产甘油假丝酵母胞浆3-磷酸甘油脱氢酶基因的克隆、表达与功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产甘油假丝酵母(Candida glycerinogenes)是优良的甘油生产菌株,并且已成功的应用于工业生产中。研究者在产甘油假丝酵母菌株的生理生化、发酵工艺优化、代谢机理方面开展了卓有成效的研究。但是与酿酒酵母(Saccharomyces cerevisiae)等模式菌株相比,该工业菌株的遗传和分子生物学信息比较匮乏。在C. glycerinogenes中,甘油合成途径的关键酶—胞浆3-磷酸甘油脱氢酶的编码基因以及该基因在细胞中的具体的生理功能是未知的。为此,本文从产甘油假丝酵母基因组中克隆出甘油合成的关键酶基因,并对其进行了详细的功能鉴定,最后通过在C. glycerinogenes过表达和缺失研究进一步确定该基因在细胞过量合成甘油中的作用。本文主要研究成果概括如下:
     (1)利用PCR方法,克隆了C. glycerinogenes的胞浆NAD~+依赖的3-磷酸甘油脱氢酶编码基因(CgGPD)。1167 nt的开放阅读框编码一个分子量为43 kDa,包含388个氨基酸的蛋白,氨基酸水平上该基因与具有安格斯毕赤酵母相似性最高,为70.9%,与粟酒裂殖酵母相对较低,仅为46.7%。并且发现在产甘油假丝酵母基因组中仅有一个CgGPD基因,不存第二个同功异构酶编码基因。
     (2) CgGPD基因在gpd1/gpd2和gpd1酿酒酵母突变株中表达能够显著提高细胞耐渗透压能力和甘油合成能力,表明CgGPD基因能够完全功能互补酿酒酵母GPD1基因的缺失。渗透压诱导实验表明CgGPD基因的表达受到渗透压的生理调控。在野生型酿酒酵母中过量表达CgGPD基因能够大幅度提高细胞的甘油合成能力,同时结果表明CgGPD基因自身上游调控序列能够有效调控基因表达。
     (3) CgGPD和GPD2基因能够提高hog1细胞的耐渗性,而GPD1基因的表达对突变株的耐高渗透压能力并没有显著提高;在pbs2突变株中分别过量表达CgGPD、GPD1和GPD2基因都能够提高转化子在高渗压条件下的生长性能;过量表达CgGPD和GPD1能够使gpd1/gpd2突变株降低对渗透压的敏感性,GPD2基因的表达则不具这种显著的这种功能;在hog1和pbs2突变株中分别过量表达CgGPD、GPD1和GPD2基因均能使转化子细胞在渗透压刺激下诱导胞内甘油合成和积累;GPD1基因的过量表达仅能一定程度上互补gpd1/gpd2突变株细胞在厌氧环境中GPD2基因的功能,而过量表达CgGPD基因则能够完全功能互补GPD2基因的缺失。
     (4)根据同源重组原理,以含有腐草霉素(Zeocin)抗性基因的pGAPZb质粒为基本构架,以CgURA3基因作为整合位点构建了用于转化产甘油假丝的酵母的整合载体;分别优化了物理参数和细胞生理参数对电转化效率的影响。结果表明,对数生长中期的细胞经DTT或LiAc预处理后在2×10~9个/mL的细胞浓度下加入200μg的线性整合载体,在1600V电压下,200Ω电阻、25μF电容进行电击,获得的转化效率可达到394个转化子/μg DNA。
     (5)以腐草霉素抗性基因作为选择标记,分别构建CgGPD基因敲除载体pUC-gpd-Zeoin和同源表达载体pGA-rDNA-CgGPD,导入产甘油假丝酵母细胞,获得稳定的缺失突变株和过表达转化子。甘油发酵实验表明CgGPD基因缺失显著降低了细胞的甘油合成能力,同时增加了细胞的产乙醇能力,而细胞的EMP代谢途径活力的降低导致细胞量显著下降,使得细胞在高浓度葡萄糖下的生长能力受损;过量表达CgGPD基因能够加速葡萄糖的消耗,缩短发酵周期,从而提高甘油的产率和得率,同时胞内副产物丙酮酸、乙酸和乳酸等有一定的提高,而乙醇的生成则受到抑制。
In recent years, Candida. glycerinogenes, a novel osmotolerant yeast, was isolated from glazed fruit in Southern China and has been commercially exploited to produce glycerol. Compared to other yeasts, C. glycerinogenes has several useful properties, such as tolerance to high concentration glucose, rapid growth and excellent glycerol production in aerobic fermentation. These good properties are supposed to be due to the fact that this yeast possesses several specific genes involved in glycerol biosynthesis. Although the physiological and fermentation properties of C. glycerinogenes have been investigated, little molecular studies on glycerol biosynthesis and osmoregulation have been done. Our knowledge of cell properties at the molecular level and genetic background lags far behind those of model yeasts such as S. cerevisiae because of lack of effective genetic manipulation tool. The significant production and accumulation of glycerol in C. glycerinogenes poses the questions whether a biochemical pathway similar to other yeasts or an alternative pathway for glycerol formation exists in this yeast and CgGPD is the target of HOG pathway. In this dissertation, CgGPD encoding cytol NAD~+-glycerol 3-phospahte dehydrogenase was cloned from C. glycerinogenes and characterized by heterologous expression in S. cerevisiae. The effects of deletion and/or overexpression of CgGPD in C. glycerinogenes for glycerol production were investigated. The main contents of this dissertation follow:
     (1) A 4900-bp genomic fragment containing a GPD gene encoding a glycerol-3-phosphate dehydrogenase from C. glycerinogenes homologous to GPD genes in other yeasts was cloned using degenerate primers PCR in conjunction with inverse PCR. This gene was named CgGPD (GenBank Accession No. EU186536). Sequence analysis revealed a 1167-bp open reading frame encoding a putative peptide of 388 deduced amino acids with a molecular mass of 42,695 Da. The CgGPD gene consisted of a N-terminal NAD+-binding domain and a central catalytic domain whereas seven STREs were found in the upstream region. Comparison of CgGPD with amino acid sequences revealed that CgGPD showed the highest identity to the GPD of Pichia angusta (70.9%) but only 46.7% to the Schizosaccharomyces pombe gpd1. However, the amino acid sequence is more identical to the GPD1 (60.9%) than the GPD2 (56.2%) in S. cerevisiae. Southern hybridization suggests that GPD gene may exist as a single copy in C. glycerinogenes.
