玉米秆半纤维素的分离表征及硫酸酯化改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维是造纸行业的主要原料,主要由纤维素、半纤维素和木质素三大组分构成。然而,在碱法制浆过程中,大部分半纤维素随木质素进入黑液,不但造成资源的浪费,还给黑液碱回收带来困难。与制浆造纸相结合的生物质精炼的提出为实现资源的最大化利用开辟了新的途径,即在制浆之前将半纤维素预先分离,用以生产高附加值的产品,替代化石基燃料或合成材料,一定程度上缓解日益严重的能源危机,剩余原料仍用于制浆造纸。基于上述理念,本文以玉米秆为研究对象,利用不同的方法分离出其中的半纤维素,考察了分离半纤维素后玉米秆的制浆造纸性能。对分离得到的半纤维素的结构进行了探索,并将其用于木聚糖硫酸酯的合成,研究了木聚糖硫酸酯的抗凝血效果。
     利用不同浓度的NaOH溶液在不同温度下对玉米秆中半纤维素进行了提取,检测了提取液中糖类的组分及含量,对提取半纤维素后的玉米秆进行碱法制浆及纸浆TCF漂白,并考察了预提取对制浆黑液中二氧化硅含量的影响。研究发现玉米秆半纤维素提取液的主要组分为木聚糖,随着温度的升高及碱浓的增大,半纤维素得率逐渐上升;经半纤维素提取后,玉米秆烧碱-蒽醌浆的物理性能如紧度、裂断长及耐破指数有不同程度的降低,但白度提高,撕裂指数也明显增大,TCF漂白浆变化趋势与未漂浆相似。制浆前碱预提取半纤维素可以显著降低黑液中二氧化硅含量,在液比1:5,碱浓为100g/L,温度为75OC,提取时间为2h时,二氧化硅去除率可达80%以上,此时半纤维素得率为88.2%。
     利用相同摩尔浓度的KOH和NaOH溶液在相同温度、时间及液比的条件下提取半纤维素,比较了预提取效果及其后的制浆漂白性能,发现摩尔浓度相同时,KOH溶液比NaOH溶液更有利于半纤维素的溶出,而且所得纸浆的物理性能比NaOH为抽提溶剂时要强。对提取半纤维素后玉米秆烧碱蒽醌浆的微观结构进行了表征,发现碱预提取能够降低纸浆纤维表面有半纤维素和木质素特征的物质的含量,暴露出更多的纤维素纤维,对其后的纸浆漂白十分有利。
     利用热水提取玉米秆中半纤维素,研究了温度、保温时间的变化对糖类组分的溶出及其降解产物糠醛和羟甲基糠醛生成的影响。随着温度的升高及保温时间的增加,提取液中各糖得率均呈先升高后降低的趋势,糠醛和羟甲基糠醛的含量则始终上升;采用H-因子对糖类的溶出和糠醛、羟甲基糠醛的生成进行了描述,结果表明为获取尽可能多的半纤维素多糖,LogH应控制在3.10-3.15之间;采用Saeman模型研究了戊聚糖降解的动力学过程,得出戊聚糖降解和戊糖降解的活化能,分别为170.87kJ/mol和154.58 kJ/mol,根据糖类溶出规律、糠醛和羟甲基糠醛生成规律确定出热水预提取的最佳工艺条件为160保温180min,此时提取液中总糖和戊糖得率分别为62.2%(对原料中半纤维素)和60.5%(对原料中戊聚糖),在此条件下对热水提取后的玉米秆进行制浆漂白,发现热水提取后玉米秆制浆漂白性能下降。
     以KOH溶液为溶剂,从玉米秆中分离出半纤维素,利用浓度为10g/L的H_2O_2溶液对分离的半纤维素进行纯化,研究了半纤维素的主要化学组分,采用UV、FT-IR、TG、GPC、NMR等测试技术对半纤维素的结构进行了表征,结果表明所得半纤维素为(1→4)-β-D联接的木聚糖为主链、同时在C2或C3的羟基上含有α-L-阿拉伯糖的阿拉伯糖基木聚糖。以分离的半纤维素为原料,在离子液体中与丁二酸酐酯化反应,利用FT-IR及~1H NMR对酯化产物结构进行了表征,产物有较强的吸附重金属离子的能力。
     以自制半纤维素为原料,LiCl为催化剂,与三氧化硫?吡啶复合物在均相体系中酯化反应合成木聚糖硫酸酯,研究了反应溶剂(DMF、FA和DMSO)、反应温度、反应时间以及三氧化硫?吡啶复合物与木糖单元的摩尔比对产物取代度及分子量的影响。结果显示,随着反应温度的升高及反应时间的延长,产物的取代度和分子量有不同程度的下降;随着摩尔比的增大,酯化产物的取代度迅速增大,以DMF和FA为反应溶剂所得产物的分子量增大,而以DMSO为溶剂时产物的分子量随摩尔比的增加而降低。
     利用UV、FT-IR、TG、GPC、NMR和AFM对木聚糖硫酸酯的结构和理化性质进行了研究。木聚糖硫酸酯的紫外光谱与抗凝血药物肝素钠有相同的吸收峰,红外光谱在1260cm~(-1)和810cm~(-1)处出现新的吸收峰,说明硫酸基团已成功引入半纤维素,TG结果表明经酯化后,产物热稳定性略有下降,分解温度比半纤维素低;NMR分析结果表明酯化反应主要在C2、C3的羟基上进行,且C2位上羟基的硫酸化能力优于C3;AFM观察结果发现分子量大的样品能够形成多孔网状钠米超薄膜,分子量较小时,膜表面较为光滑且很难发现孔洞。
     对木聚糖硫酸酯的抗凝血活性进行了研究,考察了取代度和分子量对抗凝活性的影响,对抗凝机理及构效关系进行了研究,发现只有在取代度达到一定值后木聚糖硫酸酯才具有抗凝血活性,且主要是通过影响内源性凝血途径起到抗凝的作用。当木聚糖硫酸酯取代度大于1时,用量仅为5μg/mL即有良好的抗凝血效果,达到甚至超过肝素钠的作用效果。
Lignocellulose, which is made up of cellulose, hemicellulose and lignin, is the principal raw material of papermaking industry. However, during the process of alkaline pulping, a majority of the hemicellulose is dissolved in black liquor along with lignin, causing a waste of resources and, more importantly, bringing difficulties to alkali recovery. The development of Integrated Forest Product Biorefinery (IFBR) opened up a new way for maximizing the utilization of fibrous resources by extracting hemicellulose before pulping, hemicellulose extracted can be used for making value-added products which can replace the petrochemical-based fuel or materials to some extent. After hemicellulose extraction, the materials left can still be used for papermaking. Based on the above-mentioned concept, corn stover was used in this study, different methods were adopted for the extraction of hemicellulose, the remains were used for pulping and bleaching after the isolation of hemicellulose. Structure of the isolated hemicellulose was investigated and then the hemicellulose was used for the synthesis of xylan sulfate, anticoagulant activity of the xylan sulfates was studied.
