预处理对TEMPO氧化体系的促进及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉纤维细胞壁的纤维素含量高,结晶度高,不含木素等其它成分,表面吸附的类脂、色素等杂质也很容易除去,因此常常将棉纤维作为天然纤维素材料研究纤维素的化学结构和各方面化学性能。但是,棉纤维的高结晶度限制了其利用价值,因此在进行反应之前,通常要进行溶胀或活化预处理。2,2,6,6-四甲基哌啶-1-氧化物自由基(TEMPO),具有弱氧化性,在含TEMPO的共氧化剂体系的存在下对伯羟基具有良好的选择性,反应条件比较缓和,反应过程也较简单。研究工作以棉纤维为原料,TEMPO/NaClO/NaBr氧化体系为处理方法,首先采用预处理体系(NaOH/水体系;NaOH/硫脲/尿素;PFI磨浆)对棉纤维进行预处理,以提高后续TEMPO氧化体系对棉纤维氧化的促进作用。其次以Olympus BH-2型多功能显微镜、扫描电镜(SEM)、红外光谱分析(FTIR)、X-射线衍射分析(XRD)、差热扫描量热分析(DSC)和热重分析(TG)为主要分析手段,对TEMPO氧化棉纤维的工艺条件进行了机理分析,重点分析了氧化产物受氧化工艺条件如氧化剂用量,反应时间,反应温度以及pH值等因素的影响。并依据氧化反应在棉纤维表面导入的羧基量,研究了表面羧基含量对纸浆干,湿抗张强度的影响。最后对研究的结果进行动力学分析,求出影响氧化反应速率的关键因素,深入了解该氧化体系的作用机制,为后续的产品应用(如膜改性、造纸增强剂、纳米纤维素)提供参考依据。研究结果如下:
     采用NaOH/水体系、NaOH/硫脲/尿素体系、PFI磨以及先PFI磨后分别采用NaOH/水体系、NaOH/硫脲/尿素体系这四种方法来对棉纤维进行预处理,然后再进行TEMPO氧化体系进行氧化,均能够加快TEMPO氧化反应速率,增加羧基生成量。NaOH/水体系中NaOH浓度为10%时、NaOH/硫脲/尿素体系中纤维质量分数为6%时,对氧化反应速率促进最为明显;PFI磨预处理对氧化反应速率促进作用较小;先PFI磨后分别采用NaOH/水体系、NaOH/硫脲/尿素体系对氧化反应速率的促进也很明显,棉纤维的反应性得到提高。通过几种预处理方法发现当磨浆转速为3万转时,随后采用纤维质量分数为6%的NaOH/硫脲/尿素进行处理,此条件是纤维较为理想的预处理体系。
     通过研究氧化剂NaCIO用量,反应时间,反应温度,pH值等因素对获得特定纤维羧基含量和纸浆纤维的制备工艺条件发现,较适宜的TEMPO氧化工艺条件是:NaCIO用量小于3mmol/g,反应时间控制在1h以内,pH为10.5,温度为室温25℃。
     在纤维表面导入的羧基对浆料手抄片的干、湿抗张强度的影响得出,提高干抗张强度的工艺条件为:NaCIO用量小于3mmol/g,温度为25℃,此时获取的羧基量为0.562mmol/g,干抗张强度为136.07N·m/g,比原纤维的90.35N·m/g提高了50.6%;提高湿抗张强度的工艺条件为:NaCIO用量小于lmmol/g,温度为低于室温25℃,原因是低温反应活性较低,将醛基转换为羧基的速率降低,更有利于羟醛形成半缩醛结构,此时湿抗张强度为12.55N·m/g,比原纤维的6.03N·m/g提高了2倍多。反应时间和pH同上。
     光学显微镜测定经过TEMPO氧化体系处理后纤维的形态特征图并没有发生明显的变化,随着氧化剂NaClO用量的增大,羧基的引入增加了纤维的水溶性,致使部分纤维被转换成水溶性组分。扫描电镜(SEM)图可以在纤维表面附近可观察到大量的细小纤维,并可见部分纤维壁上发生明显的分丝帚化现象。深度氧化后可以清楚地看到纤维细胞壁表面异常光滑。X-射线衍射曲线图(XRD)可知棉纤维经TEMPO选择性氧化处理后其晶体类型无变化仍为纤维素Ⅰ晶体,保持晶区与非晶区两相共存的状态,且曲线中各X衍射峰相对应的衍射角2e变化不大,均为纤维素Ⅰ的特征衍射峰。红外光谱分析(FTIR)表明,经TEMPO氧化后的棉纤维红外图谱在1740cm-1左右处出现了新的特征吸收峰,此处即为非共轭羰基或羧基C=O伸缩振动峰,由此说明棉纤维大分子链中已经生成了新的活性基团。聚合度的变化表明,TEMPO氧化体系选择性氧化过程中,由于纤维素的氧化降解反应使纤维素分子链断裂,纤维被剥离、溶失,导致纤维产生重量损失,是由于在pH 10-11时TEMPO氧化体系在反应过程中所形成的·OH引起β消除反应,其反应非常迅速,造成聚合度下降,而聚合度下降是引起纤维重量损失的直接原因。差热扫描量热分析(DSC)和热重分析(TG)的研究结果表明,棉纤维经TEMPO选择性氧化处理后,纤维吸热分解温度和热失重温度都往低温方向偏移,表明随着反应条件的加深,棉纤维的热稳定性逐渐在降低,但是幅度并不是非常剧烈,同时最大热失重速率温度也下降,但是几乎都在350℃左右,并没有太大的变化趋势,这两点和X射线衍射结果相类似,氧化反应对纤维结晶度的影响并不是很大。
     由一级反应建立的动力学方程求得了不同条件下TEMPO氧化棉纤维的反应动力学常数,并通过温度的曲线求得了该氧化反应的活化能和指前因子。棉纤维的特殊构造使得这一反应动力学过程可用关于氧化基质的两个一级反应动力学来描述,即纤维素初生壁区和次生壁区的动力学过程。在一定浓度范围内,初生壁区的氧化反应速率与TEMPO的浓度和NaBr的浓度成正比,但是当NaBr的浓度大于1.0mmol/gi[绝干浆)后,氧化反应速率随着NaBr用量的增加而稍有下降。次生壁区的氧化反应速率几乎不随催化剂的用量变化而变化。pH值对氧化反应速率也有较大影响,就氧化速率而言,pH最佳控制在10-11之间较好。温度对氧化反应速率常数的影响可很好地用Arrhenius方程来描述,由此求得的表观活化能为56.66kJ/mol,指前因子A为1.84×107min-1。
     以深度氧化后的棉纤维为原料,根据氧化后纤维形态特殊将其作为一种绿色的化学品加入到纸浆纤维中,随着纤维添加量(5%-25%)的增加,纸张的干,湿抗张强度逐渐提高;将改性后的纤维材料涂覆在微滤膜的表面,随着纤维添加量的增加(0.1g-0.5g),微滤膜的截留率提高到25.10%,但是纯水通过量下降幅度明显;将改性后的纤维作为添加物跟高打浆度的纤维复合抄造成滤纸,随着纤维添加量的增加(0.1g-0.5g),抄造成的滤纸截留率从25.36%提高到33.28%,纯水通过量不仅下降明显,而且比涂覆在微滤膜表面的水通量更低。
