病毒壳工程的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物学、材料学、医学等学科的发展,病毒不再仅是传统意义上的病原微生物,而逐渐成为在新型材料的构建、载体投递、基因治疗、疫苗开发、生物检测、疾病诊断等方面有着广泛应用的重要生物工具。病毒具有纳米尺寸和结构高度对称等特点、还能大量在生物体内包装生产,能够适用于大规模的功能化修饰。然而目前为止还没有通用性的病毒修饰方法能够完全克服病毒在应用发展中所遇到的困难,例如在对病毒的操作过程中会造成意外感染、而且对病毒的大规模处理耗时很长且十分复杂,此外病毒在生物应用中常受到细胞特异性的限制并且容易在生物体防御机制作用下失活等。
     因此,我们认为有必要提出一种新的病毒修饰的策略,为其今后生物学和材料学中的应用提供新方法。仿生生物矿化是利用无机材料对有机生命体进行化学生物学修饰的一种理想方法,据此我们提出病毒壳工程概念,通过自组装和生物矿化的方法对病毒进行功能化修饰,构建出具有核壳结构的病毒-材料新型复合体,并结合应用实例对该复合体的理化性质和生物学特性进行了研究,为病毒在投递载体、基因治疗和疫苗开发等方面的应用提供了可行性参考。
     本文主要内容及学术贡献如下:
     1以人类黄热病毒疫苗株YF17D为模板,采用层层自主装(LbL)技术获得了操作简便、安全性好的病毒复合物。通过静电作用在病毒表面交替吸附多聚电解质聚烯丙胺盐酸盐(PAH)和聚苯乙烯磺酸钠(PSS)构建核壳结构。通过多聚电解质修饰后,改变了原有病毒的理化性质,能够通过普通离心进行高效富集和分离;多聚电解质的吸附还增加了病毒表面电子密度,这样就可以在非负染色的条件下利用透射显微技术(TEM)直接观察病毒;而且多聚的外壳还增加了病毒表面的物理强度,使病毒颗粒能够在不进行生物固定等条件处理就可以利用扫描电子显微镜(SEM)和原子力显微镜(AFM)进行观察。我们还发现,病毒/聚合物核壳结构具有较好的生物相容性,能够在短时间内被不同种类的细胞内吞从而进入细胞,并且对细胞不产生毒性。同时PAH/PSS外壳能够抑制具有感染性的病毒在细胞内的释放,使得病毒操作的安全性也将得到改善。该方法为以病毒为单元的新型材料的构建提供了新思路。
     2采用生物矿化的技术在人5型腺病毒(Ad5)颗粒表面引入磷酸钙(CaPi)矿物外壳。该无机外壳能够将病毒表面的蛋白完全掩盖,使得在非生物环境下矿化病毒颗粒能够呈现出与纳米CaPi颗粒相似的理化特性,通过常规方法不能够检测到其中的病毒成分。矿化病毒进入生物体后,由于磷酸钙具有良好的生物相容性,带有磷酸钙外壳的病毒颗粒能够被病毒受体缺陷细胞非特异地内吞,在细胞内矿化外壳则能在内溶酶体酸性的环境下自发降解并释放病毒颗粒使其恢复感染性。通过静脉注射途径,矿化病毒能够进入小鼠血液循环,增强病毒基因在小鼠体内的表达,同时改变并扩大腺病毒的组织嗜性,还能够保护矿化病毒不被体内的抗体中和而失效。这种基于特洛伊木马的病毒生物矿化策略与其他方法比在操作上更为经济、简单,能够克服病毒在应用中的存在的局限性。同时这种方法也改变了人们对病毒及其应用前景的认识。
     3将Si02纳米颗粒自发组装在Ad5病毒上。病毒表面被SiO2无机相封闭后细胞受体无法识别病毒表面的衣壳蛋白,因此病毒/纳米SiO2复合物不能被细胞内吞。该工作是探索了病毒表面修饰多样化并强调了无机相的重要性。
     4我们进一步发现病毒矿化技术能够应用于非包膜病毒和包膜病毒,采用生物矿化的方法对有包膜的黄病毒进行修饰,表面经CaPi生物矿化处理的YF17D也发生了相似的理化性质的变化。在细胞水平YF17D外层矿物相可降解并释放病毒颗粒,使其恢复感染性。矿化外壳能够阻止表面抗原与具有表位中和活性的单克隆抗体结合,保护病毒不失活。在动物体内,矿化病毒经由腹腔途径免疫可在小鼠体内产生抗体,其效价高于正常黄热病毒YF17D,证实了矿化处理能够增强病毒的免疫原性。该研究能够为新疫苗剂型的开发提供参考。
Viruses have received great attentions in various research fields including biology, material chemistry and medicine sciences. Nowadays, viruses are gradually accepted as potential tools or building blocks for materials fabrications, vector delivery, gene therapy, vaccine development, biological detection device and diagnosis rather than kinds of traditional pathogenic microorganism. Viruses have the characteristics of nano size effects and high symmetric structural properties, etc; they can be scaled up with biological culture, which facilitates the virus engineering and modification in large scale. However, another characteristics of viruses, such as undesirable infections and tedious and time comsuming for scale up. along with inate cellular barriers and nature traps from biological system, result in the inability to engineer viruses as the useful tools and there is no universal strategy to solve these serious problems.