     Hemicellulose was extracted with sodium hydroxide under different temperatures, compositions and content of the saccharides in the extract were detected, the remains were used for Soda-AQ pulping and TCF bleaching, the content of silicon dioxide in pulping liquor was determined. It was found that the main composition of the extract was xylan and the yield of hemicellulose increased with the increase of temperature and alkali concentration. Physical properties of the pulp from hemicellulose extracted corn stover, such as density, breaking length and burst index, were decreased, but brightness and tear index were improved, properties of TCF bleached pulp had similar variation tendency with unbleached pulp. The content of silicon dioxide in pulping liquor was dramatically decreased when the extraction of hemicellulose conducted before pulping. While extraction lasted 2h under 75OC with solid to liquid ratio 1:5 and alkali concentration 100g/L, more than 80% of the silicon was removed and over 88% of the hemicellulose was recoverd.
     Potassium hydroxide(KOH) and sodium hydroxide(NaOH) with the same molarity were used for extracting hemicellulose under the same temperature, holding time and solid to liquid ratio, differences of pulping and bleaching performance were compared, results suggested that KOH was more effective in dissolving hemicellulose than NaOH when the molar concentration was equal, furthermore, physical properties of the pulp was better than the one using NaOH as the extraction solvent. Microstructure of the fibers from Soda-AQ pulp of the hemicellulose extracted corn stover was analyzed, the content of the substances with hemicellulose and lignin characteristics on the surface of the fibers was decreased after alkaline extraction, thus more cellulose fibers can be exposed, making subsequent bleaching much easier.
     Hot water was also used for the extraction of hemicellulose from corn stover, the effect of the variation of temperature, holding time on the dissolving of saccharides and generation of furfural and hydroxymethylfurfural(HMF) was studied. With the increase of temperature and holding time, yields of the saccharides in the extract were increased firstly, then decreased, the contents of furfural and HMF were increased throughout the whole extraction. H-factor was adopted to describe the dissolving of the saccharides and the generation of furfural and HMF, in order to obtain hemicellulose-derived polysaccharides as much as we could, LogH should be controlled between 3.10 and 3.15. Saeman model was used to study the kinetic process of pentosan degradation, kinetic equations for pentosan degradation and furfural generation were built, the activation energy was 170.87kJ/mol and 154.58 kJ/mol for the degradation of pentosan and pentose respectively. Based on the variation law for polysaccharides dissolving and furfural, HMF generation, the optimized process for hot water extraction was 160OC for 180min., 62.2% of total saccharides(based on the content of hemicellulose of corn stover) and 60.5% of total pentose(based on the content of pentosan in corn stover) were obtained under this condition. Pulping and bleaching were conducted after hot water extraction with the optimized condition, results showed that pulping performance was not as good as the one without hot water extraction, however, bleachability of pulp was improved compared with the control.
     Hemicellulose was extracted from corn stover with KOH solution, H2O2 with the concentration of 10g/L was used for further purification. Chemical composition of the hemicellulose was studied, UV, FT-IR, TG, GPC and NMR were adopted to investigate the structure, it was found that corn stover hemicellulose was an arabinoxylan mainly consisting of (1→4)-β-D-xylan backbone substituted in O-2 and/or O-3 byα-L-arabinose residue. Esterification reaction was conducted between hemicellulose and butanedioic anhydride in ionic liquid,the product was characterized by FT-IR and 1H NMR and had preferable ability for absorbing heavy metal ions.
     Self-prepared hemicellulose was used for the synthesis of xylan sulfates with sulfur trioxide?pyridine complex in homogeneous system, the reaction was catalyzed by LiCl. The effects of solvent(DMF, FA, DMSO), temperature, reaction time and molar ratio(SO_3·Pyridine: xylose) on the degree of substitution(DS) and molecular weight(Mw) were studied. Results suggested that DS and Mw were decreased to some extent with the increase of temperature and the extension of reaction time; DS increased substantially with the increase of molar ratio, while Mw of the products also increased with the increase of molar ratio when DMF and FA were adopted as the reaction solvent, when the reaction solvent was DMSO, Mw decreased.
     UV, FT-IR, TG, GPC, NMR and AFM were chosen to study the structure and physicochemical properties of xylan sulfates. UV spectra of xylan sulfates were similar to that of anticoagulation medicine, sodium heparin, new peaks appeared around 1260cm~(-1) and 810cm~(-1), suggesting sulfate groups were successfully introduced to hemicellulose, TG analysis indicated that xylan sulfate was less stable than hemicellulose, decomposition temperature was slightly lower than that of hemicellulose. NMR analysis showed that sulfation was maily happened on hydroxy groups of C2 and C3, and the sulfation ability of the hydroxy groups of C2 was better than htat of C3. Results from AFM indicated that multiporous nano ultrathin film could be formed from xylan sulfate with higher Mw, when Mw was lower, surface of the film was smooth and holes were not easy to find out.
     Anticoagulant activity of the xylan sulfates was studied and the effect of DS and Mw on anticoagulant activity was investigated, anticoagulant mechanism and structure-activity relationship were also studied, results showed that, only when DS reached certain value, xylan sulfate had anticoagulant activity. Anticoagulant function of xylan sulfate was obtained through intrinsic coagulation pathway. As the DS value of xylan sulfate was above 1 and the dosage was 5μg/mL, the anticoagulant function was the same or even better than that of sodium heparin.