The cotton cell wall contents of high cellulose and crystallinity index. It contains no lignin or surface-adsorbed lipids, pigments and other impurities can be easily removed. For these reasons cotton fiber is often used as a natural cellulosic fiber material to study the structure of cellulose and various chemical properties. However, pretreatment should be used for its high crystalline.2,2,6,6-tetramethyl piperidine-1-oxyl radical (TEMPO), having a weak oxidizing ability, has a good selectivity to primary hydroxyl oxidation for polysaccharides. The reaction conditions are moderate and the reaction process is relatively simple. In this study, the cotton fiber is used as experimental material and TEMPO/NaBr/NaClO system is adopted as process method. In order to improve the performance, cotton fiber is treated by NaOH/water, NaOH/thiourea/urea and PFI refining to improve TEMPO oxidation first. Sequently, Light Microscope, SEM, FTIR, XRD, DSC and TG technology are employed to analyze the mechanism of conditions in the TEMPO oxidation cotton fiber. The influences of NaClO dosage, reaction time, reaction temperature and pH value are discussed in detail. The effect of surface carboxyl groups on paper's dry or wet tensile strength have been researched according to the carboxyl groups introduced on cotton fiber surfaces by TEMPO-mediated oxidation. The key factor of oxidation reaction rate are calculated and the mechanism of oxidation reaction could be understood finally by performing the results of kinetic analysis which offers a reference to subsequent applications such as membrane modification, paper reinforcing agent, nano-cellulose.
     The research results were shown as the following:
     The pretreatment with NaOH/water, NaOH/thiourea/urea and PFI refining were performed before TEMPO selective oxidation could increase the oxidation rate and improve the carboxyl content. The pretreatment facilitates the oxidation rate obviously when the NaOH concentration was 10% in NaOH/water and the fiber consistency was 6% in NaOH/thiourea/urea, while PFI refining only had a weak improvement. With 30000 rpm grinding speed and 6 fiber consistency of in NaOH/thiourea/urea, this pretreatment facilitates the oxidation rate most and improves the reactivity of the cotton fibers.
     By studying the effect of NaClO dosage reaction time, reaction temperature and pH value on the specific carboxyl group content of cotton faiber and Pulp fiber production process conditions, moderate TEMPO oxidiation condition is:NaCIO dosage less than 3mmol/g, reaction time within Ih, pH value at 10.5 and reaction temperature at 25℃.
     The impact of introduced carboxyl groups on surface of cotton fiber on paper's dry or wet tensile strength was proposed. Dry tensile strength was 136.07 N·m/g increased 50.6% compared to original fiber while fiber was treated at 25℃and NaClO dosage was less than 3mmol/g obtained 0.562 mmol/g carboxyl. However, NaClO dosage should be less than lmmol/g and reaction temperature was lower than 25℃in order to increase wet tensile strength for the hemiacetal structure was formed easily at low temperature when converte rate of aldehyde group to carboxyl group was reduced. Under this condition, the wet tensile strength was 12.55N·m/g twice more than the original fiber wet tensile strength.