     A new strategy for virus modification is in keen pursuit for offering new alternatives in both biological and material fields. Biomineralization is now an effective physicochemical tool to engineer living organisms by using non-living materials. Herein, we propose a shellization strategy to fabricate virus core-shell structures using self-assembly and biomineralization technologies, and characterized their physical, chemical and biological properties in combined with practical applications, providing feasible reference for virus applications as delivery vectors, gene therapy and vaccine development for the future.
     The main contents and academic contributions of this thesis are summarized as follows:
     1 Using yellow fever vaccine YF17D as template, we develop a facile strategy to fabricate encapsulated virus-polyelectrolyte hybrids using Layer-by-Layer (LbL) method with high efficiency and security. The polyelectrolytes. poly(allylamine) hydrochloride (PAH) and poly(sodium styrene sulfonate (PSS). can adsorb on virus surface altemately through electrostatic interaction to form core-shell structure. The modified viruses have regained different physical and biological properties such as concentration by the normal speed centrifugations and infection recovery, which can be understood by the surface repulsive force variation. They can be observed by transmission electron microscopy (TEM) direactly owing to the increasing of surface electron density by the polyelectrolytes. They can also be examined by scaning electron microscope (SEM) and atomic force microscope (AFM) readily without any biological fixation because of the mechenical strength reinforcement by the chemical compounds. The virus-polyelectrolyte core-shell nanoparticle with good biocompatibility can be rapidly internalized in different kinds of cell lines and have low cytotoxicity. Meanwhile, during the delivery, polyelectrolyte shells inhibit the release of enclosed viruses, which leads to the suppression of infectivity. This polyelectrolyte-based modification provides a new strategy to control the biological security of viruses, which encourages the multiplex applications of viral building blocks.
     2 Biomineralization treatments are used to confer single virus a mineral envelop. By shielding completely the viral surface protein, the living viruse can be masqueraded as inanimate calcium phosphate (CaPi) nanoparticles and they possess different physical and chemical properties from the native ones, resulting in the undetectable of virus components by using conventional methods. Under intracellular conditions, biocompatibilities of CaPi envelope exploit the similar cellular internalization as the conventional CaPi nanoparticles via a receptor independent endocytosis pathway, and virus release/recovery from mineral phase is induced spontaneously by the demineralization of CaPi inorganic phase under a low-pH condition that exists in endolysosomes after internalization. After intravenous administration, mineralized virus can deliver in circulatory system, transfect encoding genes with enhanced efficiency, expand tropisms of native virus and circumvent the neutralizing antibodies in the pre-immunized system. We suggest that single virus biomineralization is an effective and economic method to provide a "Trojan" strategy for virus to circumvent the limitations of receptors and natural traps, which will change our conventional understandings of viral infection and its multiple applications.
     3 SiO2 nanoparticle can also be assembled onto the adenovirus surface by non-covalent interactions to form the virus-core/SiO2-shell structures. After such a modification, the virus fails to interact with cellular receptor due to the surface is completely blocked by nano-SiO2, leading to the incapability of cellular internalization. The orderly assembly of nano-SiO2 on virus surface provides the basis for virus surface modification with different materials exploring important roles the inorganic phase playing.