引文
[1]王香爱.生物质能的转化和利用研究[J].化工科技, 2009, 17(1): 51-55
    [2] 2010 Ethanol Industry Outlook[R]. Renewable Fuels Association, 2010
    [3] World Energy Outlook 2009 [R]. International Energy Agency, 2009
    [4]曲音波.纤维素乙醇产业化[J].化学进展,2007, 19(7/8): 1098-1108
    [5] US Department of Energy. http:www.doe.gov/news/4827.htm
    [6] Sampaio M. R., Rosa L.P., D’Agosto M. A. Ethanol-electric propulsion as a sustainable technological alternative for urban buses in Brazil[J]. Renewable and Sustainable Energy Review, 2007, 11(7): 1514-1529
    [7] Thomas J.J., Barile G.R. Conversion of cellulose hydrolysis products to fuels and chemical feedstocks[C]. 8th Symposium on Energy from Biomass and Waste, Lake Buena Fista, FL, 1984, 1461-1494
    [8] Czernik S., Bridgwater A.V. Overview of Applications of Biomass Fast Pyrolysis Oil[J]. Energy&Fuels, 2004, 18(2): 590-598
    [9]袁长富,李仲良,卢春山,等.山梨醇制备及转化催化剂研究进展[J].化工生产与技术, 2007,14(1): 34-37, 59
    [10] Von Rybinski W. Alkyl glycosides and polyglycosides[J]. Current Opinion in Colloid&Interface Science, 1996, 1(5): 587-597
    [11] Binder J. B., Blank J.J., Cefali A.V., et al. Synthesis of Furfural from Xylose and Xylan[J]. ChemSusChem, 2010, 3(11): 1268-1272
    [12]王明君,郑璞,孙志浩,等.微生物转化香草酸生产香草醛[J].食品与发酵工业, 2004, 30(2): 43-47
    [13] Kawabata K., Yamamoto T., Hara A., et al. Modifying effects of ferulic acid on azoxymethane-induced colon carcinogenesis in F344 rats[J]. Cancer Lett., 2000, 157(1): 15-21
    [14] Ogiwara T., Satoh K., Kadoma Y., et al. Radical scavenging activity and cytotoxicity of ferulic acid[J]. Anticancer Research, 2002, 22(5): 2711-2717
    [15] Rao S. R., Ravishankar G.A. Vanilla flavour: production by conventional and biotechnological routes[J]. Journal of the Science of Food and Agriculture, 2000, 80(3):289-304
    [16] Mourtzinos I., Konteles S., Kalogeropoulos N., et al. Thermal oxidation of vanillin affects its antioxidant and antimicrobial properties[J]. Food Chemistry, 2009, 114(3):791-797
    [17] Ou S., Kwok K.C. Ferulic acid: pharmaceutical functions, preparation and applications in foods[J]. Journal of the Science of Food and Agriculture, 84(11): 1261-1269
    [18] Kikuzaki H., Hisamoto M., Hirose K., et al. Antioxidant Properties of Ferulic Acid and Its Related Compounds[J]. Journal of Agricultural and Food Chemistry, 2002, 50(7): 2161-2168
    [19] Kayahara H., Miao Z., Fujiwara G. Synthesis and biological activities of ferulic acid derivatives[J]. 1999, 19(5A): 3763-3768
    [20] D’Jesús P., Boukis N., Kraushaar-Czarnetzhi B., et al. Gasification of corn and clover grass in supercritical water[J]. Fuel, 2006, 85(7/8): 1032-1038
    [21]陈蔚萍,陈迎伟,刘振峰.河南大学学报[J].生物质气化工艺技术应用与研究进展, 2007, 37(1): 35-42
    [22] Sagehashi M., Miyasaka N., Shishido H., et al. Superheated steam pyrolysis of biomass elemental componets and Sugi(Japanese cedar) for fuels and chemicals[J]. Bioresource Technology, 2006, 97(11): 1272-1283
    [23] Anonymous. International Wood fiber Report[R]. 2007, 13(2):7-8
    [24] Mabee W. E, Saddler J.N. The potential of bioconversion to produce fuels and chemicals[J]. Pulp&Paper Canada, 2006, 107(6): 34-37
    [25] Van Heiningen, A. Converting a Kraft Pulp Mill into an Integrated Forest Biorefinery[J]. Pulp & Paper Canada, 2006, 107(6): 38-43
    [26]岳国君,武国庆,郝小明.我国燃料乙醇生产技术的现状与展望[J].化学进展, 2007, 19(7/8): 1084-1090
    [27]黄英明,高振,黄和,等.生物炼制-实现可持续发展的新型工业模式[J].生物加工过程, 2006, 4(3): 1-8
    [28] Agbogbo F.K., Coward-Kelly G., Tony-Smith M., et al. Fermentation of glucose/xylose mixtures using Pichia stipites[J]. Process Biochemistry, 2006, 41(11): 2333-2336
    [29]张宇昊,王颉,张伟,等.半纤维素发酵生产燃料乙醇的研究进展[J].酿酒科技,2004, 5: 72-74
    [30]刘健,陈洪章,李佐虎.木糖发酵生产乙醇的研究[J].工业微生物, 2001, 31(2): 36-37, 41
    [31]李仲民,童张法.超滤法回收造纸黑液中木质素的研究[J].化学工程, 2003, 31(1): 5, 49-52
    [32]张桂梅,廖双泉,蔺海兰,等.木质素的提取方法及综合利用研究进展[J].热带农业科学,2005(1):66-71
    [33]李雪峰.以木质素为原料合成油田化学品的研究进展[J].油田化学,2006,23(2):180-184
    [34]伍胜,李新平.蒸煮废液中木质素的资源化利用[J].上海造纸, 2005,36(4):53-57
    [35]李许生,农光再,王双飞.黑液气化工艺及设备研究现状[J].中国造纸, 2007, 26(12): 59-62
    [36]傅国秀.我国木浆浮油提取和加工特点[J].林产化工通讯,1994,(3):30-33
    [37] Demirba A. Energy balance, energy sources, energy policy, future developments and energy investments in Turkey[J]. Energy Conversion and Management, 2001, 42(10):1239-1258
    [38] Mosier N., Wyman C., Dale B., et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2005, 96(6): 673-686
    [39] Schulze, E. Zur Kenntniss der chemischen Zusammensetzung der pflanzlichen Zellmembranen[J]. Berichte der Deutschen Chemischen Gesellschaft, 1891, 24(2): 2277-2287
    [40] Gírio F.M., Fonseca C., Carvalheiro F., et al. Hemicellulose for fuel ethanol: A review[J]. Bioresource Technology, 2010, 101(13): 4775-4800
    [41] Hsu, T.A. Pretreatment of biomass. In Handbook on Bioethanol: Production and Utilization[M]. Wyman, C.E., Ed.; Applied Energy Technology Series; Taylor & Francis: Washington, DC, 1996
    [42] Al-Dajani, W.W., Tschirner, U.W.. Pre-extraction of hemicelluloses and subsequent kraft pulping Part 1: alkaline extraction [J]. TAPPI Journal, 2008, 7: 3-8
    [43]陆琦.稻草烧碱法蒸煮过程硅溶出规律的研究[D].南京:南京林业大学,2005
    [44] De Lopez S., Tissot M., Delmas M. Integrated cereal straw valorization by an alkalinepre-extraction of hemicellulose prior to soda-anthraquinone pulping. Case study of barley straw[J]. Biomass and Bioenergy, 1996, 10(4): 201-211
    [45] Jeong T.S., Um B.H., Kim J.S., et al. Optimizing dilute-acid pretreatment of rapeseed straw for extraction of hemicellulose[J]. Applied Biochemistry and Biotechnology, 2010, 161(1/8): 22-33
    [46] Mamman A. S., Lee J. M., Kim Y. C.,et al. Furfural: Hemicellulose/xylose derived biochemical[J]. Biofuels Bioproducts and Biorefining, 2008, 2: 438-454