     The morphology of cotton fiber was obviously unchanged during the TEMPO oxidation according to Light Microscope, The fiber was partly water-soluble with the increasing dosage of NaClO for the carboxyl group increased the water-solublity of fibei. lots of tiny fiber near the fiber surface and occurred points silk in fiber wall can be observed obviously from the SEM figure, the removal phenomenon in fiber cell layer can be clearly seen by depth oxidation left the abnormal smooth fiber on surface. The X-ray diffraction patterns of the cotton fibers before and after the TEMPO-mediated oxidation was barely changed, the fiber always have its cellulose I crystal morphology and keep the state of two-phase coexistence. The 20 diffraction angle of cotton fiber was nearly unchanged through the oxidation. FTIR indicated that the new absorption peaks appearanced in 1740cm-1 after TEMPO oxidiation was the conjugate carbonyl or C=O streching vibration peaks, it can be illustrated that a new active groups generated on macromolecular fiber chain. The change polymerization degree showed that rupture of cellulose molecules chain, degradation, dismantling, dissolve loss weight loss was caused during TEMPO selective oxidation process. It was possible to form a hydroxyl radical from the hydroxylamine and NaBrO followed byβelimination participated in depolymerization under alkaline conditions, the reaction was rapid and minimised the DP, then led to the obvious decrease of the fiber molecular weight. DSC and TG research results showed that the endothermic decomposition temperature and thermogravimetric temperature offset to low temperature direction after TEMPO selective oxidation process cotton fiber. The thermal stability of cotton fiber was gradually reducing with the depth reaction conditions, but the range was not severe and maximum thermal conversion rate also declined reached the temperature at 350℃almost all around. This two points are similar to X-ray diffraction results, the oxidiation reaction was not influence crystallinity of fibers greatly.
     It was revealed that the oxidation reaction of the cotton fibers by TEMPO/NaBr/NaClO system can be approximately described as two pseudo-first-order reaction kinetics which based on the cellulose structures, namely the kinetic process of the primary wall area and the secondary wall area. In the concentration range used in this study, the rate constant k was directly proportional to the concentration of TEMPO. As to NaBr, the rate constant was proportional to the concentration in a relatively lower range while it tended to level off at higher concentration, but the oxidation reaction rate increased with concentration when the concentration was above 1.0mmol/g. The pH value had a great impact on oxidation rate; the optimum pH was controlled from 10 to 11. The effect of temperature on the rate constant could be well described by the Arrhenius equation, the apparent activation energy and pre-exponential factor measured was about 56.66kJ/mol and 1.84×107min-1.
     With the increase of fiber(5%-25%), dry, wet paper tensile strength improved gradually; then coat modified fiber materials on the microfiltration membrane surface, the retention ration of microfiltration membrane will reach up to 25.10% with the increasing of addition amount of fiber(0.1g~0.5g), but pure water flow declines significantly. When the modified fiber was added to high beating degree fiber to manufacture filter parer, the retention ration of filter paper increase from 25.36% to 33.28%, not only the pure water flux decreased significantly, but aslo has more lower water flow than microfiltration membrane which was coated by Microcrystalline fiber with the increase of fiber(0.1g-0.5g).
引文
[1]吴武汉,孟庆田,林治宪等.初论‘吨纸田”的生产模式[J].天津造纸,1996,(3):10-14
    [2]Yalpanl, M. A survey of recent advances in selective chemical and enzymic polysaccharide modifications. Tetrahedron,1985,41:2957-3020
    [3]Varma, A J, Chavan V. B. Some preliminary studies on polyelectrolyte and rheological properties of sodium 2,3-dicarboxy cellulose, Carbohydrate Polymers,1995,27:63-67
    [4]Painter T J. New glucuronoglucans obtained by oxidation of amylase at position 6, Carbohydrate Research,1985,140:61-68