     4 We confirm that biomineralization treatment is uniform and repeatable. and can be employed for both non-envelope and envelope viruses. Enveloped YF17D is modified by biomineralization technique to facilitate the efficient concentration by regular centrifugation too. During intracellular delivery, mineral phase of mineralized virus is degraded to release infectious virus particle. Mineralized shell can prevent neutralizing of monoclonal antibody to keep virus alive during the delivery. Besides, intraperitoneal injection of the mineralized virus can produce higher titers of antibodies in mice than that of normal YF17D, indicating the immunogenic enhancement of mineral phase in vivo. This study provides a new strategy for developing vaccine delivery system.
引文
[1]Mann S. Mineralization in biological-systems. Structure and Bonding.1983,54:125-174.
    [2]Lowenstam HA. Minerals formed by organisms. Science,1981,211 (4487):1126-1131.
    [3]Addadi L, Joester D, Nudelman F, et al. Mollusk shell formation:A source of new concepts for understanding biomineralization processes. Chemistry-a European Journal,2006,12 (4): 981-987.
    [4]Romano P, Fabritius H, Raabe D. The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomaterialia,2007,3 (3): 301-309.
    [5]Nys Y, Gautron J, Garcia-Ruiz JM, et al. Avian eggshell mineralization:biochemical and functional characterization of matrix proteins. Comptes Rendus Palevol,2004,3 (6-7): 549-562.
    [6]Hamm CE, Merkel R, Springer O, et al. Architecture and material properties of diatom shells provide effective mechanical protection. Nature.2003,421 (6925):841-843.
    [7]Fortin D, Ferris FG, Beveridge TJ. Surface-mediated mineral development by bacteria. Geomicrobiology:Interactions between Microbes and Minerals.1997.35:161-180.
    [8]Bazylinski DA. Controlled biomineralization of magnetic minerals by magnetotactic bacteria. Chemical Geology,1996,132 (1-4):191-198.
    [9]Belcher AM, Wu XH, Christensen RJ, et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature,1996,381 (6577):56-58.
    [10]Aizenberg J, Black AJ, Whitesides GM. Control of crystal nucleation by patterned self-assembled monolayers. Nature,1999,398 (6727):495-498.
    [11]Veis A. Mineralization in organic matrix frameworks. Biomineralization,2003,54:249-289.
    [12]Wang B, Liu P, Jiang W, et al. Yeast cells with an artificial mineral shell:protection and modification of living cells by biomimetic mineralization. Angewandte Chemie International Edition,2008,47(19):3560-3564.
    [13]Wang B, Liu P, Tang R. Cellular shellization:surface engineering gives cells an exterior. Bioessays.2010.32 (8):698-708.
    [14]Wang B. Liu P. Tang Y. et al. Guarding embryo development of zebrafish by shell engineering:a strategy to shield life from ozone depletion. PLoS One,2010.5 (4):e9963.
    [15]Wang G, Wang L. Liu P. et al. Extracellular silica nanocoat confers thermotolerance on individual cells:A case study of material-based functionalization of living cells. Chembiochem.2010,11(17):2368-2373.
    [16]Uludag H. De Vos P, Tresco PA. Technology of mammalian cell encapsulation. Advanced Drug Delivery Reviews.2000,42(1-2):29-64.
    [17]Diaspro A. Silvano D, Krol S, et al. Single living cell encapsulation in nano-organized polyelectrolyte shells. Langmuir.2002,18(13):5047-5050.
    [18]Kreft O. Georgieva R. Baumler H, et al. Red blood cell templated polyelectrolyte capsules: A novel vehicle for the stable encapsulation of DNA and proteins. Macromolecular Rapid Communications.2006.27(6):435-440.
    [19]Weiner S. Addadi L. Design strategies in mineralized biological materials. Journal of Materials Chemistry.1997.7(5):689-702.
    [20]Ducheyne P. Qiu Q. Bioactive ceramics:the effect of surface reactivity on bone formation and bone cell function. Biomaterials,1999,20(23-24):2287-2303.
