PECVD非晶硅薄膜制程工艺仿真建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发新能源和可再生清洁能源是21世纪最具决定影响的技术领域之一,太阳能光伏技术是近年来发展最快、最有活力的可再生能源利用技术。薄膜太阳能电池是第二代太阳能电池,是降低太阳电池成本的主要手段和发展趋势,而非晶硅薄膜是高效廉价光伏太阳电池的理想材料,开展对PECVD设备和非晶硅薄膜生长的关键工艺进行研究,对制备高效薄膜电池材料、对新能源的高效利用具有重要的指导意义。
     薄膜的结构和性质与制备工艺的关系非常密切,目前认为以辉光放电法制备的非晶硅薄膜质量最好。国内外关于薄膜生长的研究较多从实验方面研究薄膜的工艺特性,优化工艺和结构参数。然而计算机数字模拟在模型建立和计算分析方面具有较大优势,可以帮助设计师和工艺师发现设计中的问题,为优化结构设计和工艺参数提供指导依据。
     本论文采用计算机数字模拟的方法,研究PECVD(Plasma-Enhanced Chemical Vapor Deposition,等离子增强化学气相沉积)设备非晶硅薄膜材料的生长,研究了布气系统和结构参数对a-Si:H薄膜的影响;研究进气流量、硅氢比和温度对薄膜沉积速率的影响;研究工艺参数、功率与电极间距对薄膜沉积速率及电场分布的影响,并对模拟结果进行试验与测试验证。本论文主要研究内容和成果如下:
     1.分析了气流分布对薄膜生长过程的影响,利用计算流体力学(CFD)方法对等离子增强化学气相沉积反应室流场进行了数值模拟研究,通过改变匀流板布孔方式、进气管与匀流板距离、进气管出口形状和角度、压强等条件,研究反应器内气体流动的相应变化,给出了获得薄膜生长所需的最佳输运过程的条件,以形成稳定均匀的流场,从而保证薄膜的生长质量。通过模拟验证了匀流板采用渐变直径孔方式的气流流动均匀性更好,并根据模拟结果可知,进气管入口距离为4.5mm时气体流动效果较好;进气管喇叭口结构只适合进气速率较大时的情况;压强133 pa时气流波动较小。根据本文优化后的匀流装置已实际加工应用,取得良好效果。
     2.根据实际沉积非晶硅薄膜的反应腔室结构建立几何模型,根据反应室中表面化学反应建立三维热流场模型。通过对非晶硅沉积过程进行分析和仿真模拟,得到镀膜过程中的化学组分的分布情况以及薄膜的平均沉积速率,沉积速率的得出为进一步进行实验、验证模型的准确性提供数据基础。并运用正交实验法对PECVD薄膜生长的工艺参数进行了数值仿真,对结果进行了极差分析和方差分析,得出了影响沉积速率的工艺参数的主次顺序。仿真结果揭示了进气流量、硅氢比和温度对薄膜沉积速率的影响规律,为合理确定PECVD工艺参数提供理论基础。通过模拟分析得出结论:对于不同的气流速度,气流越大,温度场越不均匀,所以为了得到较均匀的薄膜,应尽量采用小气流进气;通过模拟正交实验得出结论:对沉积速率影响最大的是温度,其次是进气流量,最后是H2和SiH4的比值。
     3.分析了等离子体的基本特征及其对薄膜生长的影响,并在此基础上对射频电场的分布进行模拟。主要研究薄膜沉积速率与沉积过程中RF电源功率关系,给出靶台与衬底间距不同情况下的电磁场分布;采用电场-等离子-电化学反应耦合求解方法,对加工工艺过程和设备进行仿真,掌握设备内的各种物理参数分布,从而优化工艺,改善设备的工作状态。结果显示极板变化对电场强度和电势产生影响,极板距离越近,电场强度越大,电势标量值也越大。不同极板接地方式也对电场强度和电势产生影响。进气流量、功率、温度、压力、硅氢比等参数变化只对沉积速率有影响,对电场和电势没有影响。进气流量越大,沉积速率越高,但是进气速率进一步增大,沉积速率反而下降。功率选择40W,电极间距25mm时,薄膜的均匀性较好,沉积速率也较高。
     4.采用平板式PECVD沉积设备进行非晶硅薄膜生长试验,并采用变角度光谱椭圆偏振仪测试薄膜厚度,计算得出薄膜沉积速率,与仿真结果进行对比,通过试验验证得出结论:沉积速率的试验值与计算值之间的误差低于±7.5%,与多物理场模拟数值之间的误差低于±15%,验证模型的准确性和仿真结果的有效性。
     通过本文的研究,获得在一定条件下高质量薄膜材料的结构和工艺参数,为PECVD设备制造和镀膜工艺提供一定的理论指导依据,对提高太阳电池的效率和质量、实现制造过程的性能优化和提升装备技术水平具有重要的意义。
In 21 century, developing new energy and renewable clean energy is one of the most decisive influence technology. Solar photovoltaic technology is the fastest developing and the most dynamic renewable energy technology in recent years. Film solar cell is the second generation solar cell, it is the main way to cut costs of solar cells and development trends, and Amorphous-Silicon Thin Film is ideal for high efficiency low-cost materials of photovoltaic solar cells.