    [5]De Nooy A E J, Besemer A C, Bekkum H V. On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols[J]. Synthesis,1996(10):! 153-1176
    [6]Calderon F. Synlett, New Achievements in TEMPO-Mediated Oxidations. Synlett, Accounts and Rapid Communication in Synthetic Organic Chemistry.2006,17 (4):657-658
    [7]Caron S, Dugger RW, Ripin DHB, et al. Large-Scale Oxidations in the Pharmaceutical Industry. Chem. Rev.,2006,106:2943-2989
    [8]Bragd P L, van BekkumH, Besemer AC. TEMPO-mediated oxidation of polysaccharides:survey of methods and applications. Topics Catal.,2004,27:49-66
    [9]马旭彬,陈有庆.棉秆木素化学结构特性[J].天津造纸,1989(4):11-18
    [10]王秀娟,池杏薇.国内化纤棉浆粕的生产现状及展[J].江苏纺织,2008(04):17-20
    [11]张晓清,刘泽华,双金铃等.棉浆纤维表面的原子力显微镜表征[J].纸和造纸,2008,Vo127,(01):65-66
    [12]潘耀祖,徐晓虎.锅炉渣灰在棉浆粕黑液预处理中的应用[J].给水排水,2009(09):63-64
    [13]周彦魁,裴继诚.聚木糖酶预处理常压低温蒸漂棉浆工艺的应用试验[J].天津造纸,2010(01):6-9
    [14]朱清时.化学的绿绿色化和绿色植物的化学转化.世界科技研究与发展,1998,20(2):12-14
    [15]施良和,胡汉杰编.高分子科学的今天和明天(第一版).化学工业出版社(北京),1994:104-108
    [16]J F Kennedy and E H M Melo,Bioconversions of cellulose-a major source of materials for the biochemical industry,British Polym J,1990,23:193-198
    [17]陈耀邦.走向世纪的中国林业可持续发展.自然辩证法研究,1998,14(3):1-4
    [18]聂勋载.常用非木材纤维碱法制浆实用手册[M].北京:中国轻工业出版社,1993,19-23
    [19]陈家楠.纤维素化学的现状与发展趋势.纤维素科学与技术,1995,1-10
    [20]X.D. Liu, N. Nishi, S. Tokura, N. Sakairi. Chitosan coated cotton fiber:preparation and physical properties[J]. Carbohydrate Polymers,2001, (44):233-238
    [21]Premamay Ghosh, Debaprasad Dev. Graft copolymerization of mixtures of acrylamide and methyl methacrylate on dialdehyde cellulose(DAC) from cotton in a limited aqueous system[J]. European Polymer Journal,1996,32(2):165-171
    [22]Dunlap, C and Chiang, G. C. Utilization and Recycle of Agriculture Wastes and Residues, ed. Shuter, M.L CRC Press Inc Boca Raton, Floridu. USA, P.19,1980
    [23]汪维云,朱金华.纤维素科学及纤维素酶的研究进展[J].江苏理工大学学报,1998,5,19(3):20-28
    [24]王建平.纤维素酶的研究进展及趋向[J].舟山师专学报(自然科学版),1995,3:42-47
    [25]Polarz, S., Smarsly, B., Schattka, J.H., Hierachical porous carbon structures from cellulose acetate fibers, Chem.Mater.,2002,14,2940-2946
    [26]Sprague, B.S., Noether, H.D., The relation of fine structure to mechanical properties of stretched, saponified acetate fibers,Text.Res.j.,1961,31,858-862
    [27]Yan B X. Domain structure and conformation of a cellobiohydrolase from Trichoder map seudokonjing ⅱ s-38[J]. Journal of Protein Chemistry,1997,16:59-63
    [28]高培基,曲音波,汪天虹等.微生物降解纤维素机制的分子生物学研究进展[J].纤维素科学与技术,1995,3(2):1-19
    [29]阎伯旭,齐飞,张颖舒等.纤维素酶分子结构和功能研究进展[J].生物化学与生物物理进展,1999,26(3):233-235
    [30]K Okamura, Structure of cellulose, in wood and cellulosic chemistry, eds D N S Hon and N Shiraishi, New York,1991:89-112
    [31]C Y Liang, Infrared spectroscopy and physical properties of cellulose, in Instrumental analysis of cotton cellulose and modified cotton cellulose, R T O'Connor eds, Marcel Dekker, Inc, New York,1972:77-82
    [32]M Fujita and H Harada, Ultrastructure and formation of wood cell wall, in wood and cellulosic chemistry, eds. D N S Hon and N Shiraishi, New York,1991:3-58
    [33]王菊华主编.中国造纸原料纤维特性及显微图谱(第一版).中国轻工业出版社,1999:14-25
    [34]王禄山,高培基,时东霞,张玉忠.天然棉纤维表面超微结构及其变化的定量分析—用原子力显微镜测定超微结构的表面粗糙度[J].山东大学学报(理学版),2006,41(6):133-139
    [35]李翠珍等.纤维素的新溶剂体系[J].纤维素科学与技术,2002,10(4):60-65
    [36]吴翠玲,李新平,秦胜利,王建勇.新型有机纤维素溶剂NMMO的研究[J].兰州理工大学学报,2005,31(2):73-76
    [37]王荣荣,傅师申.纤维素新溶剂的溶解特性比较[J].纺织技术进展,2008,1:11-13
    [38]ROY C., BUDTOVA T., NAVARD P, BEDUE O. Structure of cellulose-soda solutions at low temperatures. Biomacromolecules,2001,2:687-693
    [39]Shuai Zhang, Fa Xue Li, Jian yong Yu, You-Lo Hsieh. Dissolution behaviour and solubility of cellulose in NaOH complex solution[J]. Carbohydrate Polymers,2010,81:668-674
    [40]S I Suvorova, V I Scharkov, Nauchn Tr. Leningrad Lesotekn Akad,1971,137:65-71
    [41]张俐娜,阮东,高山峻.溶解纤维素的硫脲碱水溶剂及制备再生纤维膜的方法:中国,00168162.3[p].2000-12-28
    [42]张俐娜,蔡杰,周金平.一种溶剂组合物及其制备方法和用途:中国,03128386.1[p].2003-7-25
    [43]金华进,顾利霞.一种溶解纤维素的溶剂及其制备方法和用途:中国,200510027217.2[p].2005-6-29
    [44]Huajin Gin, Chunxi Zha, Lixia Gu. Direct dissolution of collusion in NaOH/thiourea/urea aqueous solution[J]. Carbohydrate Research,2007(342):851-858
    [45]Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids[J]. Journal of the American Chemical Society,2002,124(18):4974-4975
