吸水链霉菌10-22与5008中井岗霉素生物合成机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有效霉素是一种氨基糖苷类抗生素,在防治水稻纹枯病中被广泛使用。在已调出吸水链霉菌5008中有效霉素部分生物合成基因簇的研究基础上,通过基因置换试验失活可能的2-表-5-表-有效醇酮合成酶基因valA,对基因置换菌株的生物活性测定及HPLC分析均表明此菌株失去合成有效霉素的能力。
     有效霉素生物合成基因簇中有一个可能的转运蛋白基因valH,生物信息学分析表明它具有12个跨膜螺旋,属于主要异化超家族(The Major Facilitator Superfamily),推测ValH可能的功能是负责将合成好的有效霉素转运到细胞外,通过基因置换试验中断valH后,突变株(JXH4)仍然能够产生有效霉素,但是产量下降约17%,将valH基因构建在强启动子下回补valH突变株JXH3后,有效霉素的产量与野生型相比,提高20%。
     将吸水链霉菌10-22的一系列突变株染色体缺失范围与野生型染色体物理图谱比较发现,染色体上某些片段的缺失与5102-Ⅰ号素的合成密切相关,5102-Ⅰ号素是吸水链霉菌10-22产生的一种与有效霉素类似的一种抗生素,分析28个失去抑制水稻纹枯生长能力的菌株发现,这些菌株染色体缺失大小是不同的,但有一个共同的特点就是都没有一个300 kb的AseI-F片段,在S. lividans ZX1异源表达实验显示300 kb AseI-F片段中的一个文库质粒的发酵产物具有抑菌活性。并且以2-表-5-表-有效醇酮合成酶基因valA为探针杂交实验也证实了5102-Ⅰ号基因合成簇的位置, valA的同源基因(orf1)缺失后的基因改造菌株(JXH4)失去抑菌活性,回补后恢复产素能力。同时,在鉴定5102-Ⅰ抗生素结构时发现它与有效霉素相同,为方便描述将其命名为井岗霉素。
     10-22产生的井岗霉素与5008产生的有效霉素相比,液体发酵产量相差悬殊,分析两者的基因簇发现,大部分的合成基因都高度同源,但两个基因簇各有自己可能的调节基因,敲除井岗霉素基因簇中的可能的调节基因jin2后,10-22产量无变化,把有效霉素基因簇中已经证明的调节基因valP和valQ导入10-22后,井岗霉素产量上升约40%。
     为探明井岗霉素基因簇和有效霉素基因簇在产量上差别悬殊的可能原因,分别将两个基因簇整合到异源宿主Streptomyces lividans染色体上,有效霉素异源表达菌株JXH21产量与原始产生菌5008接近,井岗霉素异源表达菌株JXH10产量约为JXH21的1/4,但是远高于原始产生菌10-22。由此推测井岗霉素基因簇在菌株10-22产素能力低下的主要原因为菌株本身,但是有效霉素基因簇与井岗霉素基因簇基因簇相比,其基因簇中内部存在导致高产的原因。
     井岗霉素基因簇在异源宿主Streptomyces lividans中整合表达的菌株JXH10可以产生与有效霉素相同的几个组分,敲除JXH10中井岗霉素基因簇中的可能与B组分形成相关的氧化还原酶jinJ基因后得到的突变菌株JXH12仍然可以产生B组分,进一步分析有效霉素基因簇中异源表达菌株XH-9和XH-6暗示可能形成B组分并不需要特异的羟化酶,同时探讨了有效霉素可能的合成机制。
Validamycin, an animoglyciside antibiotics, is used widely against sheath blight disease of rice plants. Based on the gene cluster responsible for the biosynthesis of validamycin identified from Streptomyces hygroscopicus 5008, valA gene encoding a putative 2-epi-5-epi-valiolone synthase is esential for validamycin biosynthesis as confirmed by both bioassay and HPLC analysis.
     The gene valH in the validamycin biosynthetic gene cluster harbours 12 transmembrane regions, and pertains to a member of the Major Facilitator Superfamily (MFS). The ValH may be a validamycin exporter. An engineered mutant (JXH3) with disrupted valH was obtained, to our surprise; the mutant JXH3 also has the capability of validamycin production, although the yield decreased about 17%. The valH gene placed under the control of ermE* promoter was introduced into the mutant for complementation, and the yield of validamycin increased about 20% compared with the wild type strain.