     (2) Functional analysis revealed that S. cerevisiae gpd1Δand gpd1Δ/gpd2Δosmosensitive mutants transformed with CgGPD were restored to the wild-type phenotype when cultured in high osmolarity media suggesting that it is a functional GPD protein. Transformants also accumulated glycerol intracellularly and GPD specific activity increased significantly when stressed with NaCl whereas the S. cerevisiae mutants transformed with the empty plasmid showed only slight increases. Wild type strain W303A employing CgGPD improved glycerol yield significantly. The results showed that CgGPD containing upstream regulatory sequence is functional in S. cerevisiae.
     (3) To facilitate the difference among CgGPD, GPD1 and GPD2, functional comparision with three genes was undertaken, using S. cereivisae and isogenic mutants as a heterologous expression system. Expression of CgGPD and GPD2 in hog1 improved osmotolernace and glycerol production, but GPD1 have no similar effect. However, expression of CgGPD, GPD1 and GPD2 in pbs2 enhanced growth ability in high osmolarity conditions. Overexpression CgGPD and GPD1 in gpd1/gpd2 suppressed the osmosensitivity and enhanced glycerol production. However, overexpression GPD2 in gpd1/gpd2 have no phenotype and physiology difference. It was worthy to be mentioned that in anaerobic conditions CgGPD complemental fulfill GPD2 for redox balance regulation in gpd1/gpd2 mutant.
     (4) The genetic transformation of C. glycerinogenes by electroporation were tested and the physical and biological parameters involved in transformation efficiency were optimized. Pretreatment of yeast cells with either dithiothreitol (DTT) or Lithium acetate (LiAc) enhanced the frequency of transformation markedly by electroporation. The optimized cell concentrations, amount of DNA and pulse amplitude were 2×10~9 cells/mL, 200 ng and 8 kV/cm respectively. Furthermore, significantly higher transformation efficiency was obtained when the electroporated cells were pretreated with Zeocin before plating.
     (5) To investigate the effect of CgGPD on glycerol biosynthesis in C. glycerinogenes, the CgGPD-disrupted mutant and the overexpressed CgGPD in C. glycerinogenes were constructed and confirmed by diagnositc PCR. The CgGPD-disrupted mutant reduced its osmotolerance, defected its growth profile and resulted in a remarkable decrease of glycerol yield when cultured in the fermentation glycerol medium. On the other hand, the C. glycerinogenes improved its ethanol production by deletion of CgGPD. Hovever, the transformant employing CgGPD accelerated its glucose consumption rate, enhanced its glycerol productivity, increased the specific GPD activity and decreased its ethanol prodution ability.
引文
1 Wolfe RR. Metabolic interactions between glucose and fatty acids in humans[J]. The American Journal of Clinical Nutrition, 1998, 67(3 Suppl): 519S-526S
    2 Bortz WM, Paul P, Haff AC, et al. Glycerol turnover and oxidation in man[J]. The Journal of Clinical Investigation, 1972, 51(6): 1537-1546
    3 Holms H. Flux analysis and control of the central metabolic pathways in Escherichia coli[J]. FEMS Microbiol Rev, 1996, 19(2): 85-116
    4 Nevoigt E, Stahl U. Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae[J]. FEMS Microbiol Rev, 1997, 21(3): 231-241
    5 Rep M, Albertyn J, Thevelein JM, et al. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae[J]. Microbiology, 1999, 145 (3): 715-727
    6 San Jose C, Monge RA, Perez-Diaz R, et al. The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans[J]. Journal of Bacteriology, 1996, 178(19): 5850-5852
    7 Kultz D, Garcia-Perez A, Ferraris JD, et al. Distinct regulation of osmoprotective genes in yeast and mammals. Aldose reductase osmotic response element is induced independent of p38 and stress-activated protein kinase/Jun N-terminal kinase in rabbit kidney cells[J]. The Journal of Biological Chemistry, 1997, 272(20): 13165-13170
    8 Aiba H, Kawaura R, Yamamoto E, et al. Isolation and characterization of high-osmolarity-sensitive mutants of fission yeast[J]. Journal of Bacteriology, 1998, 180(19): 5038-5043
    9 Marshall CJ. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase[J]. Current Opinion in Genetics & Development, 1994, 4(1): 82-89
    10 Albertyn J, Hohmann S, Thevelein JM, et al. GPD1, which encodes glycerol-3-phosphatedehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway[J]. Molecular and Cellular Biology, 1994, 14(6): 4135-4144
    11 Kempf B, Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments[J]. Archives of Microbiology, 1998, 170(5): 319-330
    12 Oomura Y, Ono T, Ooyama H, et al. Glucose and osmosensitive neurones of the rat hypothalamus[J]. Nature, 1969, 222(5190): 282-284
    13 Yang XJ, Kow LM, Funabashi T, et al. Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms[J]. Diabetes, 1999, 48(9): 1763-1772
    14 Lin EC. Glycerol utilization and its regulation in mammals[J]. Annual Review of Biochemistry, 1977, 46: 765-795
    15 Mazurek S, Boschek CB, Eigenbrodt E. The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy[J]. Journal of Bioenergetics and Biomembranes, 1997, 29(4): 315-330
    16诸葛健,方慧英.微生物好氧发酵法生产甘油[J].精细与专用化学品, 2001, (20): 22-23
    17诸葛健,方慧英,诸葛斌.发酵法生产丙三醇的过去和现在[J].工业微生物, 1997, 27(03): 34-36
    18 Brisson D, Vohl MC, St-Pierre J, et al. Glycerol: a neglected variable in metabolic processes?[J]. Bioessays, 2001, 23(6): 534-542
    19 Wolfson A, Dlugy C, Shotland1 Y. Glycerol as a green solvent for high product yields and selectivities[J]. Environmental Chemistry Letters, 2007, 5: 67-71
    20 Nakamura CE, Whited GM. Metabolic engineering for the microbial production of 1,3-propanediol[J]. Current Opinion in Biotechnology, 2003, 14(5): 454-459
    21 AP Z, H B. Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends[J]. Adv Biochem Eng Biotechnol, 2002, 74: 239-259
    22 Mu Y, Teng H, Zhang D-J, et al. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations [J]. Biotechnology Letters, 2006, 28(21): 1755-1759
    23 Vollenweider S, Lacroix C. 3-Hydroxypropionaldehyde: applications and perspectives of biotechnological production [J]. Applied Microbiology and Biotechnology, 2004, 64(1): 16-27
    24 Pagliaro M, Ciriminna R, Kimura H, et al. From glycerol to value-added products[J]. Angewandte Chemie 2007, 46(24): 4434-4440