    [46]G. Laus, G. Bentivoglio, H. Schottenberger, V. Kahlenberg, et al. Ionic Liquids:Current developments, potential and drawbacks for industrial applications[J]. Lenzinger Ber,2005,84:71-85
    [47]郑伟,程博闻,藏洪俊,牛海涛.离子液体法纺制纤维素纤维[C].高新技术产业化和可再生生物质资源化工、绿色生态化纤发展论坛.2007:516-521
    [48]Zhang H, Wu J, Zhang J, et al. 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid: A New and Powerful Nonderivatizing Solvent for Cellulose[J]. Macromolecules,2005,38:8272-8277
    [49]Birgit Kosan, Christoph Mchaels and Frank Meister. Dissolution and forming of cellulose with ionic liquids[J]. Cellulose,2007,9(online)
    [50]黄继才,大矢晴彦,根岸样一.醋酸纤维素衍生物反渗透膜对低分子量有机物分离特性研究.纤维素科学与技术,1993,1(4):36-44
    [51]Sivakumar M, Mohanasundaram A K, Mohan D, et al. Modification of cellulose acetate:Its characterization and application as an ultrafiltration membrane Journal of Applied Polymer Science, 1998,67(11):1939-1946
    [52]Fang J., Huang J C, Chen L K, et al. International Symposium on cellulose and lignocellulosice'96, Guangzhou, China,1996,82-83
    [53]陈玉放,谢来苏.植物纤维用于新技术领域.纸和造纸,1998,4:53-56
    [54]张中勤,宋清.球状再生纤维素离子交换剂的制备.离子交换与吸附,1998,14(1):23-30
    [55]于小斌,孙宗华,万国祥.磁性高分子微球的制备和应用研究进展[J].化学通报,1997,(1):1-6
    [56]Heinze T, Liebert T, unconventional methods in cellulose functionalization Progress in Polymer Science, 2001,26(9):1689-1762
    [57]Aoki N, Koganei K, Hchang H S, et al. Gas chromatographic-mass spectrometric study of reactions of halodeoxycelluloses with thiols in aqueous solutions. Carbohydrate Polymers,1995,27(1):13-21
    [58]Koschella A, Heinze T, Unconventional Cellulose products by fluorination of tosyl cellulose, Macromolecular Symposia,2003,197(1):243-254
    [59]Nakamura S, Amano M, Preparation of hydrazinodeoxy cellulose and carboxyalkyl hydrazinodeoxy celluloses and their adsorption behavior toward heavy metal ions Journal of Polymer Science Part A, Polymer Chemistry 1997,35 (16):3359-3363
    [60]Yin X C, Zhang L M, Li Z M, Studies on new ampholytic cellulose derivative as clay-hydration inhibitor in oil field drilling fluid, Journal of Applied Polymer Science,1998,70(5):921-926
    [61]杨超雄,吴锦远,杜光军.离子交换与吸附,1994,10(6):523-527
    [62]Capitani D, Mensitieri q Porro F, et al. NMR and calorimetric investigation of water in a super absorbing cross linked network based on cellulose derivatives Polymer,2003,44(21):6589-6598
    [63]Tyrone L V, Interaction of cellulose with other polymers:retrospective and prospective, Polymers for Advanced Technologies,1998,9(9):539-548
    [64]Allan S, Hoffman, P S, Stayton, V B, et al. Really smart bioconjugates of smart polymers and receptor proteins Journal of Biomedical Materials Research,2000,52(4):577-586
    [65]Yue Zhilian, John M. G Cowie. Preparation and chiroptical properties of a regioselectively ether with PEO side chains, Macromolecules,2002,35(17),6572-6577
    [66]Morooka T, Okamoto M, Yamada T, Periodate oxidation of cellulose by homogeneous reaction, Journal of Applied Polymer Science,1989,38(5):849-858
    [67]Rahn K, Heinze T H, New cellulosic polymers by subsequent modification of 2,3-dialdehyde cellulose, Cellulose Chemistry and Technology,1998,32(3-4),173-183
    [68]叶君.发光纤维素衍生物的研究.博士论文,华南理工大学,广州,1998
    [69]熊键,叶君,吴奏谦等.羧酸纤维素的制备及其抗凝血性能的研究.功能高分子学报,1997 10(4):559-563
    [70]熊犍,微波.超声波幅射F纤维素超分子结构及反应性能的变化.博士论文,华南理工大学,广州,1998
    [71]孙宾,武利顺,梁伯润.医用可吸收氧化纤维素及其氧化体系研究进展[J].中国纺织大学学报,2000,26(4):110-114
    [72]杨之礼,将听培,王庆瑞,邬国铭.纤维素与粘胶纤维(上册)[M].北京:纺织工业出版社,1981:164-175
    [73]武利顺,王庆瑞.纤维素的选择性氧化反应及其体系[J].人造纤维,2000,157(3):27-31
    [74]Janusz Jurczak, Dorota Gryko,et al.Effective and mild method for preparation of optically active 2-amino aldehydes via TEMPO oxidation[J]. Tetrahedron,1998, (54):6051-6056
    [75]Tatsuya Nakano, Takanobu Terada, et al. Chemoselective oxidation of the primary alcohol function of diols catalyzed by zirconocene complexes[J]. Synthesis,1986, (8):774-776
    [76]Emest L.Jackson, C.S.Hudson. Application of the cleavage type of oxidation by periodic acid to starch and cellulose[J]. Journal of the American Chemical Society,1937,(59):2049-2053
    [77]A.J. Varma, M.P. Kulkarni. Oxidation of cellulose under controlled conditions[J].Polymer Degradation and Stability,2002, (77):25-27
    [78]Fabiana Sussich, Attilio Cesaro. The Kinetics of periodate oxidation of carbohydrates:a calorimetric approach[J]. Carbohydrate Research,2000, (329):87-95