     There is very close relationship between the structures and properties of the film and it's preparation process. Present the view that the Amorphous-Silicon thin film prepared by glow discharge gets the best quality. At home and abroad the researching on thin film growth is mainly based on the experiments of the film's technical characteristics, optimization of process and structure parameters. However,there're great advantages in computer digital simulation in modeling and calculation, that can help designers and technologist find design problems by providing a basis for optimum structural design and processing parameter. This paper studies the growth of amorphous silicon thin film in the PECVD (Plasma-Enhanced Chemical Vapor Deposition) equipment by using computer simulation methods. The main contents are as follows:
     1. The flow field in Plasma Enhanced Chemical Vapor Deposition reactor is simulated by Computational Fluid Dynamics (CFD) theory. By varying the way pore distributed through gas distributor, distance between inlet and gas distributor panel, form and angle of inlet, and gas pressure, the corresponding gas velocity, flow filed in the rector is calculated. The geometric structure and inflow pattern of a PECVD reactor is improved in order to provide steady and uniform flow field and improve the quality of thin films. The results show that the gas distributor panel with gradual diameter pore make the airflow more uniform, and the simulation results indicated that the distance between inlet and panel is 4.5 showed very goodeffects; The inlet trumpet-shaped structure only suits the situation that airflow speed is big; The airflow fluctuations are small when pressure is 133pa. The gas distributor is manufactured and improved the gas distribution in the real equipment.
     2. A three-dimensional numerical model, account for the description of fluid, thermal and chemical phenomena, has been developed for the hydrogenated amorphous silicon deposition from SiH4-H2 in a PECVD reactor. This model provides the capability to predict the main composition and deposition rates across the substrate surface. And orthogonal experimental method was applied to numerical simulation experiment for processing parameters of thin film grown by PECVD. The priority order of processing parameters affecting deposition rate is found. By means of the experimental verification, the simulation results well coincide with experimental results. All those provide theoretical basis for reasonably determining processing parameters of PECVD, deeper understanding and the optimizations of processing parameters of thin film deposition by PECVD. The results abtained through the simulation indicate: regarding the different stream velocity, the air current is bigger, the temperature field is more non-uniform, therefore to obtain the even thin film, the small inlet airflow should be used as far as possible; the conclusion through the simulation orthogonal experiment shows that the temperatur have the greatest effect on the depositon rate, next is the inlet airflow capacity, finally is H2 and the SiH4 ratio.
     3. This thesis analyzes the basic character of plasma and the influence of thin film growth, and simulates the distribution of RF electric field on this basis. The main research object is the relationship between deposition rate of the thin film and the RF power in deposition, showing electromagnetic field distribution under different circumstances of the space between the electrodes. By using electric field - Plasma - electrochemical reaction coupled solution method, the simulation machining technology process and equipment is carried out, in control of physical parameters in the equipment to optimizate the process and improve the performance of the equipment. The result showed that the space between the electrodes has influence on the electric-field strength and the electric potential, the distance between the electrodes is nearer, the electric-field intensity is bigger, the scalar value of electric potential is also bigger. The grounding method of electrodes also has the influence on the electric-field intensity and the electric potential. The paramaters of airflow rate, power, temperature, pressure, the silicon hydrogen variations is only have influential on the deposition rate, have not affected to the electric field and the electric potential. The airflow rate is bigger, the deposition rate is higher, but the airflow rate further increases, the deposition rate decreased. When the power is 40W, electrode spacing 25mm, the thin film uniformity is good, the deposition rate is also high.