    25 Hunter T, Plowman GD. The protein kinases of budding yeast: six score and more[J]. Trends in Biochemical Sciences, 1997, 22(1): 18-22
    26 Davenport KD, Williams KE, Ullmann BD, et al. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycerol pathway mutants[J]. Genetics, 1999, 153(3): 1091-1103
    27 Herskowitz I. MAP kinase pathways in yeast: for mating and more[J]. Cell, 1995, 80(2): 187-197
    28 Levin DE, Errede B. The proliferation of MAP kinase signaling pathways in yeast[J]. Current Opinion in Cell Biology, 1995, 7(2): 197-202
    29 Gustin MC, Albertyn J, Alexander M, et al. MAP kinase pathways in the yeast Saccharomyces cerevisiae[J]. Microbiol Mol Biol Rev, 1998, 62(4): 1264-1300
    30 Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae[J]. Biochim et Biophys Acta, 2007, 1773(8): 1311-1340
    31 Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs[J]. Oncogene, 2007, 26(22): 3100-3112
    32 Alexander MR, Tyers M, Perret M, et al. Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress[J]. Molecular Biology of the Cell, 2001, 12(1): 53-62
    33 Warmka J, Hanneman J, Lee J, et al. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1[J]. Molecular and Cellular Biology, 2001, 21(1): 51-60
    34 Panadero J, Pallotti C, Rodriguez-Vargas S, et al. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae[J]. The Journal of Biological Chemistry, 2006, 281(8): 4638-4645
    35 Wojda I, Alonso-Monge R, Bebelman JP, et al. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways[J]. Microbiology, 2003, 149(5): 1193-1204
    36 Kayingo G, Wong B. The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans[J]. Microbiology, 2005, 151(9): 2987-2999
    37 Munro CA, Selvaggini S, de Bruijn I, et al. The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans[J]. Molecular Microbiology, 2007, 63(5): 1399-1413
    38 Tamas MJ, Karlgren S, Bill RM, et al. A short regulatory domain restricts glycerol transport through yeast Fps1p[J]. The Journal of Biological Chemistry, 2003, 278(8): 6337-6345
    39 Tamas MJ, Luyten K, Sutherland FC, et al. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation[J]. Molecular Microbiology, 1999, 31(4): 1087-1104
    40 Thorsen M, Di Y, Tangemo C, et al. The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast[J]. Molecular Biology of the Cell, 2006, 17(10): 4400-4410
    41 Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts[J]. Microbiol Mol Biol Rev, 2002, 66(2): 300-372
    42 Klipp E, Nordlander B, Kruger R, et al. Integrative model of the response of yeast to osmotic shock[J]. Nature Biotechnology, 2005, 23(8): 975-982
    43 Forster J, Famili I, Fu P, et al. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network[J]. Genome research, 2003, 13(2): 244-253
    44 Nielsen J. It is all about metabolic fluxes[J]. Journal of Bacteriology, 2003, 185(24): 7031-7035
    45 von Jagow G, Klingenberg M. Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis[J]. FEBS, 1970, 12(3): 583-592
    46 Luttik MA, Overkamp KM, Kotter P, et al. The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH[J]. The Journal of Biological Chemistry, 1998, 273(38): 24529-24534
    47 Larsson C, Pahlman IL, Ansell R, et al. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae[J]. Yeast, 1998, 14(4): 347-357
    48 Marres CA, de Vries S, Grivell LA. Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae[J]. FEBS, 1991, 195(3): 857-862
    49 Nordstrom K. Yeast growth and glycerol formation[J]. Acta chemica Scandinavica, 1966, 20(4): 1016-1025
    50 Ansell R, Granath K, Hohmann S, et al. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation[J]. The EMBO Journal, 1997, 16(9): 2179-2187
    51 Bjorkqvist S, Ansell R, Adler L, et al. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae[J]. Appl Envir Microbiol, 1997, 63(1): 128-132
    52 Gancedo C, Gancedo JM, Sols A. Glycerol metabolism in yeasts. Pathways of utilization and production[J]. FEBS, 1968, 5(2): 165-172
    53 Pahlman AK, Granath K, Ansell R, et al. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress[J]. The Journal of Biological Chemistry, 2001, 276(5): 3555-3563
    54 Eriksson P, Andre L, Ansell R, et al. Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1[J]. Molecular Microbiology, 1995, 17(1): 95-107
    55 Costenoble R, Valadi H, Gustafsson L, et al. Microaerobic glycerol formation in Saccharomyces cerevisiae[J]. Yeast, 2000, 16(16): 1483-1495
    56 Nissen TL, Hamann CW, Kielland-Brandt MC, et al. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis[J]. Yeast, 2000, 16(5): 463-474
    57 Valadi A, Granath K, Gustafsson L, et al. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production[J]. The Journal of Biological Chemistry, 2004, 279(38): 39677-39685
    58 Granath K, Modig T, Forsmark A, et al. The YIG1 (YPL201c) encoded protein is involved in regulating anaerobic glycerol metabolism in Saccharomyces cerevisiae[J]. Yeast, 2005, 22(16): 1257-1268
    59 Huh WK, Falvo JV, Gerke LC, et al. Global analysis of protein localization in budding yeast[J].Nature, 2003, 425(6959): 686-691
    60 Kawamoto S, Yamada T, Tanaka A, et al. Distinct subcellular localization of NAD-linked and FAD-linked glycerol-3-phosphate dehydrogenases in N-alkane-grown Candida tropicalis[J]. FEBS letters, 1979, 97(2): 253-256
    61 Klingenberg M. Localization of the glycerol-phosphate dehydrogenase in the outer phase of the mitochondrial inner membrane[J]. FEBS, 1970, 13(2): 247-252
    62 Cronwright GR, Rohwer JM, Prior BA. Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae[J]. Appl Envir Microbiol, 2002, 68(9): 4448-4456
    63 Pavlik P, Simon M, Schuster T, et al. The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization[J]. Curr Genet, 1993, 24(1-2): 21-25
    64 Ronnow B, Kielland-Brandt MC. GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae[J]. Yeast, 1993, 9(10): 1121-1130
    65 Norbeck J, Blomberg A. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway[J]. The Journal of Biological Chemistry, 1997, 272(9): 5544-5554
    66 Sprague GF, Cronan JE. Isolation and characterization of Saccharomyces cerevisiae mutants defective in glycerol catabolism[J]. Journal of Bacteriology, 1977, 129(3): 1335-1342
    67王正祥.产甘油假丝酵母过量合成甘油的机理[D].无锡:无锡轻工大学, 1998, 12.
