J].西安联合大学学报,2003,6(2):55~59.
    [12] 彭清涛.植物在环境污染治理中的应用[J].环境保护,1998(2):24~27.
    [13] 蒋挺大.甲壳素.北京:化学工业出版社,2003.1
    [14] Muzzarelli R. A. A. chitin. New York. Pergamon press. 1977,134.
    [15] 杨安乐,陈长春,孙康,等.甲壳素的改性研究及其在功能材枓上的应用[J].现代化工,1999,19(4):50-52.
    [16] 王爱勤,俞贤达.烷基化壳聚糖衍生物的制备与性能研究[J].功能高分子学报,1998,11(1):83-86.
    [17] 汪玉庭,刘玉红,张淑琴.甲壳素、壳聚糖的化学改性及其衍生物应用研究进展功能高分子学报,2002,15(1):107-114.
    [18] 许晨,卢灿辉,丁马太.壳聚糖季铵盐的合成及结构表征[J].功能高分子学报,1997,10(1):52-55.
    [19] Takahashi A, Sugahura Y, Hirano Y. Studies on graft copolymerization onto cellulose derivatives. ⅩⅪⅩ: photo2induced graft copolyme rization of methyl methacrylate onto chitin and oxychitin[J].J Polym Sci, Part A: Polym Chem, 1989,27(11): 3817-3828.
    [20] Mochizuki A, Yoshi O. Perraporation separation of water/ethanol mixtures through polysaccharide membranes Ⅱ: the permselectivity of chitosan membrane[J].J Appl Polym Sci,1989,37(12):3375-3384.
    [21] 丁明,施建军,皇甫立霞等.壳聚糖微球的制备研究[J].化学世界,1998,636~640.
    [22] 丁明,孙虹Fe_3O_4/壳聚糖核壳磁性微球的制备及特性[J].磁性材料及器件,2001,32(6):1~5.
    [23] 王永健,孙彦.适于蛋白质吸附的交联壳聚糖树脂的制备[J].天津大学学报,2001,34(6):819~822.
    [24] Yi-Hua Yu, Bing-Lin He. A new type of ALSS-the preparation of crosslinked chitosan resins and its adsorptong proprerties for bilirubin. Reactive & Functional Polymers 31(1996):195~200.
    [25] 余艺华,孙彦,何炳林.交联壳聚糖树脂的制备工艺及性能表征[J].天津大学学报,2000,33(1):113-117.
    [26] 任广智,李振华,何炳林.磁性壳聚糖微球用于尿激酶的固定化研究(Ⅰ)[J].离子交换与吸附,2000,16(4):304~310.
    [27] 方波,宋道云,陈鸿雁等.微球型壳聚糖胺基吸附剂的制各及性能[J].化工科技,2000,8(3):20~23.
    [28] 辛嘉英,张复升,沈思远.一种壳聚糖免疫缓释微球的制备方法[J].甘肃科学学报,1997,9(1):63~65.
    [29] 张所信,王为国,江龙法等.球形交联壳聚糖的制备及其在固定化α-淀粉酶方面的应用[J].现代化工,1997,(4):29~31.
    [30] 黄惠莉,林文銮.壳聚糖微球树脂的制备及应用[J].华侨大学学报,2002,23(1):91~95.
    [31] 贺小进,谭天伟等.球形壳聚糖树脂制备方法及吸附性能研究[J].离子交换与吸附,2000,16(1):47~53.
    
    
    [32] Yaku. Koshijima T. Proceeding of The Ist International Conference on chitin/chitosan. Muzzarelli R AA and Pareser E R.Ed.1978,386.
    [33] 季君晖.壳聚糖对Cu~(2+)的吸附行为及机理研究[J].离子交换与吸附,1999,15(6):511~517.
    [34] 王爱勤,邵士俊,周金芳等.甲壳氨与Cu~(2+)配合物的合成和表征[J].高分子学报,2000,(3):297-300.
    [35] 傅民.中国第一届甲壳质化学学术会议论文摘要集.大连.1996,10,60.
    [36] 刘峥,田兴乐,蒋先明.交联壳聚糖缩水杨醛螯合树脂的制备及性能研究[J].离子交换与吸附,1999,15(5):432-439.
    [37] 陈炳稔,汤又文,李国明等.可再生甲壳素吸附Cr(Ⅵ)的特性研究[J].应用化学,1998,15(3):109-111.
    [38] 刘金华.壳聚糖的制备及其对Pb~(2+)离子吸附作用的探讨[J],杭州师范学院学报,2000,(6):74~77.
    [39] 谭淑英,汪玉庭,唐玉蓉.壳聚糖乙酸酯冠醚对金属离子的吸附性能研究[J].环境科学,1999,20(3):59~62.
    [40] 易琼.叶菊招.壳聚糖吸附剂的制备及其性能[J].离子交换与吸附,1996,12(1):19~23.
    [41] 陈盛,林曦,郑彬华.锌与甲壳胺络合物的制备[J].应用化学,1998,15(4):65~67.