     4. Flat-type of PECVD deposition equipment used to conduct tests of amorphous silicon thin film growth, then tests the thickness of the thin films by using the variable angle spectral ellipsometry and calculated deposition rate, compared with the simulation results verify the simulation model accuracy and validity of the simulation results. The result comparison between the numerical simulation and experiment shows that: the error of deposition rate between experimental value and the simulation value is lower than±7.5%, and is lower than±15% with the multi-physical field simulation value's. It is known that the two results coincide with each other well, which certifies the feasibility and validity of the model, and the model meets the needs of engineering practices
     By the study of this paper, the processing parameters of high-quality thin film material are acquired under a certain conditions. The study is of important meaning for improving the efficiency and quality of solar cell.
引文
1. T M Bruton. General trends about photo voltaics based on crystalline silicon [J]. Solar Energy Materials & Solar Cells (S0927-0248), 2002, 72(1-4): 3-10.
    2.卢金军.太阳能电池的研究现状和产业发展[J] .高新技术. 2007, (18):8.
    3.汪建军,刘金霞.太阳能电池及材料研究和发展现状[J] .浙江万里学院学报,2006 ,V19 (5) :73-77.
    4.马胜红.中国光伏产业发展展望及政策建议[J] .电器工业,2004, (10) : 1-11.
    5.耿新华,张建军.硅基薄膜太阳电池新进展[J] .新材料产业,2007, (7) :28-30.
    6.李丽,张贵友,陈人杰,陈实,吴锋.太阳能电池及关键材料的研究进展.化工新型材料,2008,36(11):1-4
    7.梁宗存,沈辉,李戬洪.太阳能电池及材料研究[J ].材料导报,2000,14 (8) :38-40.
    8.徐建平,夏国平.我国装备制造业的国际比较及对策研究.中国机械工程, 2008, 19 (20):2510-2518
    9.唐伟忠.薄膜材料制备原理技术及应用[M].北京:冶金工业出版社.2003,1
    10.王敏花. RF_PECVD制备非晶硅膜及HIT太阳电池的研究:(硕士学位论文).河北工业大学, 2007
    11.卢景霄,张宇翔,王海燕.硅太阳电池稳步走向薄膜化[J].太阳能学报, 2006, 27(5): 444-450.
    12.耿新华,张建军.硅基薄膜太阳电池新进展.新材料产业[J].2007(7):28-31
    13.李建军,邹正光,龙飞. CIS (CIGS)太阳能电池研究进展[J ] .能源技术,2005 ,26 (4) :164-167.
    14.吴建荣,杜丕一,韩高荣等.非晶硅太阳能电池研究现状[J ] .材料导报,1999 ,13 (2) :38-39.
    15.郭浩,丁丽,刘向阳.太阳能电池的研究现状及发展趋势[J ] .许昌学院学报,2006 ,25 (2) :38-41.
    16.黄汉生.日本开始生产薄膜非晶硅太阳能电池[J].能源工程,2000,(1):20.
    17.耿新华,李洪波,王宗畔等. 400cm2 a-Si/a-Si叠层太阳电池的研究[J ] .太阳能学报,1998 , (4) :345-351
    18.耿新华,雷永泉等.非晶硅太阳电池:新能源材料[M].天津:天津大学出版社, 2000: 272-303.
    19. Makoto Konagai. Thin film solar cells program in Japan[A] .Technical Digest of the International PVSEC-14 [C],Bangkok, Thailand, 2004, 657-660.
    20. von Roedern. Status of amorphous and crystalline thin film silicon solar cell activities [A]. NCPV and Solar Program Review Meeting[C], Denver, Colorado, NREL/CP-520-33568, 2003.3:1-4
    21. Collins R W, Ferlauto A S, Ferreira GM, et al. Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry[J]. Sol Energy Mater Sol Cells, 2003, 78 (14): 143-180.