    68 Michnick S, Roustan JL, Remize F, et al. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase[J]. Yeast, 1997, 13(9): 783-793
    69 Gori K, Mortensen HD, Arneborg N, et al. Expression of the GPD1 and GPP2 orthologues and glycerol retention during growth of Debaryomyces hansenii at high NaCl concentrations[J]. Yeast, 2005, 22(15): 1213-1222
    70 Nguyen HT, Dieterich A, Athenstaedt K, et al. Engineering of Saccharomyces cerevisiae for the production of L-glycerol 3-phosphate[J]. Metab Eng, 2004, 6(2): 155-163
    71 Nevoigt E, Stahl U. Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae[J]. Yeast, 1996, 12(13): 1331-1337
    72 Remize F, Roustan JL, Sablayrolles JM, et al. Glycerol overproduction by engineered saccharomyces cerevisiae wine yeast strains leads to substantial changes in By-product formation and to a stimulation of fermentation rate in stationary phase[J]. Appl Envir Microbiol, 1999, 65(1): 143-149
    73 Remize F, Barnavon L, Dequin S. Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae[J]. Metab Eng, 2001, 3(4): 301-312
    74 Remize F, Cambon B, Barnavon L, et al. Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway[J]. Yeast, 2003, 20(15):1243-1253
    75 Cordier H, Mendes F, Vasconcelos I, et al. A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production[J]. Metab Eng, 2007, 9(4): 364-378
    76 Cambon B, Monteil V, Remize F, et al. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes[J]. Appl Envir Microbiol, 2006, 72(7): 4688-4694
    77 Geertman J-MA, van Dijken JP, Pronk JT. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures[J]. FEMS Yeast Res, 2006, 6(8): 1193-1203
    78 Nevoigt E, Pilger R, Mast-Gerlach E, et al. Genetic engineering of brewing yeast to reduce the content of ethanol in beer[J]. FEMS Yeast Res, 2002, 2(2): 225-232
    79 Compagno C, Boschi F, Ranzi BM. Glycerol production in a triose phosphate isomerase deficient mutant of Saccharomyces cerevisiae[J]. Biotechnol Prog, 1996, 12(5): 591-595
    80 Thome PE. Heterologous expression of glycerol 3-phosphate dehydrogenase gene [DhGPD1] from the osmotolerant yeast Debaryomyces hansenii in Saccharomyces cerevisiae[J]. Curr Microbiol, 2005, 51(2): 87-90
    81 Overkamp KM, Bakker BM, Kotter P, et al. Metabolic engineering of glycerol production in Saccharomyces cerevisiae[J]. Appl Envir Microbiol, 2002, 68(6): 2814-2821
    82 Kong QX, Cao LM, Zhang AL, et al. Overexpressing GLT1 in gpd1Delta mutant to improve the production of ethanol of Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2007, 73(6): 1382-1386
    83 Nickson WJ, Carrol WR. On the metabolism of Zygosaccharomyces[J]. Arch Biochem, 1945, 7: 257-271
    84 Spencer JF, Sallans HR. Production of polyhydric alcohols by osmophilic yeasts[J]. Canadian Journal of Microbiology, 1956, 2(2): 72-79
    85 Spencer JF, Shu P. Polyhydric alcohol production by osmophilic yeasts: effect of oxygen tension and inorganic phosphate concentration[J]. Canadian Journal of Microbiology, 1957, 3(4): 559-567
    86 Peterson WH, Hendershot WF, Hajny GJ. Factors affecting production of glycerol and D-arabitol by representative yeasts of the genus Zygosaccharomyces[J]. Applied Microbiology, 1958, 6(5): 349-357
    87 Hajny GJ, Hendershot WF, Peterson WH. Factors affecting glycerol production by a newly isolated osmophilic yeast[J]. Applied Microbiology, 1960, 8: 5-11
    88 Button DK, Garver JC, Hajny GJ. Pilot plant glycerol production with a slow-feed osmophilic yeast fermentation[J]. Applied Microbiology, 1966, 14(2): 292-294
    89 Vijaikishore P, Karanth NG. Glycerol production by immobilised cells of Pichia farinosa [J]. Biotechnology Letters, 1986, 8(4): 257-260
    90 Bisping B, Baumann U, Rehm HJ. Production of glycerol by immobilized Pichia farinosa [J]. Applied Microbiology and Biotechnology, 1990, 32(4): 380-386
    91王正祥,诸葛健,方慧英.耐高渗压高产甘油的一个假丝酵母新种—产甘油假丝酵母[J].微生物学报, 1999, 39(1): 68-74
    92刘永强,刘德华,马志国,等.反复分批发酵法制备甘油过程中的影响因素[J].化工学报, 2002, 53(11): 1139-1142
    93 Liu HJ, Liu DH, Zhong JJ. Novel fermentation strategy for enhancing glycerol production by Candida krusei[J]. Biotechnol Prog, 2003, 19(5): 1615-1619
    94 Iwaki T, Kurono S, Yokose Y, et al. Cloning of glycerol-3-phosphate dehydrogenase genes (ZrGPD1 and ZrGPD2) and glycerol dehydrogenase genes (ZrGCY1 and ZrGCY2) from the salt-tolerant yeast Zygosaccharomyces rouxii[J]. Yeast, 2001, 18(8): 737-744