    [21]Turner P, Petch A, Al-Rubeai M. Encapsulation of viral vectors for gene therapy applications. Biotechnology Progress.2007,23 (2):423-429.
    [22]Fischlechner M, Donath E. Viruses as building blocks for materials and devices. Angewandte Chemie-International Edition,2007,46(18):3184-3193.
    [23]de la Escosura A, Nolte RJM, Cornelissen JJLM. Viruses and protein cages as nanocontainers and nanoreactors. Journal of Materials Chemistry,2009,19(16):2274-2278.
    [24]Douglas T, Young M. Viruses:making friends with old foes. Science,2006,312 (5775): 873-875.
    [25]Soto CM, Ratna BR. Virus hybrids as nanomaterials for biotechnology. Current Opinion in Biotechnology.2010,21(4):426-438.
    [26]Petrenko V. Evolution of phage display:from bioactive peptides to bioselective nanomaterials. Expert Opinion on Drug Delivery.2008.5 (8):825-836.
    [27]Evans DJ. Exploitation of plant and archaeal viruses in bionanotechnology. Biochemical Society Transactions,2009,37:665-670.
    [28]Wang Q, Kaltgrad E, Lin T. et al. Natural supramolecular building blocks. Wild-type cowpea mosaic virus. Chemistry & Biology,2002.9 (7):805-811.
    [29]Chatterji A, Ochoa WF, Paine M. et al. New addresses on an addressable virus nanoblock: uniquely reactive Lys residues on cowpea mosaic virus. Chemistry & Biology.2004.11(6): 855-863.
    [30]Wang Q, Lin T. Johnson JE. et al. Natural supramolecular building blocks. Cysteine-added mutants of cowpea mosaic virus. Chemistry & Biology.2002.9(7):813-819.
    [31]Raja K.S, Wang Q, Gonzalez MJ. et al. Hybrid virus-polymer materials.1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules.2003.4 (3): 472-476.
    [32]Thompson DH. Adenovirus in a synthetic membrane wrapper:an example of hybrid vigor? ACS Nano.2008.2(5):821-826.
    [33]Strable E. Finn MG (2009) Chemical modification of viruses and virus-like particles, in: Manchester M. Steinmetz NF. editors. Viruses and Nanotechnology:Springer Berlin Heidelberg, pp.1-21.
    [34]Steinmetz NF. Lomonossoff GP. Evans DJ. Cowpea mosaic virus for material fabrication: addressable carboxylate groups on a programmable nanoscaffold. Langmuir.2006.22(8): 3488-3490.
    [35]Steinmetz NF. Hong V, Spoerke ED. et al. Buckyballs meet viral nanoparticles:candidates for biomedicine. Journal of the American Chemical Society.2009.131 (47):17093-17095.
    [36]Steinmetz NF. Lomonossoff GP. Evans DJ. Decoration of cowpea mosaic virus with multiple, redox-active. organometallic complexes. Small.2006.2 (4):530-533.
    [37]van Staveren DR. Metzler-Nolte N. Bioorganometallic chemistry of ferrocene. Chemical Reviews.2004.104(12):5931-5985.
    [38]Nam YS, Shin T. Park H. et al. Virus-templated assembly of porphyrins into light-harvesting nanoantennae. Journal of the American Chemical Society.2010.132 (5):1462-1463.
    [39]Lvov Y. Haas H. Decher G et al. Successive Deposition of Alternate Layers of Polyelectrolytes and a Charged Virus. Langmuir.1994.10(11):4232-4236.
    [40]Steinmetz NF, Calder G, Lomonossoff GP, et al. Plant viral capsids as nanobuilding blocks: Construction of arrays on solid supports. Langmuir.2006,22(24):10032-10037.
    [41]Steinmetz NF, Bock E, Richter RP, et al. Assembly of multilayer arrays of viral nanoparticles via biospecific recognition:a quartz crystal microbalance with dissipation monitoring study. Biomacromolecules,2008,9(2):456-462.
    [42]Steinmetz NF, Findlay KC, Noel TR, et al. Layer-by-layer assembly of viral nanoparticles and polyelectrolytes:the film architecture is different for spheres versus rods. Chembiochem,2008,9(10):1662-1670.