    [47] Aguilar R., Ramírez J.A., Garrote G., et al. Kinetic study of the acid hydrolysis of sugar cane bagasse[J]. Journal of Food Engineering, 2002, 55: 309-318
    [48] Sun Y., Cheng J. J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production[J]. Bioresource Technology, 2005, 96 (14): 1599-1606
    [49] Lu H.F., Hu R.F., Ward A., et al. Hot-water extraction and its effect on soda pulping of aspen woodchips, Biomass and Bioenergy (2011), doi:10.1016/j.biombioe.2011.01.054
    [50] Yoon S.H., MacEwan K., Van Heiningen A. Hot-water pre-extraction from loblolly pine (Pinus taeda) in an integrated forest products biorefinery[J]. TAPPI Journal, 2008, 7(6): 27-32
    [51] Yoon S.H., Van Heiningen A. Kraft pulping and papermaking properties of hot-water pre-extracted loblolly pine in an integrated forest products biorefinery[J]. TAPPI Journal, 2008, 7(7): 22-27
    [52] Al-Dajani W. W., Tschirner U. W. Pre-extraction of hemicelluloses and subsequent ASA and ASAM pulping: Comparison of autohydrolysis and alkaline extraction[J]. Holzforschung, 2010, 64(4): 411-416
    [53] Sun Y.C., Wen J.L., Xu F., et al. Structural and thermal characterization of hemicelluloses isolated by organic solvents and alkaline solutions from Tamarix austromongolica[J]. Bioresource Technology, 2011, 102(10): 5947-5951
    [54] Cara C., Ruiz E., Ballesteros I., et al. Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification[J]. Process Biochemistry, 2006, 41(2): 423-429
    [55] Shimizu K., Sudo K., Ono H., et al. Integrated process for total utilization of wood components by steam explosion pretreatment[J]. Biomass and Bioenergy, 1998, 14 (3):195-203
    [56] Lundqvist J., Jacobs A., Palm M., et al. Characterization of galactoglucomannan extracted from spruce(Picea abies) by heat-fractionation at different conditions[J]. Carbohydrate Polymers, 2002, 51(2): 203-211
    [57] Palm, M., Zacchi, G. Extraction of hemicellulosic oligosaccharides from spruce using microwave oven or steam treatment[J]. Biomacromolecules, 2003, 4(3): 617-623
    [58] EbringerováA., Heinze T. Xylan and xylan derivatives-biopolymers with valuable properties[J]. Macromolecular Rapid Communications, 2000, 21(9): 542-556
    [59] Heinze T. New ionic polymers by cellulose functionalization[J]. Macromolecular Chemistry and Physics, 1998, 199(11): 2341-2364
    [60]全金英,王佩卿.羧甲基变性半纤维素的制备及应用前景[J].林产化学与工业, 1997, 17(4): 25-31
    [61] Petzold K., Schwikal K., Heinze T. Carboxymethyl xylan-synthesis and detailed structure characterization[J].Carbohydrate Polymers, 2006, 64(2): 292-298
    [62] Schwikal K., Heinze T., EbringerováA., et al. Cationic xylan derivatives with high degree of functionalization[J]. Macromolecular Symposia, 2006, 232(1): 49-56
    [63] EbringerováA., HromádkováZ., Ka?urákováM. Quaternized xylans: synthesis and structural characterization[J].Carbohydrate Polymers, 1994, 24(4): 301-308
    [64] EbringerováA., BelicováA., Ebringer L. Antimicrobial activity of quaternized heteroxylans[J]. Journal of Microbiology and Biotechnology, 1994, 10(6): 640-644
    [65] Petzold K., Günther W., K?tteritzsch M. Synthesis and characterization of methyl xylan[J]. Carbohydrate Polymers, 2008, 74(3): 327-332
    [66] Vincendon M. Xylan derivatives: Benzyl ethers, synthesis, and characterization[J]. Journal of Applied Polymer Science, 1998, 67(3): 455-460
    [67] EbringerováA., HromádkováZ., Heinze T. Hemicellulose[J]. Advances in Polymer Science, 2005, 186: 1-67
    [68] Yalpani M. Chemistry of polysaccharide modification and degradation[M]. Dordrecht/Boston/London: Kluwer Academic Publishers, 1999, 294
    [69] Malm C.J., Rowley M.E., Hiatt G.D. US Patent: 2 969 355, 1961
    [70] Krüger L.H., Wurzburg O.B. US Patent: 3 441 558, 1968
    [71] Mihai D., Mocanu G., Carpov A. Chemical reactions on polysaccharides: I. Pullulan sulfation[J]. European Polymer Journal, 2001, 37(3): 541-546
    [72] Yang J.H, Du Y.M., Wen Y., et al. Sulfation of Chinese lacquer polysaccharides in different solvents[J]. Carbohydrate Polymers, 2003, 52(4): 397-403
    [73] Sun R. C., Fang J.M., Tom kinson J., et al. Esterification of hemicelluloses from poplar chips in homogeneous solution of N, N-dimethyl formmamide /lithium chloride[J]. Journal of Wood Chemistry and Technology, 1999,19(4): 287-306
    [74] Okamoto Y., Noguchi J., Yashima E. Enantioseparation on 3,5-dichloro- and 3,5-dimethylphenylcarbamates of polysaccharides as chiral stationary phases for high-performance liquid chromatography[J]. Reactive&Functional Polymers, 1998, 37(1-3): 183-188
    [75] Buchanan C. M., Buchanan N. L., Debenham J. S., et al. Preparation and characterization of arabinoxylan esters and arabinoxylan ester/cellulose ester polymer blends[J]. Carbohydrate Polymers, 2003, 52(4): 345-357
    [76] Fanta G.F., Burr R.C., Doane W. M. Graft polymerization of acrylonitrile and methyl acrylate onto hemicellulose[J]. Journal of Applied Polymer Science, 1982, 27(11): 4239-4250
    [77] El-Shinnawy N.A., El-Kalyoubi S.F. Graft copolymerization of acrylonitrile onto hemicellulose using ceric ammonium nitrate[J]. Journal of Applied Polymer Science, 1985, 30(5): 2171-2178
    [78] Soliman A.A.A. Graft copolymerization of acrylonitrile onto hemicellulose and its effect on paper sheets[J]. Journal of Scientific & Industrial Research, 1977, 56(9): 545-552
    [79] Peroval C., Debeaufort F., Seuvre A.M., et al. Modified arabinoxylan-based films: Grafting of functional acrylates by oxygen plasma and electron beam irradiation[J]. Journal of Membrane Science, 2004, 233(1/2): 129-139
    [80] Jain R. K., Sj?stedt M., Glasser W.G. Thermoplastic xylan derivatives with propylene oxide[J]. Cellulose, 2001, 7(4): 319-336