    95 Thome PE. Isolation of a GPD gene from Debaryomyces hansenii encoding a glycerol 3-phosphate dehydrogenase (NAD+)[J]. Yeast, 2004, 21(2): 119-126
    96 Ohmiya R, Yamada H, Nakashima K, et al. Osmoregulation of fission yeast: cloning of two distinct genes encoding glycerol-3-phosphate dehydrogenase, one of which is responsible for osmotolerance for growth[J]. Molecular Microbiology, 1995, 18(5): 963-973
    97 Jones T, Federspiel NA, Chibana H, et al. The diploid genome sequence of Candida albicans[J]. Proc Natl Acad Sci U S A,, 2004, 101(19): 7329-7334
    98 Neves L, Oliveira R, Lucas C. Yeast orthologues associated with glycerol transport and metabolism[J]. FEMS Yeast Res, 2004, 5(1): 51-62
    99 Dujon B, Sherman D, Fischer G, et al. Genome evolution in yeasts[J]. Nature, 2004, 430(6995): 35-44
    100 Ostermann K, Richter M, Zscharnack M, et al. Identification of the genes GPD1 and GPD2 of Pichia jadinii[J]. DNA Seq, 2006, 17(6): 452-457
    101 Jeffries TW, Grigoriev IV, Grimwood J, et al. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis[J]. Nature Biotechnology, 2007, 25(3): 319-326
    102 Watanabe Y, Nagayama K, Tamai Y. Expression of glycerol 3-phosphate dehydrogenase gene (CvGPD1) in salt-tolerant yeast Candida versatilis is stimulated by high concentrations of NaCl[J]. Yeast, 2008, 25(2): 107-116
    103王正祥,方慧英,诸葛健.耐高渗压是产甘油假丝酵母甘油高产的基础[J].微生物学通报, 1999, 26(1): 21-26
    104王正祥,诸葛健,曹钰,等.产甘油假丝酵母甘油代谢关键酶的研究[J].微生物学报, 2000, 40(2): 180-187
    105谢涛,方慧英,诸葛健.磷源对产甘油假丝酵母发酵生产甘油的影响及动力学分析[J].化工学报, 2005, 56(12): 2404-2409
    106谢涛.产甘油假丝酵母发酵产甘油的代谢机理[D].无锡:江南大学, 2006, 6.
    107诸葛健,方慧英.好氧发酵法生产甘油[P].中国专利: CN1110321A, 1995
    108诸葛健,刘小震.发酵法生产甘油的甘油提取技术[P].中国专利: CN1047532A, 1990
    109王正祥,诸葛健.运用穿梭载体建立产甘油假丝酵母质粒基因文库[J].生物技术, 1998, 8(2): 9-11
    110王正祥,诸葛健.产甘油假丝酵母胞浆3-磷酸甘油脱氢酶编码基因的克隆[J].微生物学报, 1999,39(4): 321-326
    111 Li Y, Shen W, Wang Z, et al. Isolation and sequence analysis of the gene URA3 encoding the orotidine-5'-phosphate decarboxylase from Candida glycerinogenes WL2002-5, an industrial glycerol producer[J]. Yeast, 2005, 22(6): 423-430
    112张永光.磷酸丙糖异构酶基因(TPI)和葡萄糖6-磷酸脱氢酶基因(ZWF)的克隆及功能鉴定[D].无锡:江南大学, 2007, 6.
    113张永光,陈献忠,饶志明,等.产甘油假丝酵母两种转化方法的比较[J].食品与生物技术学报, 2007, 26(3): 70-74
    1 Gancedo C, Gancedo JM, Sols A. Glycerol metabolism in yeasts. Pathways of utilization and production[J]. FEBS, 1968, 5(2): 165-172
    2 Ansell R, Granath K, Hohmann S, et al. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation[J]. The EMBO Journal, 1997, 16(9): 2179-2187
    3 Valadi A, Granath K, Gustafsson L, et al. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production[J]. The Journal of Biological Chemistry, 2004, 279(38): 39677-39685
    4 Albertyn J, Hohmann S, Thevelein JM, et al. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway[J]. Molecular and Cellular Biology, 1994, 14(6): 4135-4144
    5 Gori K, Mortensen HD, Arneborg N, et al. Expression of the GPD1 and GPP2 orthologues and glycerol retention during growth of Debaryomyces hansenii at high NaCl concentrations[J]. Yeast, 2005, 22(15): 1213-1222
    6 Nguyen HT, Dieterich A, Athenstaedt K, et al. Engineering of Saccharomyces cerevisiae for the production of L-glycerol 3-phosphate[J]. Metab Eng, 2004, 6(2): 155-163
    7 Remize F, Barnavon L, Dequin S. Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae[J]. Metab Eng, 2001, 3(4): 301-312
    8 Remize F, Roustan JL, Sablayrolles JM, et al. Glycerol overproduction by engineered saccharomyces cerevisiae wine yeast strains leads to substantial changes in By-product formation and to a stimulation of fermentation rate in stationary phase[J]. Appl Envir Microbiol, 1999, 65(1): 143-149
    9 Zhuge J, Fang HY, Wang ZX, et al. Glycerol production by a novel osmotolerant yeast Candida glycerinogenes[J]. Appl Microbiol Biotechnol, 2001, 55(6): 686-692
    10王正祥,诸葛健,方慧英.耐高渗压高产甘油的一个假丝酵母新种—产甘油假丝酵母[J].微生物学报, 1999, 39(1): 68-74
    11王正祥,诸葛健,曹钰,等.产甘油假丝酵母甘油代谢关键酶的研究[J].微生物学报, 2000, 40(02): 180-187
    12 Sambrook J, Fritsch, E.F., and Maniatis, T. Molecular Cloning. A Laboratory Manual[M]. Cold Spring Harbor, NY Cold Spring Harbor Laboratory Press, 1989
    13 Rose M.D. WF, Hieter P. . Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual[M]. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press 1988.