    [43]Li T, Niu Z, Emrick T, et al. Core/shell biocomposites from the hierarchical assembly of bionanoparticles and polymer. Small,2008,4(10):1624-1629.
    [44]Yang LMC, Diaz JE, Mclntire TM, et al. Covalent virus layer for mass-based biosensing. Analytical Chemistry,2008,80(4):933-943.
    [45]Park J-S. Cho MK, Lee EJ, et al. A highly sensitive and selective diagnostic assay based on virus nanoparticles. Nat Nano.2009,4 (4):259-264.
    [46]Douglas T, Young M. Host-guest encapsulation of materials by assembled virus protein cages. Nature.1998,393(6681):152-155.
    [47]Douglas T, Young M. Virus particles as templates for materials synthesis. Advanced Materials,1999,11(8):679-681.
    [48]Douglas T, Strable E, Willits D. et al. Protein engineering of a viral cage for constrained nanomaterials synthesis. Advanced Materials,2002.14 (6):415-418.
    [49]Shenton W. Douglas T, Young M, et al. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Advanced Materials,1999.11(3): 253-256.
    [50]Whaley SR, English DS, Hu EL, et al. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature,2000.405(6787):665-668.
    [51]Mao C, Solis DJ, Reiss BD, et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science,2004.303(5655):213-217.
    [52]Mao C. Flynn CE, Hayhurst A, et al. Viral assembly of oriented quantum dot nanowires. Proceedings of the National Academy of Sciences of the United States of America.2003. 100(12):6946-6951.
    [53]Nam KT. Kim D-W, Yoo PJ, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science,2006,312(5775):885-888.
    [54]Lee YJ. Yi H, Kim W-J. et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science.2009.324 (5930):1051-1055.
    [55]Steinmetz NF, Shah SN, Barclay JE, et al. Virus-templated silica nanoparticles. Small.2009, 5(7):813-816.
    [56]Rong J, Oberbeck F, Wang X, et al. Tobacco mosaic virus templated synthesis of one dimensional inorganic-polymer hybrid fibres. Journal of Materials Chemistry.2009.19(18): 2841-2845.
    [57]Aljabali AAA. Shah SN, Evans-Gowing R, et al. Chemically-coupled-peptide-promoted virus nanoparticle templated mineralization. Integrative Biology.2011.3(2):119-125.
    [58]Soto CM. Blum AS, Vora GJ, et al. Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. Journal of the American Chemical Society.2006.128 (15):5184-5189.
    [59]Anderson GP, Nerurkar NL. Improved fluoroimmunoassays using the dye Alexa Fluor 647 with the RAPTOR, a fiber optic biosensor. Journal of lmmunological Methods.2002.271 (1-2):17-24.
    [60]Sapsford KE, Soto CM, Blum AS, et al. A cowpea mosaic virus nanoscaffold for multiplexed antibody conjugation:Application as an immunoassay tracer. Biosensors and Bioelectronics.2006,21(8):1668-1673.
    [61]Soto CM. Martin BD, Sapsford KE. et al. Toward single molecule detection of staphylococcal enterotoxin B:mobile sandwich immunoassay on gliding microtubules. Analytical Chemistry,2008,80(14):5433-5440.
    [62]Singh R, Al-Jamal KT, Lacerda L. et al. Nanoengineering artificial lipid envelopes around adenovirus by Self-Assembly. ACS Nano,2008,2(5):1040-1050.
    [63]Saini V, Martyshkin DV, Mirov SB, et al. An adenoviral platform for selective self-assembly and targeted delivery of nanoparticles. Small,2008.4(2):262-269.
    [64]Belyakov IM, Moss B, Strober W, et al. Mucosal vaccination overcomes the barrier to recombinant vaccinia immunization caused by preexisting poxvirus immunity. Proceedings of the National Academy of Sciences of the United States of America.1999.96(8): 4512-4517.
    [65]Niu Q, Huang X, Zhang L, et al. A Trojan horse mechanism of bacterial pathogenesis against nematodes. Proceedings of the National Academy of Sciences of the United States of America.2010.107(38):16631-16636.