    22. Zhang S, Liao X, Raniero L, et al. Polymorphous silicon thin films and their use in solar cells [A]. Technical Digest of the International PVSEC-14[C], Bangkok, Thailand, 2004, 43-44.
    23. Green M A. Present and future of crystalline silicon solar cells [A]. Technical Digest of the International PVSEC-14[C], Bangkok, Thailand, 2004, 391-394.
    24. Green M A. Crystal line and thin-film silicon solar cells: state of the art and future potential [J]. Solar Energy, 2003, 74(2):181-192.
    25. Takuya Mtsui, Michio Kondo, Akihisa Matsuda. High rate micro crystalline silicon deposition for p-i-n junction solar cells[A] . Technical Digest of the International PVSEC-14[C] ,Bangkok, Thailand,2004,1009-1010.
    26. Niikura C , Michio Kondo , Akihisa Matsuda. High rate growth of device grade microcrystalline silicon film at 8nm/s [A]. Technical Digest of the International PVSEC-14 [C], Bangkok, Thailand, 2004, 1017-1018.
    27.周玉锋,张宇民,韩杰才.硅膜制备.材料导报,2005,19(12):84-86
    28.陆宗仪,李文梅等.一种新型的PECVD沉积装置研究[J].材料科学与工艺.1997.5(1): 91-93.
    29.林美娟,朱启良.离子束辅助沉积设备的研制[J].真空. 1998.12(6): 33-35.
    30.蔺增,巴德纯等.用RF-PECVD工艺在不锈钢上制备类金刚石膜的机械特性与摩擦性能研究[J],真空科学与技术,2004,1-2:77.
    31. T. Ohana, A. Goto, K. Yamamoto, T. Nakamura, A. Tanaka, Y. Osawa , H. Yoda, M. Sahashi, Y. Koga. The structure and tribological property of amorphous carbon and carbon nitride films prepared by ECR plasma sputtering method [J],Diamond and Related Materials, 2001, 10: 1093-1097.
    32.吴昊.弧增强PCVD法设备及薄膜制备研究:(硕士学位论文).北京:北京航空航天大学.2001.
    33. Xu Jun,Ma Tengcai,Yu Shiji,et al. Deposition of carbon nitride films by plasma enhanced DC magnetron sputtering using twinned microwave ECR plasma source [J].Korean vacsci, 2000,9(SI): 95-101.
    34. Lihui Guo, Michio Kondo, Makoto Fukawa, Kimihiko Saitoh and Akihisa Matsuda, High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical deposition,Jpn.J.Appl.Phys.,37(1998)L1116-L118.
    35. T. Robias, B.Rech, W.Beyer, P.Werner, F.Edelman, A. Chack, R. Weil, R. Baserman. Microcrystalline silicon solar cells prepared by 13.56MHz PECVD at high growth rates: Solar cell and material properties, Mat. Res. Soc. Symp. Proc., 2001, 664: A25.5.1-A25.5.6.
    36. Rech, T.Roschek, J.Müller, S.Wieder, H.Wagner, Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF (13.56MHz) plasma excitation frequencies, Solar Energy Materials&Solar Cells, 2001, 66(1):267-273.
    37. T. Kaneko,N. Miyakawa et al,Thin film growth of silicon carbide from methyl-trichloro-silane by RF plasma-enhanced CVD,Journal of Crystal Growth,1997,174 (1): 658 - 661.
    38. M.P. Pai, D.V. Musale et al. Effect of coupling-of radio-frequency plasma on the growth of diamond film in a hot filament reactor. Thin solid Film, 1998, 332(1-2): 167 - 176.
    39. F.X.LU, W.Z. Tang, T.B. Huang. Large area, high quality diamond film deposition by high power DC arc Plasma jet operation at gas recycling mode, Diamond and Related Materials, 2001, 10(9-10):1551-1558.
    40. T. Bacei,E. Borhci,Mibruzzi,Change in surface morphology of diamond films,deposited by DC glow discharge CVD, Materials Science and Engineering, 2007, 48(3):268-278.