    [81] Matsumura S., Nishioka M., Yoshikawa S. Enzymically degradable poly(carboxylic acid) derived from polysaccharide[J]. Die Makromolekulare Chemie, Rapid Communications, 1991, 12(2):89-94
    [82] Fredon E., Granet R., Zerrouki R., et al. Hydrophobic films from maize bran hemicelluloses[J]. Carbohydrate Polymers, 2002, 49(1): 1-12
    [83] Asp H.G., Bj?rck I., Nyman M. Physiological effect of cereal dietary fibre[J]. Carbohydrate Polymers, 1993, 21(1/2): 183-187
    [84] Baghurst P.A., Baghurst K.I., Record S.J. Dietary fibre, non-starch polysaccharides and resistant starch: A review[J]. Supplement to Food Australia 1996, 48(3): S3-S35
    [85] Fan Y. R., Feng Z.H.. Effect of carboxymethyl-modified hemicellulose on activity of T-lymphocytes and amount of immunocytes[J]. Acta Pharmacologica Sinica, 1987, 8: 166-173
    [86] Whistler R.L., Bushway A.A., Singh P.P., et al. Noncytotoxic, antitumor polysaccharides[J]. Advances in Carbohydrate Chemistry and Biochemistry, 1976, 32: 235-275
    [87] Hashi M, Takeshita T. Studies on antitumor activity of wood hemicelluloses. I. Antitumor effect of 4-O-methylflucuronoxylan on solid tumour in mice[J]. Agriculture and Biological Chemistry, 1979, 43(5): 951-959
    [88] Hashi M., Takeshita T. Studies on antitumor activity of wood hemicelluloses. II. The host-mediated antitumor effect of 4-O-methylglucuronoxylan[J]. Agricultural and Biological Chemistry, 1979, 43(5): 961-967
    [89] Mizuno T., Wasa T., Ito H., et al. Antitumor-active polysaccharides isolated from the fruiting body of Hericium erinaceum, an edible and medicinal mushroom called Yamabushitake or Houtou[J]. Bioscience, Biotechnology&Biochemistry, 1992, 56(2): 347-348
    [90] Yamada H., Nagai T., Cyong J. C., et al. Relationship between chemical structure and anti-complementary activity of plant polysaccharides[J]. Carbohydrate Research, 1985, 144(1): 101-111
    [91] Samuelsen A. B., Paulsen, B.S., Wold, J. K., et al. Isolation and partial characterization of biologically active polysaccharides from Plantago major L.[J]. Phytotherapy Research, 1995, 9(3): 211-218
    [92] Prisen?ňáková?., Nosá?ováG., HromádkováZ., et al. The pharmacological activity of wheat bran polysaccharides[J]. Fitoterapia, 2010, 81(8): 1037-1044
    [93] Stone A. L., Melton D. J., Lewis M. S. Structure-function relations of heparin-mimetic sulphated xylan oligosaccharides inhibition of human immunodeficiency virus-1 infectivity in vitro[J].Glycoconjugate Journal, 1998, 15(7): 697-712
    [94] Wagner W. H. Hoe/Bay 946-a new compound with activity against the AIDS virus[J]. Arzneimittelforschung, 1989, 39(1): 112-113
    [95] Dace R., Mcbride E., Brooks K., et al. Comparison of the anticoagulant action of sulphated and phosphorylated polysaccharides[J]. Thrombosis Research, 1997, 87(1): 113-121
    [96] Doctor V.M., Lewis D., Coleman M., et al. Anticoagulant properties of semisynthetic polysaccharide sulfates[J]. Thrombosis Research, 1991, 64(4): 413-425
    [97]韩亮.木聚糖硫酸酯化条件及木聚糖硫酸酯抗凝血活性研究[D].无锡:江南大学, 2005
    [98] Herbert J.M., Cottineau M., Driot F., et al. Activity of pentosan polysulphate and derived compounds on vascular endothelial cell proliferation and migration induced by acidic and basic FGF in vitro[J]. Biochemical Pharmacology, 1988, 37(22): 4281-4288
    [99] Paul R., Herbert J.M., Maffrand J.P., et al. Inhibition of vascular smooth muscle cell proliferation in culture by pentosan polysulphate and related compounds[J]. Thrombosis Research, 1989, 46(6): 793-801
    [100] Kl?cking H.P., Markwardt F. Release of plasminogen activator by pentosan polysulphate[J]. Thrombosis Research, 1986, 41(5): 739-744
    [101] Maffrand J.P., Herbert J.M., Bernat A., et al. Experimental and clinical pharmacology of pentosan polysulphate[J]. Seminars in Thrombosis and Hemostasis, 1991, 17(Suppl 2): 186-198
    [102] Gaffney P.J., Marsh N.A. The effect of pentosan polysulphate (SP54) on the human fibrinolytic system[J]. Folia Haematological, 1986, 113(1-2): 255-261
    [103] Coccheri S.J., De Rosa V. Cavaloroni K, et al. Activation of fibrinolysis by means of sulphated polysaccharides: present status and perspectives[M]. Progress in chemical fibrinolysis and thrombolysis. New York, Raven Press, 1978, 461
    [104] Joffe S. Drug prevention of postoperative deep vein thrombosis[J]. Archives of Surgery, 1976, 111(1): 37-40.
    [105] Marsh N.A., Peyser P.M., Creighton L.J., et al. The effect of pentosan polysulphate (SP54) on the fibrinolytic enzyme system-a human volunteer and experimental animal study[J]. Thrombosis and Haemostasis, 1985, 54(4): 833-837
    [106] Bergqvist D., Efsing H.O., Hallbr??k T., et al. Prevention of postoperative thromboembolic complications[J]. Acta Chirurgica Scandinavica, 1980, 146: 559-568
    [107] Baba M., Nakajima M., Schols D., et al. Pentosan polysulfate, a sulfated oligosaccharide, is a potent and selective anti-HIV agent in vitro[J]. Antiviral Research, 1988, 9(6): 335-343
    [108] Koch P., Hindi S., Landwehr D. Delayed allergic skin reactions due to subcutaneous heparin-calcium, enoxaparin-sodium, pentosan polysulfate and acute skin lesions from systemic sodium-heparin[J]. Contact Dermatitis, 1996, 34(2): 156-158
    [109] Marshall J.L., Wellstein A., Rae J., et al. Phase I trial of orally administered pentosan polysulfate in patients with advanced cancer[J]. Clinical Cancer Research, 1997, 3: 2347-2354
    [110] Waters M.G., Suleskey J.F., Finkelstein L.J., et al. Interstitial cystitis: a retrospective analysis of treatment with pentosan polysulfate and follow-up patient survey[J]. Journal of the American Osteopathic Association, 2000, 100(3): 13-18.