    [42] 黄晓佳.袁光谱,王爱勤.模板交联壳聚糖对过渡金属离子的吸附性能研究[J].离子交换与吸附,2000,16(3):262~266.
    [43] 曹佐英,赖声礼,曹珍年.微波辐射下壳聚糖对Zn~(2+)配合物的合成[J].现代化工,1999,19(11):24~27.
    [44] 郭振楚,彭斌,韩亮等.氨基壳聚糖与Zn~(2+)、Fe~(2+)、Cu~(2+)配合物的合成和表征[J].应用化学,2001,18(6):498~500.
    [45] 傅民.陈妹,金鑫荣.壳聚糖对Fe~(2+)吸附作用的研究[J].化学世界,1998,(2):79~82.
    [46] 林友文,陈伟,罗红斌等.羧甲基壳聚糖对Fe~(2+)的吸附[J].应用化学,2001,18(3):248~250.
    [47] 谢志海.强永刚,郎惠云等.Fe~(2+)-脱 酰壳聚糖配位聚合物的合成及其性能表征[J].离子交换与吸附,2002,18(1):76~79.
    [48] 汪玉庭,程格,朱海等.交联壳聚糖对重金属离子的吸附性能研究[J].环境污染与防治,1998,20(1):1~3.
    [49] 谭淑英,汪玉庭,彭长宏等.四种壳聚糖冠醚的合成和结构表征[J].水处理技术,1999,25(3):166~170.
    [50] 庄华,张征林,金万勒等.交联聚氨基壳聚糖螯合树脂的制备及吸附性能研究[J].离子交换与吸附,2001,17(6):507~514.
    [51] 陈炳稔,何广平,凌莫育.介质对可再生甲壳质吸附低浓度游离酸的影响[J].应用化学,1997,14(6):75~77.
    [52] 陈炳稔.可再生甲壳质的吸附特性研究[M].广州:华南理工大学出版社.1998.15.
    [53] 陈炳稔,李国明,张力.可再生甲壳质吸附有机酸的特性研究(Ⅰ)[J].离子交换与吸附,1999,15(2):182~185.
    [54] 蒋挺大,甘又心,张春萍.壳聚糖对氨基酸的吸附性能[J].离子交换与吸附,1994,(2):128~131.
    [55] Dr Gordon Mckay.Water Supply and Treatment[D].1979.3:37.
    [56] 陈炳稔,汤又文,陈文森.可再生甲壳质自水中吸附阴离子染料[J].离子交换与吸附,1998,14(4):303~307.
    [57] 余艺华,薛博,孙彦等.壳聚糖亲和磁性毫微粒的制备及其对蛋白质的吸附性能研究[J].高分子学报,2000,(3):340~344.
    [58] 王纪孝,路国梁.多孔壳聚糖膜对水-醇体系中醛的吸附性能[J].离子交换与吸附,2000,17(1):16~22.
    [59] 蒋挺大,壳聚糖[M],北京:化学工业出版社,2001,p2
    [60] 丁明,施建军,等,壳聚糖微球的制备研究[J],化学世界,1998,636
    [61] 余艺华,孙彦,等,交联壳聚糖树脂的制备工艺及性能表征[J],天津大学学报,2000,33(1):113
    [62] Inoue Katsutoshi, Baba Yoshinai, et al. Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan, Bull.Chem.Soc.Jpn[J], 1993, 66:2915
    [63] 曲荣君,王春华,等,铜(Ⅱ)模板壳聚糖树脂的合成及吸附性能[J],高分子材料科学与工程,1998,14(5):42
    [64] 黄文强,韩丽君,等,离子交换与吸附[J],1997,14(4):329
    [65] 王永健,孙彦,适于蛋白质吸附的交联壳聚糖树脂的制备[J],天津大学学报,2001,34(6):819
    
    
    [66] 刘秀芝,肖玲等,邻氨基苯酚改性壳聚糖树脂的制备及吸附性能的研究[J],离子交换与吸附,2002,18(5):399
    [67] 陈炳稔,可再生甲壳质的吸附特性研究[M],广州:华南理工大学出版社,1998,15
    [68] 何炳林,黄文强,离子交换与吸附树脂[M],上海科技出版社,1992
    [69] 曲荣君,王春华.交联壳聚糖树脂的制备及其吸附性能[J],水处理技术,1997,23(4):230
    [70] 郑化,杜予民等,交联壳聚糖膜的制备及其性能的研究[J],高等学校化学学报,2000,21(5):809
    [71] 曲荣君,阮文举,FTIR研究非完全脱乙酰甲壳质对金属离子的吸附机理,环境化学[J],1997,16(5):435
    [72] 郭灿城,有机化学[M],北京:科学出版社,2001,341
    [73] 季君晖,壳聚糖对Cu~(2+)的吸附行为及机理研究[J],离子交换与吸附,1999,15(6):511
    [74] 蒋挺大.壳聚糖[M].北京:化学工业出版社.2001.9.