    41. Pleule,C. Wild et al,the CAP-reactor, a novel microwave CVD system for diamond deposition, Diamond and Related Materials, 2002, 11(3-6): 467-471.
    42. Kodama H, Shirakura A, Hotta A, et al. Gas Barrier Properties of Carbon Films Synthesized by Atmospheric Pressure Glow Plasma [J]. Surface and CoatingsTechnology, 2006, 201(3-4): 913-917.
    43.微电子与元器件组.太阳能光伏产业发展战略研究[M].信息产业部电子科学技术委员会,2008.5.
    44.行业产业调研报告[J].中国电子材料行业产业协会.2007.5.
    45.北京七星华创电子股份有限公司微电子设备分公司,卧式热壁型P ECVD设备[J].中国集成电路, 2007.16(7):44-45
    46.王勃华.中国半导体设备业发展的契机[J].中国集成电路, 2006,15(3):23-26
    47. G.Y. Meng, H.Z. Song, H.B. Wang, et al. Progress in ion-transport inorganic membranes by novel chemical vapor deposition (CVD) techniques, Thin Solid Films, 2002,409(1): 105-111
    48. A. Matsuda, T. Kaga, H. Tanaka, et al. Glow-Discharge Deposition of a-Si:H from Pure Si2h6 and Pure Sih4,Jpn.J.Appl.Phys.,1983,22:L115-L117
    49. A.A.Howling,J.-L.Dorier,Ch.Hollenstein, et al. Frequency Effect in Silane Plasmas Enhanced Chemical Vapor Deposition, J.Vac.Sci.Technol.1992,10(4):1080-1085
    50. H. Keppner, J. Meier, P.Torres, et al. Microcrystalline Silicon and Micromorph Tandem Solar Cells. Appl. Phys. A:Mater. Sci. Process.1999,69(2):69
    51. L.Guo, M.Kondo, M.Fukawa, Etal. High Rate Deposition of Microcrystalline Silicon Using Conventional Plasma Enhance Chemical Vapor Deposition, Jpn. J. Appl. Phys. 1998, 37:L1116-L1118
    52. J. K. Rath, R. H. J. Franken, A. Gorgijn, et al. Growth Mechanism of Microcrystalline Silicon at High Pressure Conditions, J. Non-Cryst. Solids, 2004, 338-340(15): 56-60.
    53. M. Heintze, R. Zedlitz, .H. Bauer. Analysis of High-Rate a-Si:H Deposition in a VHF Plasma, J. Phys. D: Appl. Phys. 1993, 26:1781-1786
    54.宋鹏,陆建生,周洁等.影响金属薄膜沉积初期因素的有限单元法模拟.材料科学与工艺, 2007, 15(2): 290-293
    55.王恩哥.薄膜生长中的表面动力学.物理学进展, 2003,(1):1-61,
    56.郑小平,张佩峰,范多旺.扩散理论对RLA模型中交换作用的研究.物理学报,2008(1):425-429
    57. Meixner M, Kunert R, Scholl E. Control of strain-mediated growth kinetics of self-assembled semiconductor quantum dots. Phys Rev B,2003,67(19):195301
    58. A. F. Bower, E. Chason, L. B. Freund, et al. Self-organization in strained heteroepitaxial nanostructures: multi-scale modeling, simulation and experiment. NSF Nanoscale Science and Engineering Grantees Conference, 2003, Dec 16-18.
    59. E. Pleuler, C. Wild, et al, The CAP-reactor, a novel microwave CVD system for diamond deposition, Diamond and Related Materials,2002, (11): 467-471
    60. Olivier Leroy, Gérard Gousset, Luís Lemos Alves, et al. Two-dimensional modeling of SiH4-H2 radio-frequency discharges for a-Si:H deposition. Plasma Sources Science and Technology, 1998, 3(7): 348–358
    61.刘学建,金承钰,黄智勇等.工艺因素对低压化学气相沉积氮化硅薄膜的影响.硅酸盐学报, 2003,31(10):986-990
    62.王庆章,赵庚申,许盛之等.薄膜工艺中的系统仿真研究.南开大学学报(自然科学版),2006,39(6):45-48.