     A series of large chromosomal deletions in Streptomyces hygroscopicus 10-22 were aligned on the physical map of the wild-type strain and the mutants were assessed for their ability to produce the aminocyclitol antibiotic 5102-I. Twenty-eight mutants were blocked for jinggangmycin production and all of them were found to lack a 300 kb AseI-F fragment of the wild-type chromosome. One of the cosmids of 300 kb AseI-F fragment conferred 5102-I productivity to Streptomyces lividans ZX1. Three of the overlapping cosmids also hybridized to the valA gene of the validamycin pathway from S. hygroscopicus 5008 as a probe. The valA-homolog (orf1) of S. hygroscopicus 10-22 was shown to be essential for 5102-I. biosynthesis as an engineered mutant with a deletion of orf1 completely abolished 5102-I production. The corresponding knock-out mutant (JXH4) could be complemented by the introduction of an orf1-containing construct. Concurrently, the identities of the genes common to S. hygroscopicus strains 10-22 and 5008 prompted a comparison of the chemical structures of antibiotic 5102-I and validamycin, which led to a clear demonstration that they are identical. And the former is named jinggangmycin.
     The yield of jinggangmycin produced by S. hygroscopicus 10-22 is very low comparing with the validamycin produced by S. hygroscopicus 5008 in liquid-state fermentation. The most genes in the two gene cluster have high homology, but the regulatory gene between them seem to be different. After disruption of a putative regulatory gene, jin2, the mutant(JXH6) has not obvious effect on yield of jinggangmycin as detected by HPLC analysis, while the yield of jinggangmycin increased about 40% after the regulatory genes valP and valQ were introduced into the S. hygroscopicus 1022.
     To explore the possible reason that led to different production of jingangmycin between the val cluater and jin cluster. The jin cluster and val gene cluster were integrated into the chromosome of Streptomyces lividans, generating the engineered strain JXH10 and JXH21 respectively. The yield of validamycin produced by the JXH21 is similar to S. hygroscopicus 5008, while the yield of jinggangmycin produced by JXH10 is about 25% comparing with JXH21 and is much higher than the S. hygroscopicus 10-22. For S. hygroscopicus 10-22, the poor ability of jinggangmycin production is predominantly related with the 10-22 strain, instead of the jin cluster. It could be deduced that there are some reason in validamycin gene cluster caused higher yield comparing with the JXH21 and JXH10.
     With comparison of the three gene cluster responsible for the same antibitic produced by S. hygroscopicus 10-22, S. hygroscopicus 5008 and S. hygroscopicus var. limoneus KCCM 11405, the jinJ gene encoding a putative oxidoreductase may be responsible for hydroxylation of jinggangmycin B/validamyicn B But the engineered strain JXH12 in which the jinJ gene was disruption using JXH10 as start strain also produced the jinggangmycin B. With analysis of the engineered strain XH-9 and XH-6 ( the jinJ gene is absent in both strains), it is seemed that biosynthesis of validamycin B should not need the special oxidoreductase.
引文
1. Bentley, S.D., et al., Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002. 417(6885): p. 141-7.
    2. Ikeda, H., et al., Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol, 2003. 21(5): p. 526-31.
    3. Schatz, A., E. Bugie, and S.A. Waksman, Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc. Soc. Exp. Biol. Med., 1944. 55: p. 66-69.
    4. Majumder, A.L., M.D. Johnson, and S.A. Henry, 1L-myo-inositol-1-phosphate synthase. Biochim Biophys Acta, 1997. 1348(1-2): p. 245-56.
    5. Loewus, M.W., et al., Stereochemistry of the myo-inositol-1-phosphate synthase reaction. J Biol Chem, 1980. 255(24): p. 11710-2.
    6. Stein, A.J. and J.H. Geiger, The crystal structure and mechanism of 1-L-myo-inositol- 1-phosphate synthase. J Biol Chem, 2002. 277(11): p. 9484-91.
    7. Norman, R.A., et al., Crystal structure of inositol 1-phosphate synthase from Mycobacterium tuberculosis, a key enzyme in phosphatidylinositol synthesis. Structure, 2002. 10(3): p. 393-402.
    8. Carpenter, E.P., et al., Structure of dehydroquinate synthase reveals an active site capable of multistep catalysis. Nature, 1998. 394(6690): p. 299-302.
    9. Kavanagh, K.L., et al., Crystal structure of Pseudomonas fluorescens mannitol 2-dehydrogenase binary and ternary complexes. Specificity and catalytic mechanism. J Biol Chem, 2002. 277(45): p. 43433-42.
    10. Tian, F., J.L. Montchamp, and J.W. Frost, Inhibitor Ionization as a Determinant of Binding to 3-Dehydroquinate Synthase. J Org Chem, 1996. 61(21): p. 7373-7381.
    11. Distler, J., et al., Gene cluster for streptomycin biosynthesis in Streptomyces griseus: analysis of a central region including the major resistance gene. Mol Gen Genet, 1987. 208(1-2): p. 204-10.
    12. Distler, J., et al., Gene cluster for streptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes and analysis of transcriptional activity. Nucleic Acids Res, 1987. 15(19): p. 8041-56.