    14 Ochman H, Gerber AS, Hartl DL. Genetic applications of an inverse polymerase chain reaction[J].Genetics, 1988, 120(3): 621-623
    15 Zhang SP, Zubay G, Goldman E. Low-usage codons in Escherichia coli, yeast, fruit fly and primates[J]. Gene, 1991, 105(1): 61-72
    16 Ronnow B, Kielland-Brandt MC. GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae[J]. Yeast, 1993, 9(10): 1121-1130
    17 Li Y, Shen W, Wang Z, et al. Isolation and sequence analysis of the gene URA3 encoding the orotidine-5'-phosphate decarboxylase from Candida glycerinogenes WL2002-5, an industrial glycerol producer[J]. Yeast, 2005, 22(6): 423-430
    18 Otto J, Argos P, Rossmann MG. Prediction of secondary structural elements in glycerol-3-phosphate dehydrogenase by comparison with other dehydrogenases[J]. FEBS, 1980, 109(2): 325-330
    19 Thome PE. Isolation of a GPD gene from Debaryomyces hansenii encoding a glycerol 3-phosphate dehydrogenase (NAD+)[J]. Yeast, 2004, 21(2): 119-126
    20 Iwaki T, Kurono S, Yokose Y, et al. Cloning of glycerol-3-phosphate dehydrogenase genes (ZrGPD1 and ZrGPD2) and glycerol dehydrogenase genes (ZrGCY1 and ZrGCY2) from the salt-tolerant yeast Zygosaccharomyces rouxii[J]. Yeast, 2001, 18(8): 737-744
    21 Bewley GC, Cook JL, Kusakabe S, et al. Sequence, structure and evolution of the gene coding for sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster[J]. Nucleic Acids Research, 1989, 17(21): 8553-8567
    22王正祥,诸葛健.产甘油假丝酵母胞浆3-磷酸甘油脱氢酶编码基因的克隆[J].微生物学报, 1999, 39(04): 321-326
    23王正祥,诸葛健.运用穿梭载体建立产甘油假丝酵母质粒基因文库[J].生物技术, 1998, 8(02):
    9-11
    24 Iwaki T, Tamai Y, Watanabe Y. Two putative MAP kinase genes, ZrHOG1 and ZrHOG2, cloned from the salt-tolerant yeast Zygosaccharomyces rouxii are functionally homologous to the Saccharomyces cerevisiae HOG1 gene[J]. Microbiology, 1999, 145 (1): 241-248
    25 Yagi T, Nogami A, Nishi T. Salt tolerance and glycerol accumulation of a respiration-deficient mutant isolated from the petite-negative, salt-tolerant yeast Zygosaccharomyces rouxii[J]. FEMS Microbiology Letters, 1992, 92(3): 289-293
    26 Thome PE. Heterologous expression of glycerol 3-phosphate dehydrogenase gene [DhGPD1] from the osmotolerant yeast Debaryomyces hansenii in Saccharomyces cerevisiae[J]. Curr Microbiol, 2005, 51(2): 87-90
    1 Kempf B, Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments[J]. Archives of Microbiology, 1998, 170(5): 319-330
    2 Reed RH, Chudek JA, Foster R, et al. Osmotic significance of glycerol accumulation in exponentially growing yeasts[J]. Appl Envir Microbiol, 1987, 53(9): 2119-2123
    3 Nevoigt E, Stahl U. Osmoregulation and glycerol metabolism in the yeast Saccharomycescerevisiae[J]. FEMS Microbiol Rev, 1997, 21(3): 231-241
    4 Rep M, Albertyn J, Thevelein JM, et al. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae[J]. Microbiology, 1999, 145(3): 715-727
    5 San Jose C, Monge RA, Perez-Diaz R, et al. The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans[J]. Journal of Bacteriology, 1996, 178(19): 5850-5852
    6 Aiba H, Kawaura R, Yamamoto E, et al. Isolation and characterization of high-osmolarity-sensitive mutants of fission yeast[J]. Journal of Bacteriology, 1998, 180(19): 5038-5043
    7 Marshall CJ. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase[J]. Current Opinion in Genetics & Development, 1994, 4(1): 82-89
    8 Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts[J]. Microbiol Mol Biol Rev, 2002, 66(2): 300-372
    9 Albertyn J, Hohmann S, Thevelein JM, et al. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway[J]. Molecular and Cellular Biology, 1994, 14(6): 4135-4144
    10 Blomberg A, Adler L. Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae[J]. Journal of Bacteriology, 1989, 171(2): 1087-1092
    11 Ansell R, Granath K, Hohmann S, et al. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation[J]. The EMBO Journal, 1997, 16(9): 2179-2187
    12 Cronwright GR, Rohwer JM, Prior BA. Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae[J]. Appl Envir Microbiol, 2002, 68(9): 4448-4456
    13王正祥.产甘油假丝酵母过量合成甘油的机理[D].无锡:无锡轻工大学, 1998, 12.
    14 Rose MD, Winston F, Hieter P. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual[M]. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press 1988.
    15 Ito H, Fukuda Y, Murata K, et al. Transformation of intact yeast cells treated with alkali cations[J]. J Bacteriol, 1983, 153(1): 163-168
    16 Gietz RD, Schiestl RH, Willems AR, et al. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure[J]. Yeast, 1995, 11(4): 355-360
    17 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical biochemistry, 1976, 72: 248-254
    18 Thome PE. Heterologous expression of glycerol 3-phosphate dehydrogenase gene [DhGPD1] from the osmotolerant yeast Debaryomyces hansenii in Saccharomyces cerevisiae[J]. Curr Microbiol, 2005, 51(2): 87-90
    19 Andre L, Hemming A, Adler L. Osmoregulation in Saccharomyces cerevisiae. Studies on the osmoticinduction of glycerol production and glycerol-3-phosphate dehydrogenase (NAD+)[J]. FEBS letters, 1991, 286(1-2): 13-17
    20 Iwaki T, Kurono S, Yokose Y, et al. Cloning of glycerol-3-phosphate dehydrogenase genes (ZrGPD1 and ZrGPD2) and glycerol dehydrogenase genes (ZrGCY1 and ZrGCY2) from the salt-tolerant yeast Zygosaccharomyces rouxii[J]. Yeast, 2001, 18(8): 737-744
    21 Watanabe Y, Tsuchimoto S, Tamai Y. Heterologous expression of Zygosaccharomyces rouxii glycerol 3-phosphate dehydrogenase gene (ZrGPD1) and glycerol dehydrogenase gene (ZrGCY1) in Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2004, 4(4-5): 505-510