    63. You-Jae Kim, Jin-Hyo Boo, Byungyou Hong, et al. Effects of showerhead shapes on the flowfields in a RF-PECVD reactor. Surface & Coatings Technology, 2005,193(1-3): 88– 93.
    64.胡贵华,朱文华,俞涛等. PECVD热流场数值模拟的可视化研究系统仿真学报,2008,20(21):5885-5889
    65.葛洪,张晓丹,岳强等.大面积VHF-PECVD用多点馈入平行板电极馈入点优化的数值研究真空科学与技术学报,2008,28(4):281-285
    66. Hong S., May G., Park D. Neural Network Modeling of Reactive Ion Etch Using Optical Emission Spectroscopy Data. IEEE Trans. Semi. Manufac. 2003,16(4): 598-608
    67. Byungwhan Kim, Dukwoo Lee, Seung Soo Han. Prediction of Plasma Enhanced Deposition Process Using GA-Optimized GRNN. Advances in Neural Networks, ISNN 2006(2): 1020-1027
    68.张勤俭,吴春丽,李敏等.人工神经网络—遗传算法优化激光—等离子体化学气相沉积Si3N4薄膜制备工艺.陶瓷学报,2002,23(2):116-118
    69. G. J. Nienhuis, Ph. D. Thesis. Universiteit Utrecht Utrecht the Netherlands [C]. 1998. 36(1): 2006, 3-49.
    70. T. L. Pollock, H. S. Sandhu, A. Jodhan and O. P. Photochemistry of silicon compounds. IV. Mercury photosensitization of disilane [J]. J. Am. Chem. Soc. 1973, 95(4):1017-1024.
    71. A. P. Hickman. Approximate scaling formula for ion–ion mutual neutralization rates [J]. J. Chem. Phys. 1979, 70: 4872.
    72.郝江波. PECVD法制备氢化非晶硅薄膜及其金属诱导晶化研究:(硕士学位论文).武汉理工大学, 2007
    73. J. Perrin, O. Leroy, M. C. Bordage, Cross-Sections, Rate Constants and Transport Coefficients in Silane Plasma Chemistry. Contributions to Plasma Physics [M]. 36(1):2006,3-49.
    74. R. Austin, F. W. Lampe. Rate constants for the reactions of hydrogen atoms with some silanes and germanes. J. Phys. Chem. 1997, 81(12): 1134-1138.
    75. T. L. Pollock, H. S. Sandhu, A. Jodhan, O. P. Strausz, Photochemistry of silicon compounds. IV. Mercury photosensitization of disilane. J. Am. Chem. Soc. 1973, 95(4):1017-1024.
    76. P. Hickman. Approximate scaling formula for ion–ion mutual neutralization rates. J. Chem. Phys. 1979,70: 4872.
    77. N. Itabashi, K. Kato, N. Nishiwaki, T. Goto, C. Yamada, and E. Hirota. Measurement of the SiH3 Radical Density in Silane Plasma using Infrared Diode Laser Absorption Spectroscopy. Jpn. J. Appl.Phys. 1988(27):L1565-L1567
    78. Arving Langmuir, I., 1928, Proceedings of the National Academy of Sciences of the United States of America, 14, 627. NASA ADS DOI:10.1073/pnas.14.8.627
    79. Allen Taflove, Susan C. Hagness.Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed..Artech House Publishers.2005, ISBN 1-58053-832-0
    80.沈峰. PECVD法制备P型非晶硅薄膜及多晶硅薄膜: (硕士学位论文).武汉理工大学, 2008
    81. T. M. Btuton, N. B. Mason, S. Roberts, et al. Towards 20% efficient silicon solar cells manufactured at 60MWp per annum. In: 3rd World Conference on Photovoltaic Energy. Genevese, 2000,111
    82. Goetzberger, C. Hebling. Photovoltaic materials, past, present, future. Solar Energy Materials & Solar Cells, 2000, 62:1
    83. Hitoshi Sakata, Takuo Nakai, Toshiaki Baba, et al. 20.7% highest efficiency large area(100.5cm2)HITTM cell. In:28th IEEE Photovotaic Specialists Conference, 2000: 7
    84. Makoto Tanaka, Shingo Okamoto, Sadaji Tsuge, et al. Development of HIT solar cells with more than 21% aonversion efficiency and commercialization of highest performance HIT modules.In:WCPEC-3abstracts for the technical program. Japan: May 2003:55
    85. Wilfried G.J.H.M. van Sark. Methods of Deposition of Hydrogenated Amorphous Silicon for Device Applications. Debye Institute, Utrecht University, P.O. Box 80000, NL-3508 TA Utrecht, the Netherlands.