    13. Ahlert, J., et al., Identification of stsC, the gene encoding the L-glutamine:scyllo-inosose aminotransferase from streptomycin-producing Streptomycetes. Arch Microbiol, 1997. 168(2): p. 102-13.
    14. Beyer, S., J. Distler, and W. Piepersberg, The str gene cluster for the biosynthesis of 5'-hydroxystreptomycin in Streptomyces glaucescens GLA.0 (ETH 22794): new operons and evidence for pathway-specific regulation by StrR. Mol Gen Genet, 1996. 250(6): p. 775-84.
    15. Beyer, S., G. Mayer, and W. Piepersberg, The StrQ protein encoded in the gene cluster for 5'-hydroxystreptomycin of Streptomyces glaucescens GLA.0 is a alpha-D-glucose-1-phosphate cytidylyltransferase (CDP-D-glucose synthase). Eur J Biochem, 1998. 258(3): p. 1059-67.
    16. Fritsche, E., et al., Crystal structure of L-arginine:inosamine-phosphate amidinotransferase StrB1 from Streptomyces griseus: an enzyme involved in streptomycin biosynthesis. Biochemistry, 1998. 37(51): p. 17664-72.
    17. Pissowotzki, K., K. Mansouri, and W. Piepersberg, Genetics of streptomycin production in Streptomyces griseus: molecular structure and putative function of genes strELMB2N. Mol Gen Genet, 1991. 231(1): p. 113-23.
    18. Tomono, A., et al., Transcriptional control by A-factor of strR, the pathway-specific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus. J Bacteriol, 2005. 187(16): p. 5595-604.
    19. Ando, N., et al., Involvement of AfsA in A-factor biosynthesis as a key enzyme. Journal of Antibiotics, 1997. 50(10): p. 847-852.
    20. Umeyama, T., et al., An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology, 1999. 145 ( Pt 9): p. 2281-92.
    21. Ohnishi, Y., et al., The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus : identification of a target gene of the A-factor receptor. Mol Microbiol, 1999.34(1): p. 102-11.
    22. Lim, C.K., et al., Streptomyces griseus streptomycin phosphotransferase: expression of its gene in Escherichia coli and sequence homology with other antibiotic phosphotransferases and with eukaryotic protein kinases. J Gen Microbiol, 1989. 135(12): p. 3289-302.
    23. Shin, S.K., et al., S-adenosylmethionine activates adpA transcription and promotes streptomycin biosynthesis in Streptomyces griseus. FEMS Microbiol Lett, 2006. 259(1): p. 53-9.
    24. Egan, S., et al., Transfer of streptomycin biosynthesis gene clusters within streptomycetes isolated from soil. Appl Environ Microbiol, 1998. 64(12): p. 5061-3.
    25. Walker, J.B., Biosynthesis of the monoguanidinated inositol moiety of bluensomycin, a possible evolutionary precursor of streptomycin. J Biol Chem, 1974. 249(8): p. 2397-404.
    26. Walker, J.B., Possible evolutionary relationships between streptomycin and bluensomycin biosynthetic pathways: detection of novel inositol kinase and O-carbamoyltransferase activities. J Bacteriol, 1990. 172(10): p. 5844-51.
    27. Jung, Y.G., et al., Isolation and characterization of bluensomycin biosynthetic genes from Streptomyces bluensis. FEMS Microbiol Lett, 2003. 219(2): p. 285-9.
    28. Stumpp, T.V.M., Biosynthese und Resistenz in Den ProduzentenstN?mmen der Gattung Streptomyces, Thesis, 2003.
    29. Hyun, C., et al., An efficient approach for cloning the dNDP-glucose synthase gene from actinomycetes and its application in Streptomyces spectabilis, a spectinomycin producer. FEMS Microbiol Lett, 2000. 183(1): p. 183-9.
    30. Stumpp, T.V.M., Biosynthese und Resistenz in den Produzentenst N? mmen der Gattung Streptomyces,. Thesis, University of Stuttgart, 2003.
    31. Odakura, Y., et al., Biosynthesis of astromicin and related antibiotics. II. Biosynthetic studies with blocked mutants of Micromonospora olivasterospora. J Antibiot (Tokyo), 1984. 37(12): p. 1670-80.
    32. Dairi, T., et al., Organization and nature of fortimicin A (astromicin) biosynthetic genes studied using a cosmid library of Micromonospora olivasterospora DNA. Mol Gen Genet, 1992. 236(1): p. 39-48.
    33. Dairi, T., et al., Self cloning in Micromonospora olivasterospora of fms genes for fortimicin A (astromicin) biosynthesis. Mol Gen Genet, 1992. 232(2): p. 262-70.