    [75] Dambies L., Guimon C., Yiacoumi S., et al. Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy, Colloids and Surface(A) [J],2001,177:203~214
    [76] 季君晖.壳聚糖对Cu~(2+)的吸附行为及机理研究[J],离子交换与吸附,1999,15(6):511-517.
    [77] 王爱勤,邵士俊,周金芳等.甲壳氨与Cu~(2+)配合物的合成和表征[J],高分子学报,2000,(3):297-300.
    [78] J.C.Y.Ng, W.H.Cheung, G.Mckay. Equilibrium Studies of the Sorption of Cu(Ⅱ) ions onto Chitosan, Journal of Colloid and Interface Science,2002,255:64~74
    [79] Krajewska B., Reactive & Functional Polymers[J],2001.47:37
    [80] Ruiz M., Sastre A.M., Guibal E., Reactive & Functional Polymers[J],2000.45:155
    [81] Baba Y., Masaaki K., Kawano Y., Reactive & Functional Polymers[J],1998.36:167
    [82] Rueyshin J., Shao Hueyjen., A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan, Water Research[J],2002.36:2999
    [83] Sun Wei, Xia Chungu, Wang Aiqin., Acta Chemica Sinica[J],2002.60(1):162
    [84] Guan Huaimin, Tong Yuejin. Chinese Journal of Chemical Physics,1997,10(2):174~180
    [85] 陈水平,汪玉庭.功能高分子学报,2003,16(1):6~12
    [86] Yang J H, Vigee GS. A cobalt complex immobilized to chitosan [J]. J Inorg Bicohem, 1991,41:7-11.
    [87] MaHui xuan, HU Dao dao, Fang Yu, Journal of Functional Polymers,2000,13(3):301-305.
    [88] Nakamoto K., Fujuta J., Tanaka S.. Journal of American Chemistry Science,1957,79:4904~4908
    [89] Okuyama K., Noguchi K.,Kanenari M.,et al.Carbohydrate Polymers,2000,41:237~247
    [90] Hu Qiaoling, Qian Xiuzhen,Li Baoqiang,et al.Chemical Journal of Chinese Universities,2003,24(3):528~531
    [91] Yin Xueqiong, Zhang Qi,Yu Wenxia,et al.Chinese Journal of Inorganic Chemistry,2002,18(1):87~90
    [92] Liu Zhenhai.Thermal Measurement of Polymeric Materials.Beijing:Chemical Industry Press,2001
    [93] Chen Xin,Shao Zhengzhong,Huang Yufang,et al.Acta Chemica Sinica,2000,58(12):1654~1659
    [94] 北京师范大学,无机化学,北京:高等教育出版社,1992,790~793
    [95] E.Guibal,L.Dambies,C.Milot,et al.,Polymer Int[J],1999.48:671
    [96] Garcia-Delgado R.A., Cotoruelo L.M., J.Separation Science and Technology[J],1992,27(7),975
    [97] Zhao Zhenguo, Fan Aixing, Acta Chimica Sinica[J],1994.52,427
    [98] Jang L., Nguyen D., Geesey G., Water Research[J],1999..33:2826
    [99] Yang J., Volesky B., Environation Science Tehnology[J],1999.33:4079
    [100] Jha I., Iyengar L., Prabhakara A., Journal of Environmental Engineering[J],1988.114(4):962
    [101] Guan Huaimin, Cheng Xiansu, Tong Yuejin. Coordination number of coordination polymer for chitosan with Ni~(2+) and with La~(3+), Journal of Functional Polymers[J],1999,12(4):431-442.
    [102] 赵振国,硅胶自非极性溶剂中吸附苯甲酸[J],离子交换与吸附,2000,16(5),400.
    [103] 赵振国,赵子建,顾惕人,活性炭自水中吸附芳香化合物的热力学研究[J],化学学报,1985,43,813.
    [104] 赵振国,樊艾星,硅烷化活性炭的吸附性质[J],化学学报,1994,52,427.
    
    
    [105] 刘福强,陈金龙,张全兴,超高交联吸附树脂对苯甲酸的吸附研究[J],离子交换与吸附,2002,18(6),522.
    [106] Bartell, F.E.; Thomas, T.L.; Fu Y. J.Phys.Chem. 1951, 55, 1456.
    [107] Bartell, F.E.; Donahue D.L.J.Phys.Chem.1952,56,665.
    [108] 刘江雏,陈忠民,田洪河,李殿卿,刘大壮,苯甲酸溶解度的测定及关联[J],郑州工业大学学报,2001,22(1),97.
    [109] Carmo, A.M.; Lakhwinder, S.H.; Thompson, M.L. Environ.Sci.Technol.2000,34,4363.
    [110] 范顺利,孙寿家,活性炭自水溶液中吸附酚的热力学与机理研究[J],化学学报,1995,53,526.
    [111] Gile, C.H.; Macewan, T.H.; Nakhwa, S.N.; Smith, D. J. Chem. Soc. 1960, 3973.
    [112] 耿信笃,王彦,虞启明,固-液吸附体系中扩展的Langmuir方程的推导和检验[J],化学学报,2001,59(11),1847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700