    [79]Stefano Tiziani, Fabiana Sussich, et al. The Kinetics of periodate oxidation of carbohydrates 2. Polymeric substrates[J]. Carbohydrate Research,2003, (338):1083-1095
    [80]Silvia Vicini, Elisabetta Princi, et al. Thermal analysis and characterisation of cellulose oxidised with sodium methaperiodate[J]. Thermochimica Acta,2004, (418):123-130
    [81]Ung-Jim Kim, Shigenori Kuga. Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives[J]. Thermochimica Acta,2001, (369):79-85
    [82]A.J. Varma, V.B. Chavan. A study of crystallinity changes in oxidised celluloses[J]. Polymer Degradation and Stability,1995, (49):245-250
    [83]Edward C Yackel, William O Kenyon. The oxidation of cellulose by nitrogen dioxide[J]. Journal of the American Chemical Society,1942, (64):121-127
    [84]Brasey, Marcel, et al. Uronic oxidation of cellulose. U S, Patent NO.4100341,1978-07-11
    [85]Terence J Painter.Preparation and periodate oxidation of C6-oxycellulose:conformational interpretation of hemiacetal stability[J]. Carbohydrate Research,1977, (55):95-103
    [86]Vijay Kumar, Tianrun Yang. HNO3/H3PO4-NaNO2 mediated oxidation of cellulose preparation and characterization of bioabsorbable oxidized celluloses in high yields and with different levels of oxidation[J]. Carbohydrate Polymers,2002, (48):403-412
    [87]Arjan E J de Nooy, Mario Pagliro, et al. Autocatalytic oxidation of primary hydroxyl functions in glucans with nitrogen oxides[J]. Carbohydrate Research,1997, (304):117-125
    [88]Mario Pagliro. Autocatalytic oxidations of primary hydroxyl groups of cellulose in phosphoric acid with halogen oxides[J]. Carbohydrate Research,1998, (308):311-320
    [89]Masayuki Hirota, Naoyuki Tamura, Tsuguyuki Saito, Akira Isogai. Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions[J]. Carbohydrate Ploymers,2009, (78):330-335
    [90]Takuya Isogai, Masahiro Yanagisawa, Akira Isogai. Degrees of polymerization(DP) and DP distribution of cellournic acids prepared from alkali-treated celluloses and ball-milled native celluloses by TEMPO-mediated oxidation[J]. Cellulose.2009, (16):117-127
    [91]Arjan E J de Nooy, Arie C Besemer, et al. Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans[J]. Carbohydrate Research,1995, (269):89-98
    [92]Petter L.Bragd, Arie C.Besemer,et al.TEMPO-derivatives as catalyst in the oxidation of primary alcohol groups in carbohydrates[J]. Journal of Molecular Catalysis,2001, (170):35-42
    [93]Izumi Shibata, Akira Isogai. Depolymerization of cellouronic acid during TEMPO mediated oxidation[J]. Cellulose,2003, (10):151-158
    [94]Zeist B V. Selective oxidation of cellulose. U S, Patent NO.6716976,2004-04-6
    [95]Piloty, O., Graf, E., Schwerin, B. during a novel reaction of t-nitrobutane with one equivalent of metallic sodium in glyme at room temperature. Dtsch, Chem. Ges.1901,34,1870
    [96]Davies N J, Flitsch S L. Selective oxidation of monosaccharide derivatives to uronic acids. Tetrahedron Lett,1993,34(11):1181-1184
    [97]Gyorgydeak Z, Thiem J. Synthesis of methyl (d-glycopyranosyl azide) urinates. Carbohydrate Research, 1995, 1,Vol(268):85-92
    [98]Pahn S Chang,John F Robyt.Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion[J]. Carbohydrate Chemistry,1996,15(7): 819-830
    [99]Fraschini, C., Vignon, M.R. Selective oxidation of primary alcohol groups of b-cyclodextrin mediated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO). Carbohydrate Research,2000,328,585-589
    [100]Y Kato, J Kaminaga, A Isogai, et al. TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan. Carbohyd. Polym.,2004,58 (4):421-426
    [101]T Saito, I Shibata, A Isogai et al. Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohyd. Polym.,2005,61 (4):414-419
    [102]Akira Isogai, Yumiko Kato. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation[J]. Cellulose,1998, (5):153-164
    [103]Kato, Y., Habu, N., Yamaguchi, J., Kobayashi, Y. N., Shibata, I., Isogai, A., & Samejima, M. Biodegradation of b-1,4-linked polyglucuronic acid (cellouronic acid). Cellulose,2002,9(1),75-81
    [104]Nooy, A. E. J., & Besemer, A. C. Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution, kinetics and mechanism. Tetrahedron,1995,51(29),8023-8032