    86.宋雪梅.化学气相沉积硅基薄膜的性能及机理研究:硕士学位论文.北京工业大学,2003,4
    87.周顺,秦文罡,叶林,刘卫国.非晶硅薄膜的沉积速率研究.真空, 2008, 45 (3):48-50
    88.王文静.用于晶体硅太阳电池生产的PECVD技术进展. 2009, 6, 12, http://www.newenergy.org.cn/html/0096/6120927939.Html.
    89.等离子体增强化学气相沉积( PECVD )技术基础. 2009, 4, 26, http://www.chvacuum.com/application/film/04952.html
    90.黄绍江,谢红希,侯惠君,戴达煌.等离子体化学气相沉积的布气装置之设计.广东有色金属学报,2002,12(1):21-25
    91. Daniel C. Guerin. The deposition of inorganic thin films on polymer substrates by plasma-enhanced chemical vapor deposition. University of Delaware, Ph.D. Dissertation, 2001.
    92. Dong Ni. Feedback control of film composition and microstructure in high-k thin film growth. University of California, Ph.D. Dissertation, 2005.
    93. Rajesh Kumar Garg. Numerical simulation and emission diagnostics of the gas-phase growth environment during carbon nanotube synthesis by plasma-enhanced chemical vapor deposition. Purdue University, Ph.D. Dissertation, 2006, 11.
    94. Lihong Teng. Nanocrystalline and amorphous silicon thin film transistors deposited by microwave plasma electron cyclotron resonance chemical vapor deposition:material analysis, device fabrication and characterization. State University of New York, Ph.D. Dissertation, 2003, 2.
    95. Wenhui Du. Study of P-Type and intrinsic materials for amorphous silicon based solar cells. University of Teledo, the United States, Ph.D. Dissertation, 2006, 5.
    96. Erik Verne Johnson. Hydrogenated microcrystalline silicon thin film growth in the dc saddle filed PECVD system. University of Toronto, Ph.D. Dissertation, 2006.
    97.李青年.薄膜制品设计生产加工新工艺与应用技术实务全书.银声音像出版社,ISBN 7-88362-568-8,2004,4.
    98. Geprge T. Dalakos. Growth and characterization of amorphous hydrogenated silicon processed at low temperatures. Rensselaer Polytechnic Institute, New York, Ph.D. Dissertation, 2004, 1.
    99. Andre Santarosa Ferlauto. Phase Diagrams for Guiding Silicon Thin Film Deposition Photovoltaics Applications as Derived by Real Time Spectroscopic Ellipsometry. Pennsylvania State University, Ph.D. Dissertation, 2001,12
    100.Yong Liu. High Growth Rate Deposition of Hydrogenated Amorphous Silicon-Germanium Films and Devices Using ECR-PECVD. Iowa State University, 2002.
    101.Kamal Kumar Muthukrishnan. Structural and Electronic Properties of Nanocrystalline Silicon Thin Film Solar Cells Fabricated by Hot Wire and ECR-Plasma CVD Techniques. Iowa State University, 2007.
    102.Theodoropoulos, T.J. Mountaziaris, H.K. Moffat, J. Han. Design of Gas Inlets for the Growth of Gallium Nitride by metalorganic Vapor Epitaxy [J]. Journal of Crystal Growth, 2000, 217: 65-81.
    103.W. E Spear, P. G. LeComber, Solid State Commun.,17,1975,1193:23
    104.T. Fuyuki, K. Y. Du, J. Appl. Phys. ,64,1988,2380:12
    105.W. T. Cheng, H. C. Li, C. N. Huang. Simulation and optimization of silicon thermal CVD through CFD integrating Taguchi method.Chemial ehgineering journal 2008,(137):603-613
    106.Xiaojin Wei, Yogendra Joshi. Experimental and numerical study of sidewall profile effects on flow and heat transfer inside microchannels. International Journal of Heat and Mass Transfer, 2007, (50):2640-4651.