    [111] Sairanen J., Tammela T.L., Leppilahti M., et al. Cyclosporine A and pentosan polysulfate sodium for the treatment of interstitial cystitis: a randomized comparative study[J]. Journal of Urology, 2005, 174(6): 2235-2238.
    [112] Binder I., Rossbach G., van Ophoven A. The complexity of chronic pelvic pain exemplified by the condition currently called interstitial cystitis[J]. Aktuelle Urologie. 2008, 39(4): 289-297
    [113] Fiserova M., Opalena E., Farkas J.. Effect of hemicelluloses on the papermaking properties of pulps prepared from poplar wood [J]. Cellulose Chemistry and Technology, 1987, 21(4): 419-430
    [114] Laffend K. B., Swenson H. A. Effect of acetyl content of glucomannan on its sorption onto cellulose and on its beater additive properties I. Effect on sorption[J]. TAPPI Journal, 1968, 51 (3): 118-123
    [115] Bhaduri S.K., Ghosh I.N., Deb Sarkar N.L.. Ramie hemicellulose as beater additive inpapermaking from jute-stick kraft pulp[J]. Industrial Crops and Products, 1995, 4(2): 79-84
    [116] Lima D. U., Oliveira R.C., Buckeridge M. S.. Seed storage hemicelluloses as wet-end additives in papermaking[J]. Carbohydrate Polymers, 2003, 52(4): 367-373
    [117] Antal M., EbringrováA.. Hemicellulosen aus Espenholzmehl und ihr Einsatz in der Papierherstellung[J]. Das Papier, 1991, 45(5): 232-235
    [118] Cloetens L., Vicky De P., Swennen K., et al. Dose-Response effect of arabinoxylooligosaccharides on gastrointestinal motility and on colonic bacterial metabolism in healthy volunteers[J]. Journal of the American College of Nutrition, 2008, 27(4): 512-518
    [119] Mod R. R., Conkerton E. J., Ory R. L., et al. Hemicellulose composition of dietary fiber of milled rice and rice bran[J]. Journal of Agricultural and Food Chemistry, 1978, 26(5):1031-1035
    [120] Yadav M.P., Parris N., Johnston D.B., et al.. Fractionation, Characterization, and Study of the Emulsifying Properties of Corn Fiber Gum[J]. Journal of Agricultural and Food Chemistry, 2008, 56(11): 4181-4187
    [121] Zhang Y.H.P., Ding S.Y., Mielenz J.R., et al. Fractionating recalcitrant lignocellulose at modest reaction conditions[J]. Biotechnology and Bioengineering, 2007, 97(2):214-223
    [122] Gabrielii, I.; Gatenholm, P. Preparation and properties of hydrogels based on hemicellulose[J]. Journal of Applied Polymer Science, 1998, 69(8): 1661-1667
    [123] Kayserilioglu, B. S., Bakir, U., Yilmaz, L., et al. Use of xylan, an agricultural by-product, in wheat gluten based biodegradable films: mechanical, solubility and water vapor transfer rate properties[J]. Bioresource Technology, 2003, 87(3): 239-246
    [124] Gabrielii, I., Gatenholm, P., Glasser, W.G., et al. Separation, characterization and hydrogel-forming of hemicellulose from aspen wood[J]. Carbohydrate Polymers, 2000, 43(4): 367-374
    [125] Goksu E. I., Karamanlioglu M., Bakir U., et al. Production and characterization of films from cotton stalk xylan[J]. Journal of Agricultural and Food Chemistry, 2007, 55(26): 10685-10691
    [126] Mussatto S. I., Roberto I. C.. Optimal Experimental condition for hemicellulosichydrolyzate treatment with activated charcoal for xylitol production[J]. Biotechnology Progress, 2004, 20(1): 134-139
    [127] Canilha L., Carvalho W.; das Gra?as Almeida Felipe M., et al.. Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation[J].Brazilian Journal of Microbiology, 2008, 39(2): 333-336
    [128] Canilha L., Almeida e Silva J. B. , Felipe M. G.A., et al. Batch xylitol production from wheat straw hemicellulosic hydrolysate using Candida guilliermondii in a stirred tank reactor[J]. Biotechnology Letters, 2003, 25(21): 1811-1814
    [129] Liaw W.C., Chen C.S., Chang W.S., et al.. Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79[J]. Journal of Bioscience and Bioengineering, 2008, 105(2): 97-105
    [130] Kim, S.Y., Oh, D.K., Kim, J.H.. Evaluation of xylitol production from corn cob hemicellulose hydrolysate by Candida parapsilosis[J]. Biotechnology Letters, 1999, 21(10): 891-895
    [131] Mussatto S.I., Roberto I.C.. Kinetic behaviour of Candida guilliermondii yeast during xylitol production from highly concentrated hydrolysate[J]. Process Biochemistry, 2004, 39(11): 1433-1439
    [132] Courtin C.M., Delcour J.A.. Physicochemical and bread-making properties of low molecular weight wheat-derived arabinoxylans[J]. Journal of Agricultural Food Chemistry 1998, 46(10): 4066-4073
    [133] Courtin C. M., Delcour J. A.. Arabinoxylans and endoxylanases in wheat flour bread-making[J]. Journal of Cereal Science, 2002, 35(3):225-243
    [134] Hromadkova Z., EbringerováA.. Isolation and characterization of hemicelluloses from corn hulls[J]. Chemical Papers, 1995, 49(2): 97-101
    [135] Kindel P.K., Liao S.Y., Liske M.R. et al.. Arabinoxylans from rye and wheat seed that interact with ice[J]. Carbohydrate Research, 1989, 187(2):173-185
    [136]张盆,胡惠仁,石淑兰.半纤维素的应用[J].天津造纸, 2006, 28(2): 16-18
    [137]宋建新,李洪菊,苗林.玉米秆作为纤维原料和能源的研究[J].中华纸业, 2010,31(12): 84-86
    [138]孙竹莹,郭升民.玉米秸杆皮穰分离及其制浆试验[J].中华纸业, 2001, 22(5): 41-42
    [139]韩金梅,孔凡功,王彪.甜高梁秆渣制浆性能的研究[J].中国造纸, 2007, 26(5): 18-20
    [140] Ragauskas A.J., Nagy M., Kim D.H., et al.. From wood to fuels: integrating biofuels and pulp production[J]. Industrial Biotechnology, 2006, 2(1): 55-65
    [141] Huang H.J., Ramaswamy S., Al-Dajani W.W., et al.. Process modeling and analysis of pulp mill-based integrated biorefinery with hemicellulose pre-extraction for ethanol production: A comparative study. Bioresource Technology, 2010, 101(2): 624-631