    [105]Painter T J. Preparation and periodate oxidation of C-6-oxycellulose:conformational interpretation of hemiacetal stability. Carbohydrate Research,1977,55:95-103
    [106]Nevell,T P. Oxidation of cotton cellulose by nitrogen dioxide. Journal of Textile Institute,1951,42; T91-T129
    [107]Kitao T, IsogaiA,Onabe F. Chemical Modification of Pulp Fibers by TEMPO-Mediated Oxidation [J]. Nordic Pulp and Paper Research,1999,14 (4):279-284
    [108]Saito T, Isogai A. A Novel Method to Improve Wet Strength of Paper [J]. Tappi,2005,4 (3):3-8
    [109]Duarte A. P, Martins S, Abrantes C et al. Imp rovement of Bleached Kraft Pulp Properties by Cellulose Oxidation [J]. Paper,2006,67 (10):76-82
    [110]Dang Zheng, Zhang Jianguo, Arthur J. Ragauskas. Characterizing TEMPO-Mediated Oxidation of ECF Bleached Softwood Kraft Pulp s [J]. Carbohydrate Polymers.2007, (04):1-8
    [111]刘刚,韩卿,夏安金.TEMPO选择性催化氧化对纸浆成纸性能的影响.中华纸业,2008,07:50-53
    [112]Kamide K et al. Study on the solubility of cellulose in aqueous alkali solution by deuteration 1R and 13C NMR [J]. Polymer J,1984,16(1):857-863
    [113]Yamashiki T et al. Newclass of cellulose fiber spun from the novel solution of cellulose by wet spinning method [J]. Appl PolymSci,1992,44 (40):691-698
    [114]Chevalier et al. [P]. Method for manufactureing alveolate cellulosed products. US 6129867
    [115]何春菊,王庆瑞.纤维素纤维的生产新方法[J].中国纺织大学学报,1998,24(4):111-114
    [116]解芳,邵自强.天然纤维素纤维的溶解机理及纺丝技术发展[J].华北工学院学报,2002,23(2):119-122
    [117]G F Davidson. The dissolution of chemically modified cotton cellulose in alkaline solutions. Part Iln solutions of sodium hydroxide, particularly at temperatures below the normal Journal of the Textile Institute Transactions,1934,25:174-196
    [118]KUO Y.N., HONG J. Investigation of solubility of microcrystalline cellulose in aqueous NaOH. Polym. Adv. Technol,2005,16:425-428
    [119]Thomaides, J. S. Polysaccharide aldehydes prepared by oxidation method and used as strength additives in papermaking. US Patent, US 2003/6586588 B1
    [120]Thomaides, J. S. Use of amide or imide co-catalysts for nitroxide mediated oxidation. US Patent, US 2003/6540876 B1
    [121]Jie Cai, Lina Zhang. Rapid Dissolution of Cellulose in LiOH/Urea and NaOH/Urea Aqueous Solution[J]. Macromol. Biosci.2005,5,539-548
    [122]张俐娜,阮东,金惠明,等.一种溶解纤维素的溶剂及其用途.CN1235962C.2006.1
    [123]Lina Zhang, Dong Ruan, Shanjun Gao. Dissolution and regeneration of cellulose in NaOH/Thiourea aqueous solution[J]. J. Polym. Sci. Part B:Polym. PHYS.,2002,40(14),1521-1527
    [124]张俐娜,蔡杰.一种溶解纤维的氢氧化锂和尿素组合物溶剂及用途[P].中国:1546556A.2004-11
    [125]刘淑娟,于善普,张桂霞.氢氧化钠/尿素水溶液中纤维素均相接枝制备高吸水材料[J].弹性体,2003,13(5):32-34
    [126]王怀芳,朱平,张传杰.氢氧化钠/尿素/硫脲溶剂体系对纤维素溶解性能研究[J].合成纤维SFC,2008 N0.7:28-32
    [127]王海云,朱永年,储富祥等.溶解纤维素的溶剂体系研究进展[J].生物质化学工程,2006,(3):54-58
    [128]许东生.纤维素衍生物[M].北京:化学工业出版社,2001:2
    [129]SUN Run-cang, MOTT L, BOLTON J. Isolation and fractional characterization of ball-milled and enzyme lignins from oil palm trunk[J]. J Agric Food Chem,1998,46:718-723
    [130]SUN Xiao-feng, SUN Run-cang, PAUL F, et al. Extraction and characterization of original lignin and hemicelluloses from wheat straw[J]. J Agric Food Chem,2005,53:860-870
    [131]ZHAO Hai-bo, KWAK JH, WANG Yong, et al Effectsofcrystallinity on dilute acid hydrolysisofcellulose by cellulose ball-milling study[J]. Energy& Fuels,2006,20:807-811
    [132]Choukri Tahiri, Michel R Vignon. TEMPO-oxidation of cellulose:Synthesis and characterization of polyglucuronans[J]. Cellulose,2000,7(2):177-188
    [133]Kato Y, Matsuo R, IsogaiA. Oxidation Process of Water-Soluble Starch in TEMPO-Mediated System[J].Carbohydrate Polymers.2003,51:69-75
    [134]Saito, T., and Isogai, A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules,2004, 5(5):1983-1989
    [135]Shibata,I., Yanagisawa, M., Saito, T., and Isogai, A. SEC-MALS analysis of cellouronic acid prepared from regenerated cellulose by TEMPO-mediated oxidation. Cellulose,2006(13):73-78
    [136]胡惠仁,何秋实,梁哲等.阴离子聚丙烯酰胺提高纸张干强度的研究[J].中国造纸,1999,18(1):11
    [137]Engstrand P, Sjogren B, OlanderK, et al. Significance of carboxylic groups for the physical properties of mechanical pulp fibres[J]. Proc.Appita 6th SWPC,1991,1:75-80
    [138]Zhang Y, Sjogren B, Engstrand P, et al. Determination of charged groups inmechanicalpulp fibers and their influence on pulp properties [J]. Journal of Wood Chemistry andTechnology,1994,14(1):83-88