    34. Dairi, T., K. Yamaguchi, and M. Hasegawa, N-formimidoyl fortimicin A synthase, a unique oxidase involved in fortimicin A biosynthesis: purification, characterization and gene cloning. Mol Gen Genet, 1992. 236(1): p. 49-59.
    35. Hasegawa, M., A novel, highly efficient gene-cloning system in Micromonospora applied to the genetic analysis of fortimicin biosynthesis. Gene, 1992. 115(1-2): p. 85-91.
    36. Fukagawa, Y., et al., Studies on biosynthesis of kasugamycin. IV. Biosynthesis of the kasugamine moiety from [1-14C]-glucosamine and [1,2 or 6-14C]-glucose. J Antibiot (Tokyo), 1968. 21(5): p. 358-60.
    37. Fukagawa, Y., et al., Studies on biosynthesis of kasugamycin. V. Biosynthesis of the amidine group. Journal of Antibiotics, 1968. 21(6): p. 410-412.
    38. Fukagawa, Y., et al., Studies on biosynthesis of kasugamycin. I. Biosynthesis of kasugamycin and the kasugamine moiety. J Antibiot (Tokyo), 1968. 21(1): p. 50-4.
    39. Fukagawa, Y., et al., Studies on biosynthesis of kasugamycin. 3. Biosynthesis of the d-inositol moiety. Journal of Antibiotics, 1968. 21(3): p. 185-188.
    40. Fukagawa, Y., et al., Biosynthesis of kasugamycin. II. Biosynthesis of the two-carbon-side chain of kasugamycin. Journal of Antibiotics, 1968. 21(3): p. 182-184.
    41. Ikeno, S., et al., A 7.6kb DNA region from Streptomyces kasugaensis M338-M1 includes some genes responsible for kasugamycin biosynthesis. J Antibiot (Tokyo), 1998. 51(3): p. 341-52.
    42. Ikeno, S., et al., DNA sequencing and transcriptional analysis of the kasugamycin biosynthetic gene cluster from Streptomyces kasugaensis M338-M1. J Antibiot (Tokyo), 2006. 59(1): p. 18-28.
    43. Ikeno, S., et al., kasT gene of Streptomyces kasugaensis M338-M1 encodes a DNA-binding protein which binds to intergenic region of kasU-kasJ in the kasugamycin biosynthesis gene cluster. J Antibiot (Tokyo), 2002. 55(12): p. 1053-62.
    44. Ikeno, S., et al., ABC transporter genes, kasKLM, responsible for self-resistance of a kasugamycin producer strain. J Antibiot (Tokyo), 2000. 53(4): p. 373-84.
    45. Palaniappan, N., et al., Production of hygromycin A analogs in Streptomyces hygroscopicus NRRL 2388 through identification and manipulation of the biosynthetic gene cluster. Chem Biol, 2006. 13(7): p. 753-64.
    46. Stratton, C.W., Dead bugs don't mutate: Susceptibility issues in the emergence of bacterial resistance. Emerging Infectious Diseases, 2003. 9(1): p. 10-16.
    47. Thomas, J.R., et al., The relationship between aminoglycosides' RNA binding proclivity and their antiplasmid effect on an IncB plasmid. Biochemistry, 2005. 44(18): p. 6800-6808.
    48. Litovchick, A., et al., Neomycin B-arginine conjugate, a novel HIV-1 Tat antagonist: Synthesis and anti-HIV activities. Biochemistry, 2001. 40(51): p. 15612-15623.
    49. Alangaden, G.J., et al., Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 1998. 42(5): p. 1295-1297.
    50. Hichens, M. and K.L. Rinehart Jr, Chemistry of the neomycins. XII the absolute configuration of deoxystreptamine in the neomycins, paromomycins and kanamycins [12]. Journal of the American Chemical Society, 1963. 85(10): p. 1547-1548.
    51. Shier, W.T., K.L. Rinehart Jr, and D. Gottlieb, Preparation of four new antibiotics from a mutant of Streptomyces fradiae. Proceedings of the National Academy of Sciences of the United States of America, 1969. 63(1): p. 198-204.
    52. Thomas Shier, W., et al., Use of mutants in the study of aminocyclitol antibiotic biosynthesis and the preparation of the hybrimycin C complex. Biochemistry, 1974. 13(25): p. 5073-5078.
    53. Rinehart Jr, K.L., et al., Biosynthetic incorporation of [1-13C]glucosamine and [6-13C]glucose into neomycin [13]. Journal of the American Chemical Society, 1974. 96(7): p. 2263-2265.
    54. Daum, S.J., D. Rosi, and W.A. Goss, Mutational biosynthesis by idiotrophs of Micromonospora purpurea. II. Conversion of non amino containing cyclitols to aminoglycoside antibiotics. Journal of Antibiotics, 1977. 30(1): p. 98-105.