    22 Thome PE, Trench RK. Osmoregulation and the Genetic Induction of Glycerol-3-phosphate Dehydrogenase by NaCl in the Euryhaline Yeast Debaryomyces hansenii[J]. Mar Biotechnol (NY), 1999, 1(3): 230-238
    23王正祥,诸葛健.产甘油假丝酵母胞浆3-磷酸甘油脱氢酶编码基因的克隆[J].微生物学报, 1999, 39(04): 321-326
    24 Michnick S, Roustan JL, Remize F, et al. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase[J]. Yeast, 1997, 13(9): 783-793
    25 Nevoigt E, Stahl U. Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae[J]. Yeast, 1996, 12(13): 1331-1337
    26 Remize F, Barnavon L, Dequin S. Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae[J]. Metab Eng, 2001, 3(4): 301-312
    27 Remize F, Roustan JL, Sablayrolles JM, et al. Glycerol overproduction by engineered saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase[J]. Appl Envir Microbiol, 1999, 65(1): 143-149
    28 Cambon B, Monteil V, Remize F, et al. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes[J]. Appl Envir Microbiol, 2006, 72(7): 4688-4694
    29 Overkamp KM, Bakker BM, Kotter P, et al. Metabolic engineering of glycerol production in Saccharomyces cerevisiae[J]. Appl Envir Microbiol, 2002, 68(6): 2814-2821
    1 Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts[J]. Microbiol Mol Biol Rev, 2002, 66(2): 300-372
    2 Wang ZX, Zhuge J, Fang H, et al. Glycerol production by microbial fermentation: a review[J]. Biotechnol Adv, 2001, 19(3): 201-223
    3 Nordstrom K. Yeast growth and glycerol formation[J]. Acta Chemica Scandinavica, 1966, 20(4): 1016-1025
    4 Ansell R, Granath K, Hohmann S, et al. The two isoenzymes for yeast NAD+-dependent glycerol
    3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation[J]. The EMBO Journal, 1997, 16(9): 2179-2187
    5 Bjorkqvist S, Ansell R, Adler L, et al. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae[J]. Appl Envir Microbiol, 1997, 63(1): 128-132
    6 Hirasawa T, Nakakura Y, Yoshikawa K, et al. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray[J]. Applied Microbiology and Biotechnology, 2006, 70(3): 346-357
    7 Geertman J-MA, van Dijken JP, Pronk JT. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures[J]. FEMS Yeast Res, 2006, 6(8): 1193-1203
    8 Valadi A, Granath K, Gustafsson L, et al. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production[J]. The Journal of Biological Chemistry, 2004, 279(38): 39677-39685
    9 Modig T, Granath K, Adler L, et al. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress[J]. Applied Microbiology and Biotechnology, 2007, 75(2): 289-296
    10 Petrovska B, Winkelhausen E, Kuzmanova S. Glycerol production by yeasts under osmotic and sulfite stress[J]. Canadian Journal of Microbiology, 1999, 45(8): 695-699
    11 Albertyn J, Hohmann S, Thevelein JM, et al. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway[J]. Molecular and Cellular Biology, 1994, 14(6): 4135-4144
    12 Rep M, Albertyn J, Thevelein JM, et al. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae[J]. Microbiology, 1999, 145 (3): 715-727
    13王正祥.产甘油假丝酵母过量合成甘油的机理[D].无锡:无锡轻工大学, 1998, 12.
    14 Andreasen AA, Stier TJ. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium[J]. Journal of Cellular Physiology, 1953, 41(1): 23-36
    15 Andreasen AA, Stier TJ. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium[J]. Journal of Cellular Physiology, 1954, 43(3): 271-281
    16 Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences[J]. FEBS, 1996, 241(3): 779-786
    17 Kawamoto S, Yamada T, Tanaka A, et al. Distinct subcellular localization of NAD-linked and FAD-linked glycerol-3-phosphate dehydrogenases in N-alkane-grown Candida tropicalis[J]. FEBS Letters, 1979, 97(2): 253-256
    18 Brewster JL, de Valoir T, Dwyer ND, et al. An osmosensing signal transduction pathway in yeast[J]. Science, 1993, 259(5102): 1760-1763
    19 Jiang L, Niu S, Clines KL, et al. Analyses of the effects of Rck2p mutants on Pbs2pDD-induced toxicity in Saccharomyces cerevisiae identify a MAP kinase docking motif, and unexpected functional inactivation due to acidic substitution of T379[J]. Mol Genet Genomics, 2004, 271(2): 208-219
    20 Visser W, Scheffers WA, Batenburg-van der Vegte WH, et al. Oxygen requirements of yeasts[J]. Appl Envir Microbiol, 1990, 56(12): 3785-3792
    21 Kwast KE, Lai LC, Menda N, et al. Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response[J]. Journal of Bacteriology, 2002, 184(1): 250-265
    22 ter Linde JJ, Liang H, Davis RW, et al. Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae[J]. Journal of Bacteriology, 1999, 181(24):7409-7413
    23 Geertman J-MA, van Maris AJA, van Dijken JP, et al. Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production[J]. Metabolic Engineering, 2006, 8(6): 532-542
    24 Pahlman AK, Granath K, Ansell R, et al. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress[J]. The Journal of Biological Chemistry, 2001, 276(5): 3555-3563
    25 Larsson C, Pahlman IL, Ansell R, et al. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae[J]. Yeast, 1998, 14(4): 347-357
    26 Dijken JP, Scheffers WA. Redox balances in the metabolism of sugars by yeasts[J]. FEMS Microbiology Letters, 1986, 32(3-4): 199-224
    1 Zhuge J, Fang HY, Wang ZX, et al. Glycerol production by a novel osmotolerant yeast Candida glycerinogenes[J]. Appl Microbiol Biotechnol, 2001, 55(6): 686-692
    2王正祥,诸葛健,方慧英.耐高渗压高产甘油的一个假丝酵母新种—产甘油假丝酵母[J].微生物学报, 1999, 39(1): 68-74