    [66]Choi M-R, Stanton-Maxey KJ, Stanley JK, et al. A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors. Nano Letters.2007,7(12):3759-3765.
    [67]Power AT. Bell JC. Taming the Trojan horse:optimizing dynamic carrier cell/oncolytic virus systems for cancer biotherapy. Gene Therapy.2008.15(10):772-779.
    [68]Peek LJ. Middaugh CR. Berkland C. Nanotechnology in vaccine delivery. Advanced Drug Delivery Reviews,2008.60(8):915-928.
    [69]Hu KF. Lovgren-Bengtsson K, Morein B. Immunostimulating complexes (ISCOMs) for nasal vaccination. Advanced Drug Delivery Reviews,2001.51(1-3):149-159.
    [70]Nishikawa T. Akiyoshi K, Sunamoto J. Macromolecular complexation between bovine serum albumin and the self-assembled hydrogel nanoparticle of hydrophobized polysaccharides. Journal of the American Chemical Society.1996.118(26):6110-6115.
    [71]Cai WB. Chen XY. Multimodality molecular imaging of tumor angiogenesis. Journal of Nuclear Medicine.2008.49:113s-128s.
    [72]Rapoport N, Gao ZG. Kennedy A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. Journal of the National Cancer Institute.2007. 99(14):1095-1106.
    [73]Liu Y. Miyoshi H. Nakamura M. Nanomedicine for drug delivery and imaging:a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. International Journal of Cancer.2007.120(12):2527-2537.
    [74]Lal S. Clare SE, Halas N.J. Nanoshell-enabled photothermal cancer therapy:impending clinical impact. Accounts of Chemical Research.2008.41(12):1842-1851.
    [75]Altinoglu El. Russin TJ. Kaiser JM. et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano.2008.2 (10):2075-2084.
    [76]Sun T, Qing G, Su B, et al. (2011) Functional biointerface materials inspired from nature. Chemical Society Reviews.2011/02/25 ed.
    [77]Manchester M, Singh P. Virus-based nanoparticles (VNPs):Platform technologies for diagnostic imaging. Advanced Drug Delivery Reviews.2006,58(14):1505-1522.
    [78]Pedro L, Soares SS. Ferreira GNM. Purification of bionanoparticles. Chemical Engineering & Technology,2008,31 (6):815-825.
    [79]Lewis JD, Destito G Zijlstra A, et al. Viral nanoparticles as tools for intravital vascular imaging. Nature Medicine,2006,12 (3):354-360.
    [80]Nishiyama N. Nanomedicine-Nanocarriers shape up for long life. Nature Nanotechnology. 2007,2(4):203-204.
    [81]Scheerlinck JPY, Greenwood DLV. Virus-sized vaccine delivery systems. Drug Discovery Today,2008.13(19-20):882-887.
    [82]Young LS, Searle PF, Onion D, et al. Viral gene therapy strategies:from basic science to clinical application. Journal of Pathology,2006,208 (2):299-318.
    [83]Fischlechner M, Reibetanz U, Zaulig M, et al. Fusion of enveloped virus nanoparticles with polyelectrolyte-supported lipid membranes for the design of bio/nonbio interfaces. Nano Letters,2007,7(11):3540-3546.
    [84]Goicochea NL, De M, Rotello VM, et al. Core-like particles of an enveloped animal virus can self-assemble efficiently on artificial templates. Nano Letters,2007.7 (8):2281-2290.
    [85]Schneider G, Decher G. From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres. Nano Letters.2004.4(10):1833-1839.
    [86]Gittins Dl, Caruso F. Multilayered polymer nanocapsules derived from gold nanoparticle templates. Advanced Materials,2000,12 (24):1947-1948.
    [87]Gittins DI, Caruso F. Tailoring the polyelectrolyte coating of metal nanoparticles. Journal of Physical Chemistry B.2001.105(29):6846-6852.
    [88]Gaspar LP, Mendes YS, Yamamura AMY. et al. Pressure-inactivated yellow fever 17DD virus:Implications for vaccine development. Journal of Virological Methods.2008.150 (1-2):57-62.