    55. Kakinuma, K., et al., Stereochemistry of ribostamycin biosynthesis. An application of 2H NMR spectroscopy. Journal of the American Chemical Society, 1981. 103(18): p. 5614-5616.
    56. Yamauchi, N. and K. Kakinuma, Confirmation of in vitro synthesis of 2-deoxy-scyllo-inosose, the earliest intermediate in the biosynthesis of 2-deoxystreptamine, using cell free preparations of Streptomyces fradiae. Journal of Antibiotics, 1992. 45(5): p. 774-780.
    57. Kudo, F., et al., Purification and characterization of 2-deoxy-scyllo-inosose synthase derived from Bacillus circulans. A crucial carbocyclization enzyme in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics. J Antibiot (Tokyo), 1999. 52(2): p. 81-8.
    58. Kudo, F., et al., Molecular cloning of the gene for the key carbocycle-forming enzyme in the biosynthesis of 2-deoxystreptamine-containing aminocyclitol antibiotics and its comparison with dehydroquinate synthase. J Antibiot (Tokyo), 1999. 52(6): p. 559-71.
    59. Nango, E., et al., Crystallization and X-ray analysis of 2-deoxy-scyllo-inosose synthase, the key enzyme in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2005. 61(Pt 7): p. 709-11.
    60. Nango, E., T. Eguchi, and K. Kakinuma, Active site mapping of 2-deoxy-scyllo-inosose synthase, the key starter enzyme for the biosynthesis of 2-deoxystreptamine. Mechanism-based inhibition and identification of lysine-141 as the entrapped nucleophile. J Org Chem, 2004. 69(3): p. 593-600.
    61. Fujiwara, T., et al., Isolation of an intermediate of 2-deoxystreptamine biosynthesis from a mutant of Bacillus circulans. Journal of Antibiotics, 1980. 33(8): p. 824-829.
    62. Kase, H., T. Iida, and Y. Odakura, Accumulation of 2-deoxy-scyllo-inosamine by a 2-deoxystreptamine-requiring idiotroph of Micromonospora sagamiensis. Journal of Antibiotics, 1980. 33(10): p. 1210-1212.
    63. Chen, Y. and J.B. Walker, Transaminations involving keto and amino inositols and glutamine in actinomycetes which produce gentamicin and neomycin. Biochemical and Biophysical Research Communications, 1977. 77(2): p. 688-692.
    64. Suzukake, K., et al., Biosynthesis of 2-deoxystreptamine. Journal of Antibiotics, 1985. 38(9): p. 1211-1218.
    65. Tamegai, H., et al., Identification of L-glutamine: 2-deoxy-scyllo-inosose aminotransferase required for the biosynthesis of butirosin in Bacillus circulans. J Antibiot (Tokyo), 2002. 55(8): p. 707-14.
    66. Huang, F., et al., The neomycin biosynthetic gene cluster of Streptomyces fradiae NCIMB 8233: characterisation of an aminotransferase involved in the formation of 2-deoxystreptamine. Org Biomol Chem, 2005. 3(8): p. 1410-8.
    67. Huang, F., et al., Biosynthesis of aminoglycoside antibiotics: cloning, expression and characterisation of an aminotransferase involved in the pathway to 2-deoxystreptamine. Chem Commun (Camb), 2002(23): p. 2860-1.
    68. Yokoyama, K., et al., Stereochemical recognition of doubly functional aminotransferase in 2-deoxystreptamine biosynthesis. J Am Chem Soc, 2005. 127(16): p. 5869-74.
    69. Popovic, B., et al., Crystal structures of the PLP- and PMP-bound forms of BtrR, a dual functional aminotransferase involved in butirosin biosynthesis. Proteins: Structure, Function and Genetics, 2006. 65(1): p. 220-230.
    70. Kudo, F., et al., Biosynthesis of 2-deoxystreptamine by three crucial enzymes in Streptomyces fradiae NBRC 12773. J Antibiot (Tokyo), 2005. 58(12): p. 766-74.
    71. Pearce, C.J., J.E.G. Barnett, and C. Anthony, The role of the pseudo disaccharide neamine as an intermediate in the biosynthesis of neomycin. Biochemical Journal, 1976. 159(3): p. 601-606.
    72. Testa, R.T. and B.C. Tilley, Biotransformation, a new approach to aminoglycoside biosynthesis. I. Sisomicin. Journal of Antibiotics, 1975. 28(8): p. 573-579.
    73. Pearce, C.J., M. Akhtar, and J.E.G. Barnett, Sub-unit assembly in the biosynthesis of neomycin. The synthesis of 5-O-β-D-ribofuranosyl and 4-O-β-D-ribofuranosyl-2,6-dideoxystreptamines. Journal of Antibiotics, 1978. 31(1): p. 74-81.