    [142] Davis M.W. A rapid modified method for compositional carbohydrate analysis of lignocellulosics by high pH anion-exchange chromatography with pulsed amperometric detection(HPAEC/PAD)[J]. Journal of Wood Chemistry and Technology, 1998, 18(2): 235-252
    [143]童国林,陆琦,汪鋆等.硅钼蓝光度法测定稻草原料及烧碱法制浆黑液的硅含量[J].中华纸业, 2005, 26(8): 64-66
    [144] Sun R. C., Fang J. M., Tomkinson J., et al. Fractional isolation, physic-chemical characterization and homogeneous esterification of hemicelluloses from fast-growing poplar wood[J]. Carbohydrate Polymers, 2001, 44(1): 29-39
    [145]王晓平.关于半纤维素对纸张物理强度的影响[J].皖西学院学报, 2005, 21(5): 47-48
    [146] Methacanona P., Chaikumpollertb O., Thavornitia P., et al. Hemicellulosic polymer from Vetiver grass and its physicochemical properties[J]. Carbohydrate Polymers, 2003, 54(3):335–342
    [147] Sun J. X., Sun X. F., Sun R. C., et al. Fractional extract ion and structural characterization of sugarcane bagasse hemicelluloses[J]. Carbohydrate Polymers, 2004, 56 (2): 195-204
    [148]秦豫,邬义明.各类半纤维素作结合剂对浆张强度性能的影响及其比较[J].中国造纸学报, 1987, 2(1): 46-60
    [149] Simola J., Malkavaara P., Alén R., et al. Scanning probe microscope of pine and birch kraft pulp fibers[J]. Polymer, 2000, 41(6): 2121-2126
    [150] Gustafsson J., Ciovica L., Peltonen J.. The ultrastructure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS)[J]. Polymer, 2003, 44(3): 661-670
    [151] Liu S. J. A kinetic model on autocatalytic reactions in woody biomass hydrolysis[J]. Journal of Biobased Materials and Bioenergy, 2008, 2(2):135-147
    [152] Sattler C., LabbéN., Harper D., et al. Effects of hot water extraction on physical and chemical characteristics of Oriented Strand Board (OSB) wood flakes[J]. Clean-Soil, Air, Water, 2008, 36(8): 674-681
    [153] Liu S.J., Amidon T. E., Francis R. C., et al. From forest biomass to chemicals and energy biorefinery initiative in New York State[J]. Industrial Biotechnology, 2006, 2(2):113-120
    [154]姜聚慧,石起增,陈华军.反相高效液相色谱法测定糠酸和糠醇[J].色谱, 2005, 23(1): 110
    [155] Banerjee, N., Bhatnagar R., and Viswanathan L.. Inhibition of glycolysis by furfural in Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 1981, 11(4): 226-228
    [156] Wikandari R., Millati R., Syamsiyah S., et al. Effect of furfural, hydroxymethylfurfural and acetic acid on indigeneous microbial isolate for bioethanol production[J]. Agricultural Journal, 2010, 5(2):105-109
    [157] Klinke H. B., Thomsen A. B., Ahring B. K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass[J]. Applied Microbiology and Biotechnology, 2004, 66(1): 10-26
    [158] Delgenes J. P., Moletta R., Navarro J. M. Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae[J]. Enzyme and Microbial Technology, 1996, 19(3): 220-225
    [159] Helle S., Cameron D., Lam J., et al. Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae[J]. Enzyme and Microbial Technology, 2003, 33(6): 786-792
    [160] Vroom K. E. The H factor: a means of expressing cooking times and temperatures as asingle variable [J]. Pulp and Paper Magazine of Canada, 1957, 58 (3): 228-231
    [161] Saeman J.F. Kinetics of wood saccharification hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature[J].Industrial and Engineering Chemistry, 1945, 37(1): 43-52
    [162] Jacobsen S. E., Wyman C. Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes[J]. Applied Biochemistry and Biotechnology, 2000, 84-86(1-9): 81-89
    [163] Vila C., Romero J., Francisco J.L., et al. Extracting value from Eucalyptus wood before kraft pulping: Effects of hemicelluloses solubilization on pulp properties[J]. Biresource Technology, 2011, 102(8): 5251-5254
    [164] Mends C.V.T., Carvalho M.G.V.S., Baptista C.M.S.G., et al. Valorisation of hardwood hemicelluloses in the kraft pulping process by using an integrated biorefinery concept[J]. Food and Bioproducts Processing, 2009, 87(3): 197-207
    [165] Liu S.J., Gangesh M., Thomas A., et al. Effect of Hot-Water Extraction of Woodchips on the Kraft Pulping of Eucalyptus Woodchips[J]. Jouranl of Biobased Materials and Bioenergy, 2009, 3(4): 363-372
    [166] Lei Y.C., Liu S.J., Li J., et al. Effect of hot-water extraction on alkaline pulping of bagasse[J]. Biotechnology Advances, 2010, 28(5): 609–612
    [167] Ren J. L., Sun R. C., Liu C. F. Acetylation of wheat straw hemicelluloses in ionic liquid using iodine as a catalyst[J]. Carbohydrate Polymers, 2007, 70: 406-414
    [168]廖强强,李义久,相波,等.二乙基二硫代氨基甲酸钠与Cu2+、Pb2+、Cd2+、Ni2+的络合性研究[J].精细化工, 2008, 25(3): 251-254
    [169] Johnson, D.B., Moore W.E., Zank L.C. The spectrophotometric determination of lignin in small wood samples[J]. TAPPI Journal, 1961, 44(11): 793-798
    [170] Morrison I.M. Lignin-carbohydrate complexes from Lolium perenne[J]. Phytochemistry, 1974, 13(7): 1161-1165
    [171] Bagby M.O., Cunningham R.L., Maloney R.L. Ultraviolet spectra determination of lignin[J]. TAPPI Journal, 1973, 56(4): 162-163
    [172] Yaku F., Tanaka R., Koshijima T. Lignin carbohydrate complex. Pt. IV. Lignin as side chain of the carbohydrate in Bj?rkman LCC[J]. Holzforschung, 1981, 35(4):177-181
    [173] Sun R. C., Fang J. M., Rowlands P., et al. Physicochemical and thermal characterization of wheat straw hemicelluloses and cellulose[J]. Journal of Agriculture Food &Chemistry, 1998, 46(7): 2804-2809
    [174] Kacurakova M, Belton P S, Wilson R H, et al. Hydration properties of xylan-type structures: an FTIR study of xylo-oligosaccharides[J]. Journal of the Science of Food and Agriculture, 1998, 77(1): 38-44
    [175]张惟杰.糖复合物生化研究技术[M].第二版.浙江:浙江大学出版社,1999: 194