    [89]Zhang Y, Corver J. Chipman PR. et al. Structures of immature flavivirus particles. The EMBO Journal.2003,22(11):2604-2613.
    [90]De Beeck AO, Molenkamp R, Caron M. et al. Role of the transmembrane domains of prM and E proteins in the formation of yellow fever virus envelope. Journal of Virology.2003. 77(2):813-820.
    [91]Smith AE, Helenius A. How Viruses Enter Animal Cells. Science.2004.304 (5668): 237-242.
    [92]Destito G, Schneemann A, Manchester M. Biomedical nanotechnology using virus-based nanoparticles. Current Topics in Microbiology and Immunology.2009.327:95-122.
    [93]Singh R, Kostarelos K. Designer adenoviruses for nanomedicine and nanodiagnostics. Trends in Biotechnology.2009.27 (4):220-229.
    [94]Clare E. Thomas AEaMAK. Progress and problems with the use of viral vectors for gene therapy. Nature Genetics,2003,4:346-358.
    [95]Fabry CM, Rosa-Calatrava M, Conway JF. et al. A quasi-atomic model of human adenovirus type 5 capsid. The EMBO Journal.2005.24 (9):1645-1654.
    [96]St George JA. Gene therapy progress and prospects:adenoviral vectors. Gene Therapy. 2003,10(14):1135-1141.
    [97]Bewley MC, Springer K, Zhang YB, et al. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor. CAR. Science,1999,286(5444): 1579-1583.
    [98]Nemerow GR, Stewart PL. Role of alpha(v) integrins in adenovirus cell entry and gene delivery. Microbiology and Molecular Biology Reviews,1999,63(3):725-734.
    [99]Alemany R, Suzuki K, Curie] DT. Blood clearance rates of adenovirus type 5 in mice. Journal of General Virology,2000,81(Pt 11):2605-2609.
    [100]Schneider-Schaulies J. Cellular receptors for viruses:links to tropism and pathogenesis. Journal of General Virology,2000,81:1413-1429.
    [101]Einfeld DA, Schroeder R, Roelvink PW, et al. Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. Journal of Virology.2001. 75(23):11284-11291.
    [102]Shiver JW, Fu TM, Chen L, et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature,2002.415(6869):331-335.
    [103]Vlachaki MT, Hernandez-Garcia A, Ittmann M, et al. Impact of preimmunization on adenoviral vector expression and toxicity in a subcutaneous mouse cancer model. Molecular Therapy,2002,6(3):342-348.
    [104]Parks R, Evelegh C, Graham F. Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Therapy,1999.6(9):1565-1573.
    [105]Belousova N, Krendelchtchikova V, Curiel DT, et al. Modulation of adenovirus vector tropism via incorporation of polypeptide ligands into the fiber protein. Journal of Virology. 2002,76(17):8621-8631.
    [106]Kakizawa Y, Furukawa S, Kataoka K. Block copolymer-coated calcium phosphate nanoparticles sensing intracellular environment for oligodeoxynucleotide and siRNA delivery. Journal of Control Release,2004,97(2):345-356.
    [107]Fasbender A, Zabner J, Chillon M, et al. Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo. Journal of Biological Chemistry,1997,272(10):6479-6489.
    [108]Campos SK, Barry MA. Current advances and future challenges in Adenoviral vector biology and targeting. Current Gene Therapy,2007,7(3):189-204.
    [109]Veis A. Materials science. A window on biomineralization. Science,2005.307(5714): 1419-1420.
    [110]Lee SY, Culver JN, Harris MT. Effect of CuCl2 concentration on the aggregation and mineralization of Tobacco mosaic virus biotemplate. Journal of Colloid and Interface Science.2006,297(2):554-560.
    [111]Morgan TT, Muddana HS, Altinoglu El, et al. Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett,2008,8(12):4108-4115.
    [112]Chu TC, He Q, Potter DE. Biodegradable calcium phosphate nanoparticles as a new vehicle for delivery of a potential ocular hypotensive agent. Journal of Ocular Pharmacology and Therapeutics,2002,18(6):507-514.
    [113]Tao J. Pan H, Zeng Y, et al. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. The Journal of Physical Chemistry B.2007. 111(47):13410-13418.