    74. Takeda, K., et al., Biosynthesis of butirosins. I. Biosynthetic pathways of butirosins and related antibiotics. J Antibiot (Tokyo), 1979. 32(1): p. 18-28.
    75. Alfeel, W., et al., Mechanism and stereochemistry of the elaboration of the neosamine C-ring in the biosynthesis of neomycins. J. Chem. Soc., Chem. Commun., 1983: p. 18-20.
    76. Kakinuma, K., et al., Mechanism and stereochemistry of the biosynthesis of 2-deoxystreptamine and neosamine C. Journal of Antibiotics, 1989. 42(6): p. 926-933.
    77. Truman, A.W., et al., Characterization of the enzyme BtrD from Bacillus circulans and revision of its functional assignment in the biosynthesis of butirosin. Angew Chem Int Ed Engl, 2007. 46(9): p. 1462-4.
    78. Huang, F., et al., Elaboration of Neosamine Rings in the Biosynthesis of Neomycin and Butirosin. Chembiochem, 2007. 8(3): p. 283-288.
    79. Hessler, E.J., et al., Neomycins D, E and F: identity with paromamine, paromomycin I and paromomycin II. Journal of Antibiotics, 1970. 23(9): p. 464-466.
    80. Baud, H., et al., Ribostamycin, as an intermediate in the biosynthesis of neomycin. J Antibiot (Tokyo), 1977. 30(9): p. 720-3.
    81. Ota, Y., et al., Butirosin-biosynthetic gene cluster from Bacillus circulans. J Antibiot (Tokyo), 2000. 53(10): p. 1158-67.
    82. Subba, B., et al., The ribostamycin biosynthetic gene cluster in Streptomyces ribosidificus: comparison with butirosin biosynthesis. Mol Cells, 2005. 20(1): p. 90-6.
    83. Yukita, T., et al., Biosynthesis of (2R)-4-amino-2-hydroxybutyric acid, unique and biologically significant substituent in butirosins. J Antibiot (Tokyo), 2003. 56(5): p. 497-500.
    84. Kurihara, S., et al., A novel putrescine utilization pathway involvesγ-glutamylated intermediates of Escherichia coli K-12. Journal of Biological Chemistry, 2005. 280(6): p. 4602-4608.
    85. Llewellyn, N.M., Y. Li, and J.B. Spencer, Biosynthesis of butirosin: transfer and deprotection of the unique amino acid side chain. Chem Biol, 2007. 14(4): p. 379-86.
    86. Lee, B.K., R.T. Testa, and G.H. Wagman, Incorporation of L methionine methyl 14C into gentamicins. Journal of Antibiotics, 1973. 26(12): p. 728-731.
    87. Kharel, M.K., et al., Molecular cloning and characterization of a 2-deoxystreptamine biosynthetic gene cluster in gentamicin-producing Micromonospora echinospora ATCC15835. Mol Cells, 2004. 18(1): p. 71-8.
    88. Unwin, J., et al., Gene cluster in Micromonospora echinospora ATCC15835 for the biosynthesis of the gentamicin C complex. Journal of Antibiotics, 2004. 57(7): p. 436-445.
    89. Degwert, U., et al., Studies on the biosynthesis of the alpha-glucosidase inhibitor acarbose: valienamine, a m-C7N unit not derived from the shikimate pathway. J Antibiot (Tokyo), 1987.40(6): p. 855-61.
    90. Toyokuni, T., W.Z. Jin, and K.L. Rinehart Jr, Biosynthetic studies on validamycins: A C2 + C2 + C3 pathway to an aliphatic C7N unit. Journal of the American Chemical Society, 1987. 109(11): p. 3481-3482.
    91. Mahmud, T., et al., Biosynthetic studies on theα-glucosidase inhibitor acarbose in actinoplanes sp.: 2-epi-5-epi-valiolone is the direct precursor of the valienamine moiety. Journal of the American Chemical Society, 1999. 121(30): p. 6973-6983.
    92. Dong, H., et al., Biosynthesis of the validamycins: identification of intermediates in the biosynthesis of validamycin A by Streptomyces hygroscopicus var. limoneus. J Am Chem Soc, 2001. 123(12): p. 2733-42.
    93. Mahmud, T., S. Lee, and H.G. Floss, The biosynthesis of acarbose and validamycin. Chem Rec, 2001. 1(4): p. 300-10.
    94. Naganawa, H., et al., Biosynthesis of the cyclitol moiety of pyralomicin 1a in Nonomuraea spiralis MI178-34F18. J Antibiot (Tokyo), 2002. 55(6): p. 578-84.
    95. Stratmann, A., et al., The AcbC protein from Actinoplanes species is a C-7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the alpha-glucosidase inhibitor acarbose. Journal of Biological Chemistry, 1999. 274(16): p. 10889-10896.