    3 Hinnen A, Hicks JB, Fink GR. Transformation of yeast[J]. Proc Natl Acad Sci U S A, 1978, 75(4): 1929-1933
    4 Zemanova J, Nosek J, Tomaska L. High-efficiency transformation of the pathogenic yeast Candida parapsilosis[J]. Curr Genet, 2004, 45(3): 183-186
    5 Ito H, Fukuda Y, Murata K, et al. Transformation of intact yeast cells treated with alkali cations[J]. J Bacteriol, 1983, 153(1): 163-168
    6 Chand-Goyal T, Eckert JW, Droby S, et al. Transformation of Candida oleophila and survival of a transformant on orange fruit under field conditions[J]. Curr Genet, 1999, 35(1): 51-57
    7 Pavlin M, Kanduser M, Rebersek M, et al. Effect of cell electroporation on the conductivity of a cell suspension[J]. Biophysical Journal, 2005, 88(6): 4378-4390
    8 Meilhoc E, Masson JM, Teissie J. High efficiency transformation of intact yeast cells by electric field pulses[J]. Biotechnology (N Y), 1990, 8(3): 223-227
    9 Thompson JR, Register E, Curotto J, et al. An improved protocol for the preparation of yeast cells for transformation by electroporation[J]. Yeast, 1998, 14(6): 565-571
    10 Sanchez M, Iglesias FJ, Santamaria C, et al. Transformation of Kluyveromyces lactis by Electroporation[J]. Appl Environ Microbiol, 1993, 59(7): 2087-2092
    11 De Backer MD, Maes D, Vandoninck S, et al. Transformation of Candida albicans by electroporation[J]. Yeast, 1999, 15(15): 1609-1618
    12 Faber KN, Haima P, Harder W, et al. Highly-efficient electrotransformation of the yeast Hansenula polymorpha[J]. Curr Genet, 1994, 25(4): 305-310
    13 Suga M, Hatakeyama T. High efficiency transformation of Schizosaccharomyces pombe pretreated with thiol compounds by electroporation[J]. Yeast, 2001, 18(11): 1015-1021
    14 Pribylova L, Sychrova H. Efficient transformation of the osmotolerant yeast Zygosaccharomyces rouxii by electroporation[J]. J Microbiol Methods, 2003, 55(2): 481-484
    15 Tang SJ, Sun KH, Sun GH, et al. A transformation system for the nonuniversal CUG(Ser) codon usage species Candida rugosa[J]. J Microbiol Methods, 2003, 52(2): 231-238
    16 Yehuda H, Droby S, Wisniewski M, et al. A transformation system for the biocontrol yeast, Candida oleophila, based on hygromycin B resistance[J]. Curr Genet, 2001, 40(4): 282-287
    17 Rodriguez L, Chavez FP, Basabe L, et al. Development of an integrative DNA transformation system for the yeast Candida utilis[J]. FEMS Microbiol Lett, 1998, 165(2): 335-340
    18 Brown DH, Jr., Slobodkin IV, Kumamoto CA. Stable transformation and regulated expression of aninducible reporter construct in Candida albicans using restriction enzyme-mediated integration[J]. Mol Gen Genet, 1996, 251(1): 75-80
    19金海如,方慧英,诸葛健.供氧对产丙三醇假丝酵母产丙三醇发酵研究[J].生物工程学报, 2000, 16(2): 203-206
    20谢涛,方慧英,诸葛健.一些氨基酸对产甘油假丝酵母甘油生产的促进作用[J].生物工程学报, 2006, 22(01): 138-143
    21谢涛,方慧英,诸葛健.磷源对产甘油假丝酵母发酵生产甘油的影响及动力学分析[J].化工学报, 2005, 56(12): 2404-2409
    22王正祥诸葛健.产甘油假丝酵母胞浆3-磷酸甘油脱氢酶编码基因的克隆[J].微生物学报, 1999, 39(04): 321-326
    23 Li Y, Shen W, Wang Z, et al. Isolation and sequence analysis of the gene URA3 encoding the orotidine-5'-phosphate decarboxylase from Candida glycerinogenes WL2002-5, an industrial glycerol producer[J]. Yeast, 2005, 22(6): 423-430
    24 Klinner U, Schafer B. Genetic aspects of targeted insertion mutagenesis in yeasts[J]. FEMS Microbio Rev, 2004, 28(2): 201-223
    1王正祥.产甘油假丝酵母过量合成甘油的机理[D].无锡:无锡轻工大学, 1998, 12.
    2王正祥,诸葛健,曹钰,等.产甘油假丝酵母甘油代谢关键酶的研究[J].微生物学报, 2000, 40(02): 180-187
    3 Valadi A, Granath K, Gustafsson L, et al. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production[J]. The Journal of Biological Chemistry, 2004, 279(38): 39677-39685
    4陈珺,王正祥,诸葛健,等.产甘油假丝酵母胞浆3-磷酸甘油脱氢酶在甘油形成中的作用[J].无锡轻工大学学报, 1999, 18(3): 1-6
    5 Chand-Goyal T, Eckert JW, Droby S, et al. Transformation of Candida oleophila and survival of a transformant on orange fruit under field conditions[J]. Curr Genet, 1999, 35(1): 51-57
    6张永光.磷酸丙糖异构酶基因(TPI)和葡萄糖6-磷酸脱氢酶基因(ZWF)的克隆及功能鉴定[D].无锡:江南大学, 2007, 6.
    7金海如.产甘油假丝酵母代谢产物及其控制的研究[D].无锡:无锡轻工大学, 1999, 12.
    8 Nevoigt E, Pilger R, Mast-Gerlach E, et al. Genetic engineering of brewing yeast to reduce the content of ethanol in beer[J]. FEMS Yeast Res, 2002, 2(2): 225-232
    9 Remize F, Roustan JL, Sablayrolles JM, et al. Glycerol overproduction by engineered saccharomyces cerevisiae wine yeast strains leads to substantial changes in By-product formation and to a stimulation of fermentation rate in stationary phase[J]. Appl Envir Microbiol, 1999, 65(1): 143-149
    10 Kong QX, Cao LM, Zhang AL, et al. Overexpressing GLT1 in gpd1Delta mutant to improve the production of ethanol of Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2007, 73(6): 1382-1386
    11 Valadi H, Larsson C, Gustafsson L. Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 1998, 50(4): 434-439
    12 Vemuri GN, Eiteman MA, McEwen JE, et al. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae[J]. 2007, 104(7): 2402-2407
    13 Nevoigt E, Stahl U. Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae[J]. Yeast, 1996, 12(13): 1331-1337
    14 Geertman J-MA, van Maris AJA, van Dijken JP, et al. Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production[J]. Metabolic Engineering, 2006, 8(6): 532-542
    15 Bjorkqvist S, Ansell R, Adler L, et al. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae[J]. Appl Envir Microbiol, 1997, 63(1): 128-132
    16 16 Albertyn J, Hohmann S, Thevelein JM, et al. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway[J]. Molecular and Cellular Biology, 1994, 14(6): 4135-4144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700