    [176] Marchessault R.H., Liang C.Y. The infrared spectra of crystalline polysaccharides. VIII. xylans[J]. Journal of Polymer science, 1962, 59(168): 357-378
    [177] Chaikumpollert O., Methacanon P., Suchiva K. Structural elucidation of hemicelluloses from Vetiver grass[J]. Carbohydrate Polymers, 2004, 57(2): 191-196
    [178] Sun X.F., Sun R.C., Fowler P., et al. Extraction and characterization of original lignin and hemicellulose from wheat straw[J].Journal of Agricultural and Food Chemistry, 2005, 53(4), 860-870
    [179] Jacquet G., Pollet B., Lapierre C., et al. New ether-linked ferulic acid-coniferyl alcohol dimers identified in grass straws[J]. Journal of Agricultural Food Chemistry, 1995, 43(10): 2746-2751
    [180] Evtuguin D.V., Tomás J.L., Silva A.M.S., et al. Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill[J].Carbohydrate Research, 2003, 338(7): 597-604
    [181] Teleman A., Lundqvist J., Tjerneld F., et al. Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy[J]. Carbohydrate Research, 2000, 329(4): 807-815
    [182] EbringerováA., Heinze T. Xylan and xylan derivatives biopolymers with valuable properties, 1. Naturally occuring xylans structures, isolation procedures and properties[J]. Macromolecular Rapid Communications, 2000, 21(9): 542-556
    [183] Izydorczyk M. S., Biloaderis C. G. Cereal arabinoxylans: advances in structure and physico-chemical properties[J]. Carbohydrate Polymers, 1995, 28(1): 33-48
    [184] Yang H.P., Yan R., Chen H.P., et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12-13): 1781-1788
    [185] Lloyd L. L., Kennedy J. F., Methacanon P., et al. Carbohydrate polymers as wound management aids[J]. Carbohydrate Polymers, 1998, 37(3): 315-322
    [186] Miraftab M., Qiao Q., Kennedy J. F., et al. Fibres for wound dressings based on mixed carbohydrate polymer fibres[J].Carbohydrate Polymers, 2003, 53(3): 225-231
    [187] Weitz J. New anticoagulant strategies. Current status and future potential[J]. Drugs, 1994, 48(4): 485-497
    [188] Linhardt R. J., Loganathan D., Al-Hakim A. et al. Oligosaccharide mapping of low-molecular-weight heparins: structure and activity differences[J].Journal of Medical Chemistry,1990, 33(6):1639-1645
    [189] Hirsh J. Current anticoagulant therapy-unmet clinical needs[J]. Thrombosis Research, 2003, 109(S):S1-S8
    [190] Nikapitiya C., Zoysa M. D., Jeon Y., et al. Isolation of sulfated anticoagulant compound from fermented red seaweed grateloupia filicina[J]. Journal of the World Aquaculture Society, 2007, 38(3): 407-417
    [191] Alban S., Schauerte A., Franz G. Anticoagulant sulfated polysaccharides: Part I. Synthesis and structure activity relationship s of new pullulan sulfates[J]. Carbohydrate Polymers, 2002, 47(2): 267-276
    [192] EbringerováA., HromadkováZ. Xylans of industrial and biomedical importance[J]. Biotechnology and Genetic Engineering Reviews, 1999, 16: 325-346
    [193] Elliot S.J., Striker L.J., Stetler-Stevenson W.G. et al. Pentosan polysufate decreases proliferation and net extracellular matrix production in mouse mesangial cells[J]. Journal of the American Society of Nephrology. 1999, 10(1): 62-68
    [194] Giedrojc J., Radziwon P., Klimiuk M., et al. Experimental studies on the anticoagulant and antithrombotic effects of sodium and calcium pentosan polysulfate[J]. Journal of Physiological Pharmacology, 1999, 50(1): 111-119
    [195] Ghosh P. The Pathobiology of osteoarthritis and the rationale for the use of pentosan polysulfate for its treatment[J]. Seminars in Arthritis Rheumatism, 1999, 28(4): 211-267
    [196] Mour?o P.A.S., Boisson-Vidal C., Tapon-Bretaudière, J., et al. Inactivation of thrombin by a fucosylated chondroitin sulfate from echinoderm[J].Thrombosis Research, 2001,102(2): 167-176
    [197] Yang J.H., Du Y.M., Wen Y., et al. Sulfation of Chinese lacquer polysaccharides in different solvents[J]. Carbohydrate Polymers, 2003, 52 (4): 397-403
    [198] Reichardt C., Welton T. Solvents and solvent effects in organic chemistry[M]. Fourth edition. Weinheim: Wiley-VCH Verlag & Co. KGaA, 2011:544
    [199] Lima M. A., Rudd T.R., De Farias E.H.C., et al. A new approach for heparin standardization: Combination of scanning UV spectroscopy, nuclear magnetic resonance and principle component analysis[J]. Plos One, 2011, 6(1): 1-9
    [200] De Micalizzi Y.C., Pappano N.B., Debattista N.B. First and second order derivative spectrophotometric determination of benzyl alcohol and diclofenac in pharmaceutical forms[J]. Talanta 1998, 47(3): 525-530
    [201] Gershanik J., Boecler B., Ensley H., et al. The gasping syndrome and benzyl alcohol poisoning[J].The New England Journal of Medicine, 1982, 307: 1384-1388.
    [202] Cebula T.A., El-Hage A.N., Ferrans V.J. Toxic interactions of benzyl alcohol with bacterial endotoxin[J]. Infection and Immunity, 1984, 44(1): 91-96
    [203]陈群.茯苓硫酸酯化多糖的制备及其核磁共振波谱分析[J].安徽农业科学, 2010, 38(1): 45-47
    [204] Daus S., Petzold-Welcke K., K?tteritzsch, M., et al. Homogeneous Sulfation of xylan from different sources[J]. Macromolecular Materials and Engineering, 2011, 296(6): 551-561
    [205]周爱儒.生物化学与分子生物学[M].北京:人民卫生出版社, 2001
    [206]杨宝峰.药理学[M].第六版.北京:人民卫生出版社, 2007: 292
    [207]朱立华.实验诊断学[M].北京:北京医科大学出版社, 2002: 144-146
    [208]魏经建,邵树军,王天元.硫酸酯化多糖化学及临床应用研究进展[J].中国生化药物杂志, 1999, 20(5): 260-262
    [209] Witvrouw M., Desmyter J., De Clercq E. Antiviral portrait series: 4. Polysulfates as inhibotors of HIV and other enveloped viruses[J].Antiviral Chemistry & Chemotherapy, 1994, 5(6): 345-359

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700