    96. Bai, L., et al., Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. Chem Biol, 2006. 13(4): p. 387-97.
    97. Yu, Y., et al., Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Appl Environ Microbiol, 2005. 71(9): p. 5066-76.
    98. Singh, D., et al., Genetic localization and heterologous expression of validamycin biosynthetic gene cluster isolated from Streptomyces hygroscopicus var. limoneus KCCM 11405 (IFO 12704). Gene, 2006. 376(1): p. 13-23.
    99. Lee, S. and E. Egelkrout, Biosynthetic studies on the alpha-glucosidase inhibitor acarbose in Actinoplanes sp.: glutamate is the primary source of the nitrogen in acarbose. J Antibiot (Tokyo), 1998. 51(2): p. 225-7.
    100. Lee, S., et al., Biosynthetic studies on the alpha-glucosidase inhibitor acarbose in Actinoplanes sp.: source of the maltose unit. J Antibiot (Tokyo), 1997. 50(11): p. 954-60.
    101. Wehmeier, U.F. and W. Piepersberg, Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose. Appl Microbiol Biotechnol, 2004. 63(6): p. 613-25.
    102. Kawamura, N., et al., Pyralomicins, novel antibiotics from Microtetraspora spiralis. II. Structure determination. Journal of Antibiotics, 1996. 49(7): p. 651-656.
    103. Zhang, X. and R.J. Parry, Cloning and characterization of the pyrrolomycin biosynthetic gene clusters from Actinosporangium vitaminophilum ATCC 31673 and Streptomyces sp. strain UC 11065. Antimicrobial Agents and Chemotherapy, 2007. 51(3): p. 946-957.
    104. Nowak-Thompson, B., et al., Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. Journal of Bacteriology, 1999. 181(7): p. 2166-2174.
    105. Thomas, M.G., M.D. Burkart, and C.T. Walsh, Conversion of L-proline to pyrrolyl-2-carboxyl-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Chemistry and Biology, 2002. 9(2): p. 171-184.
    106. Dorrestein, P.C., et al., Dichlorination of a pyrrolyl-S-carrier protein by FADH2- dependent halogenase PltA during pyoluteorin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(39): p. 13843-13848.
    107. Kawamura, N., et al., Pyralomicins, novel antibiotics from Microtetraspora spiralis. III. Biosynthesis of pyralomicin 1a. Journal of Antibiotics, 1996. 49(7): p. 657-660.
    108. Wu, X., et al., A comparative analysis of the sugar phosphate cyclase superfamily involved in primary and secondary metabolism. Chembiochem, 2007. 8(2): p. 239-248.
    109. Kawasaki, T., et al., A relationship between the mevalonate pathway adn isoprenoid production in actinomycetes. Journal of Antibiotics, 2003. 56(11): p. 957-966.
    110. Kudo, F., et al., Cloning of the pactamycin biosynthetic gene cluster and characterization of a crucial glycosyltransferase prior to a unique cyclopentane ring formation. J Antibiot (Tokyo), 2007. 60(8): p. 492-503.
    111. Hanahan, D. and M. Meselson, Plasmid screening at high colony density. Methods Enzymol, 1983.100: p. 333-42.
    112. Gust, B., et al., PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A, 2003. 100(4): p. 1541-6.
    113. MacNeil, D.J., et al., Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene, 1992. 111(1): p. 61-8.
    114. Short, J.M., et al., Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res, 1988. 16(15): p. 7583-600.
    115. Bao, K., Ph.D. thesis. 1997.
    116. Taomeifeng, Ph.D thesis. 2000.
    117. Janssen, G.R. and M.J. Bibb, Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene, 1993. 124: p. 133-134.
    118.操二虎,吸水链霉菌5008中静丝霉素生物合成基因簇的克隆尝试.[硕士学位论文]. 1999,华中农业大学:武汉.
    119. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Second Edition. 1989, New York: Cold Spring Harbor Laboratory Press.
    120. Hopwood, D.A., et al., Genetic Manipulation of Streptomyces-A Laboratory Manual. 1985, Norwich: The John Innes Foundation.
    121. yuanlirong, 1983.
    122. Zhishengsuo, S., 1975.
    123. Thompson, C.J., J.M. Ward, and D.A. Hopwood, DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature, 1980. 286(5772): p. 525-7.
    124. SHixianming, 1992.
    125. Okanishi, M., K. Suzuki, and H. Umezawa, Formation and reversion of Streptomycete protoplasts: cultural condition and morphological study. J Gen Microbiol, 1974. 80(2): p. 389-400.
    126. Thompson, C.J., et al., Physical analysis of antibiotic-resistance genes from Streptomyces and their use in vector construction. Gene, 1982. 20(1): p. 51-62.