    107.A. Soum-Glaude, L. Thomas, A. Dollet, P. Segur, M. C. Bordage. Argon / tetramethysilane PECVD: From process diagnostic and modeling to a-Si:C:H hardcoating composition. Diamond and Related Materials, 2007(16):1259-1263.
    108.达道安.真空设计手册.北京:国防工业出版社, 2004,7.
    109.黄绍江,谢洪希,侯惠君,戴达煌.等离子化学气相沉积的布气装置之设计.广东有色金属学报,2002,12(1):21-25.
    110.Kadinski L, Merai V, Parekh A. Computational analysis of GaN/InGaN deposition in MOCVD vertical rotating disk reactors. Journal of Crystal Growth, 2004, 261: 175-181
    111.杨青真,王红梅,张银波,呼浩.液体火箭发动机氧腔流动分析及均流板设计研究.宇航学报,2005,26(6): 690- 701
    112.刘奕,陈海昕,符松. GaN-MOCVD设备反应室流场的CFD数值仿真[J].半导体学报,2004,25(12):1639-1646
    113.杨云柯,高立华,陈海昕,符松.喷淋式GaN-MOCVD反应室的CFD数值仿真及优化.工程力学,2007,24(9):173- 178
    114.徐谦,左然,张红.反向流动垂直喷淋式MOCVD反应器设计与数值模拟.人工晶体学报,2005,34(6):1059-1064
    115.左然,张红,刘祥林.行星式化学气相沉积反应器内对流蜗旋的数值模拟.工程热物理学报,2005,26(4):671-673
    116.A.S.格罗夫.半导体器件物理与工艺.北京:科学出版社,1976.3:8-17
    117.H Caquineau1,I Enache1,N Gherardi1,N Naud′e1,and F Massines. Influence of gas flow dynamics on discharge stability and on the uniformity of atmospheric pressure PECVD thin film. Journal of Physics D: Applied Physics, 2009, 42:1-7
    118.Xu Jun,Ma Tengcai,Yu Shiji,et al.Deposition of carbon nitride films by plasma enhanced DC magnetron sputtering using twinned mierowave ECR plasma source. J Korean Vac Sci,2000,9(51):95-101.
    119.Ito T,Watanabe T,Irie M,Nakamura J,Ierali T. Electron emissions from CVD diamond surfaces. Diamond and Related Materials,2003,12: 434-441
    120.Kelly P J,Arnell R D. Magnetron Sputtering: areview of recent developments and application. Vacuum,2000,56:159-172.
    121.Choy K L. Chemical vapour deposion of coatings. Process in Materials Science,2003,48:57-170.
    122.Joehen M S,Suzanne R,Wi11laom D S,et al. Reeent developments in plasma assisted physical vapour deposition. J. Phys. D: Appl. Phys,2000,33:173-186
    123.Mattox D M.Ion plating: past,present and future. Surf. Coat. Technol.,2000,133:517
    124.Mattox D M. The foundations of vacuum coating technology. New York: Noyes Publications,2003.
    125.Wu X C,Cai R Q,Yan P X,et al. SiCN thin film prepared at room temperature by R. F. reaetive supptering. Appl Surf Sci,,2002,185:262-266.
    126.Tsv. K. Popov,Dimitrova M.,Dias F. M. Determination of the electron density in current-less argon plasma using Langmuir probe measurements. Vacuum,2004,76:417-420
    127.Yang J,Bei J Z,Wang S G. Improving cell affinity of poly (D,L-lactide) films modified by anhydrous ammonia Plasma treatment. Polymers for Advanced Technologies,2002,13:220-226.
    128.S. Matsumoto, Y. Sato,M. Kamo, N. Setaka, Jpn. J. Appl. Phys. 1982,(21): 186
    129.H. Yasuo, K.Shiro, K.Ken, J. Crystal Growth, 1993.(128):369
    130.Sohal M S, Howell J R. Determination of plate temperature in case of combined conduction, convection and radiation heat exchange. Int. J. Heat Mass Transfer, 1973,16:2055

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700