    [114]Fasbender A, Lee JH, Walters RW, et al. Incorporation of adenovirus in calcium phosphate precipitates enhances gene transfer to airway epithelia in vitro and in vivo. Journal of clinical investigation,1998,102(1):184-193.
    [115]Bisht S, Bhakta G, Mitra S, et al. pDNA loaded calcium phosphate nanoparticles:highly efficient non-viral vector for gene delivery. International Journal of Pharmaceutics,2005, 288(1):157-168.
    [116]Barroug A, Kuhn LT, Gerstenfeld LC, et al. Interactions of cisplatin with calcium phosphate nanoparticles:in vitro controlled adsorption and release. Journal of Orthopaedic Surgery and Research,2004,22 (4):703-708.
    [117]Lam WY, Yeung AC, Tang JW, et al. Rapid multiplex nested PCR for detection of respiratory viruses. Journal of Clinical Microbiology,2007,45 (11):3631-3640.
    [118]Wu JC, Sundaresan G, Iyer M, et al. Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Molecular Therapy,2001,4(4): 297-306.
    [119]Reynolds PN, Nicklin SA. Kaliberova L. et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nature Biotechnology, 2001.19(9):838-842.
    [120]Leopold PL, Crystal RG. Intracellular trafficking of adenovirus:many means to many ends. Advanced Drug Delivery Review,2007,59(8):810-821.
    [121]Maitra A. Calcium phosphate nanoparticles:second-generation nonviral vectors in gene therapy. Expert Review of Molecular Diagnostics.2005.5(6):893-905.
    [122]Poranen MM, Daugelavicius R, Bamford DH. Common principles in viral entry. Annual Review of Microbiology,2002,56:521-538.
    [123]Crookes-Goodson WJ, Slocik JM, Naik RR. Bio-directed synthesis and assembly of nanomaterials. Chemical Society Reviews,2008.37(11):2403-2412.
    [124]von Werne T, Patten TE. Preparation of structurally well-defined polymer-nanoparticle hybrids with controlled/living radical polymerizations. Journal of the American Chemical Society,1999,121 (32):7409-7410.
    [125]Ow H, Larson DR. Srivastava M, et al. Bright and stable core-shell fluorescent silica nanoparticles. Nano Letters.2005.5(1):113-117.
    [126]Guirakhoo F, Arroyo J. Pugachev KV, et al. Construction, safety, and immunogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine. Journal of Virology,2001,75(16):7290-7304.
    [127]Querec T, Bennouna S, Alkan SK, et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2,7,8, and 9 to stimulate polyvalent immunity. Journal of Experimental Medicine.2006.203 (2):413-424.
    [128]Poland JD, Calisher CH, Monath TP,et al. Persistence of neutralizing antibody 30-35 years after immunization with 17d Yellow-fever vaccine. Bulletin of the World Health Organization,1981,59(6):895-900.
    [129]Trent D, Guirakhoo F, Arroyo J, et al. ChimeriVax YF17D/dengue tetravalent vaccine. Journal of Clinical Virology,2003,28:S26-S27.
    [130]Li L, Lok SM. Yu IM, et al. The flavivirus precursor membrane-envelope protein complex: Structure and maturation. Science,2008,319 (5871):1830-1834.
    [131]Qhobosheane M, Santra S, Zhang P, et al. Biochemically functionalized silica nanoparticles. Analyst.2001,126(8):1274-1278.
    [132]Kuhn RJ, Zhang W. Rossmann MG. et al. Structure of dengue virus:implications for flavivirus organization, maturation, and fusion. Cell.2002,108 (5):717-725.
    [133]He Q, Mitchell AR, Johnson SL. et al. Calcium phosphate nanoparticle adjuvant. Clinical and Diagnostic Laboratory Immunology,2000,7 (6):899-903.
    [134]He Q, Mitchell A. Morcol T. et al. Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clinical and Diagnostic Laboratory Immunology.2002.9 (5):1021-1024.
    [135]Goto N, Kato H. Maeyama J. et al. Local tissue irritating effects and adjuvant activities of calcium phosphate and aluminium hydroxide with different physical properties. Vaccine, 1997,15(12-13):1364-1371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700