    [139]Scallan AM. The effect of acidic groups on the swelling of pulps:a review[J]. Tappi Journal,1983, 66(11):73-75
    [140]Lindstroem T, Carlsson G. The effect of carboxyl groups and their ionic form during drying on the hornification of cellulose fibers[J]. Svensk Papperstidning,1982,85(15):R146
    [141]Kitaoka T, Isogai A, Onabe F. Rosin sizing of pulps modified by TEMPO-mediated oxidation [J]. Nordic Pulp and Paper Research Journal,2000,15(3):177-182
    [142]Kitaoka T, Isogai A, Onabe F. Chemical modification ofpulp fibers byTEMPO-mediated oxidation [J]. Nordic Pulp& Paper Research Journal,1999,14(4):279-284
    [143]Dang Z, Elder T, Ragauskas A J. Influence of kraft pulping on carboxylate content of softwood kraft pulps[J]. Industrial and Engineering Chemistry Research,2006,45(13):4509-4516
    [144]Koljonen K. Mustranta A. Stenius P. Surface characterization of mechanical pulps by Polyelectrolyte adsorption[J]. Nordic Pulp&Paper,2004,19(4):495-502
    [145]Korpela A. Improving the strength of PGW Pine pulp by alkaline peroxide treatment[J]. Nordic Pulp&Paper Research Journal,2002,17(2):183-187
    [146]Law K., DaneaultC, Guimond R. Enhancement of TMP long fibres[J]. Journal of Pulp and Paper Science 2007.33(3):138-142
    [147]Le Roux J., Daneault D., Chabot B. Acidic Groups in TMP Oxidized Fibres by TEMPO to Improve Paper Strentgh Properties[J]. Pulp Paper Can.2006,107(4):39-41
    [148]K. N. Law, X. L. Song, C. Daneault. Influence of pulping conditions on the properties of recycled fibers[J]. Cellulose Chemistry and Technology,2006,40(5):335-343
    [149]Page, D.H. A theory for the tensile strength of paper. Tappi J.1969,52(4):674-680
    [150]Saito T, Isogai A. Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPOmediated oxidation [J].Colloids and Surfaces A:Physicochem. Eng. Aspects 289.2006,219-224
    [151]Tsuguyuki Saito, Satoshi Kimura, Yoshiharu Nishiyama, et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules,2007 (8),2485-2491
    [152]Dorris, G.M., Gray, D.G. The surface analysis of paper and wood fibers by ESCA, II:Surface Composition of Mechanical Pulps[J]. Cellulose Chemistry Technology.1978,12(9):721-734
    [153]V W Tripp and C M Conrad, X-ray diffraction, in Instrumental analysis of cotton cellulose and modified cotton cellulose, R T O'Connor eds, Marcel Dekker, Inc, New York,1972:339-377
    [154]Morterra C, Loww JD, IR studies of carbons-W, The pyrolysisofa phenol-formaldehyde resin, Carbon, 1985,23(5),525-530
    [155]Nelson M L, O'conner R T. Relation of certain infrared bands to cellulose crystal lattice type[J]. J Appl Poly Sci,1964,8(3):1311-1315
    [156]Fakin, D., Golob, V., Kleinschek, K. S., & Marechal, A. M. L. Sorption properties of flax fibers depending on pretreatment processes and their environmental impact. Textile Research Journal,2006,76, 448-454
    [157]Stana-Kleinschek, tana-Kleinschek, K., Strnad, S., & Ribitsch. V. Surface characterization and adsorption abilities of cellulose fibers. Polymer Engineering and Science,1999,39(8),1412-1424
    [158]马承荣,肖波,杨家宽等.生物质热解影响因素研究.环境生物技术,2005,5,10-13
    [159]徐明,程书娜,傅深渊.丛于不同添加剂条件下的竹材热解特性研究.竹子研究会刊,2007,26(1):42-45
    [160]崔洪友,张明,邢兆伍.水热条件下CO2催化棉纤维水解制糖过程动力学.化学工程[J],2008,36(6):34-37
    [161]张强,黄年华,徐有才.棉纤维的热降解动力学研究.纺织学报[J],2008,29(2):15-19
    [162]Bin Sun, Chunju Gu, Jinhong Ma, et al. Kinetic study on TEMPO-mediated selective oxidation of regenerated cellulose. Cellulose,2005, (12):59-66
    [163]Shuji Fujisawa, Takuya Isogai, Akira Isogai. Temperature and pH stability of cellouronic acid. Cellulose,2010,17(03):607-615
    [164]王从厚,吴鸣.国外膜工业发展概况[J].膜科学与技术,2002,(1):65-72
    [165]郭有智.中国膜工业发展战略研究[J].化工新材料,2002,(6):4-8
    [166]宫美乐,袁国梁.我国微孔滤膜研究现状与发展[J].膜科学与技术,2003,(4):186-189
    [167]刘培生,马晓明编著.多孔材料检测方法[A].北京:冶金工业出版社,2006
    [168]谷维梁,纪树兰,彭跃莲,刘忠洲.动态法制备复合膜的研究进展[J].膜科学与技术,2007,(2):85-89
    [169]杜炜,周小凡.纸质微滤膜的开发与研究,硕士论文,南京林业大学,南京,2010
    [170]Michel Bodzek, Ktrystyna Konieczny. Polyacrylonitrile and polyvinyl chloride ultrafiltration membranes in the treatment of anaphoretic emulsion paint. Journal of Membrane Science,1991, (61):131-156
    [171]高以垣,叶凌碧.膜分离技术基础[A].北京:科学出版社,1989,03:114-118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700