    127. Kieser, T., Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid, 1984. 12(1): p. 19-36.
    128.虞沂,吸水链霉菌5008中井岗霉素生物合成基因簇的克隆.[硕士学位论文]. 2002,华中农业大学:武汉.
    129. Ren, Q. and I.T. Paulsen, Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes. J Mol Microbiol Biotechnol, 2007. 12(3-4): p. 165-79.
    130. Busch, W. and M.H. Saier, Jr., The transporter classification (TC) system, 2002. Crit Rev Biochem Mol Biol, 2002. 37(5): p. 287-337.
    131. Paulsen, I.T., M.H. Brown, and R.A. Skurray, Proton-dependent multidrug efflux systems. Microbiol Rev, 1996. 60(4): p. 575-608.
    132. Asano, N., Y. Kameda, and K. Matsui, All eight possible mono-beta-D-glucosides of validoxylamine A. I. Preparation and structure determination. J Antibiot (Tokyo), 1991. 44(12): p. 1406-16.
    133. Asano, N., et al., Trehalase inhibitors, validoxylamine A and related compounds as insecticides. J Antibiot (Tokyo), 1990. 43(6): p. 722-6.
    134. Asano, N., et al., All eight possible mono-beta-D-glucosides of validoxylamine A. II. Biological activities. J Antibiot (Tokyo), 1991. 44(12): p. 1417-21.
    135.庞秀华,吸水链霉菌应城变种10-22染色体物理图谱的构建及抗生素5012-Ⅳ生物合成基因簇的定位和克隆. [博士学位论文]. 2000,华中农业大学:武汉.
    136. Birch, A., A. Hausler, and R. Hutter, Genome rearrangement and genetic instability in Streptomyces spp. J Bacteriol, 1990. 172(8): p. 4138-42.
    137. Lezhava, A., et al., Chromosomal deletions in Streptomyces griseus that remove the afsA locus. Mol Gen Genet, 1997. 253(4): p. 478-83.
    138.周启,刘锦林,农抗5102抗真菌性能的研究.中国抗生素杂志, 1981(01).
    139. Pang, X., et al., Physical map of the linear chromosome of Streptomyces hygroscopicus 10-22deduced by analysis of overlapping large chromosomal deletions. J Bacteriol, 2002a. 184(7): p. 1958-65.
    140. Jian, X., et al., Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10-22. Antonie Van Leeuwenhoek, 2006. 90(1): p. 29-39.
    141. Pang, X., et al., A linear plasmid temperature-sensitive for replication in Streptomyces hygroscopicus 10-22. FEMS Microbiol Lett, 2002b. 208(1): p. 25-8.
    142. Qin, Z., et al., Development of a gene cloning system for Streptomyces hygroscopicus subsp. yingchengensis, a producer of three useful antifungal compounds, by elimination of three barriers to DNA transfer. J Bacteriol, 1994. 176(7): p. 2090-5.
    143. Minagawa, K., et al., ValC, a new type of C7-Cyclitol kinase involved in the biosynthesis of the antifungal agent validamycin A. Chembiochem, 2007. 8(6): p. 632-41.
    144. Asano, N., et al., Validamycin H, a new pseudo-tetrasaccharide antibiotic. Journal of Antibiotics, 1990. 43(8): p. 1039-1041.
    145. Iwasa, T., E. Higashide, and M. Shibata, Studies of validamycins, new antibiotics. 3. Bioassay methods for the determination of validamycin. Journal of Antibiotics, 1971. 24(2): p. 114-118.
    146. Iwasa, T., H. Yamamoto, and M. Shibata, Studies on validamycins, new antibiotics. I. Streptomyces hygroscopicus var. limoneus nov. var., validamycin-producing organism. Journal of Antibiotics, 1970. 23(12): p. 595-602.
    147. Kameda, Y., et al., Structures of minor components of the validamycin complex. Journal of Antibiotics, 1988. 41(10): p. 1488-1492.
    148. Kameda, Y., N. Asano, and T. Yamaguchi, Validamycin G and validoxylamine G, new members of the validamycins. Journal of Antibiotics, 1986. 39(10): p. 1491-1494.
    149. Bertolt Gust, T.K.a.K.C., PCR targeting system in Streptomyces coelicolor A3(2). 2002.
    150.吴元锋,层析法分离井冈霉素A和B. .[硕士学位论文]. 2004.浙江工业大学.
    151. Mitchell, D.A., M. Berovic, and N. Krieger, Biochemical engineering aspects of solid state bioprocessing. Adv Biochem Eng Biotechnol, 2000. 68: p. 61-138.
    152. Singh, D., et al., Glucoamylase gene, vldI, is linked to validamycin biosynthesis in Streptomyces hygroscopicus var. limoneus, and vldADEFG confers validamycin production in Streptomyces lividans, revealing the role of VldE in glucose attachment. Gene, 2007. 395(1-2): p. 151-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700