大型水库分层取水下泄水温模型试验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型水库兴建后,库内水体流动缓慢或趋于静止,形成庞大的静止水域,由于来自太阳和大气的辐射以及水体的物理性质的共同作用,形成了与天然河道不同的水温分布特性,水体在垂向呈现季节分层的现象。已建的大型水库,进水口多采用靠近水库底部的取水方式,下泄水温与下游天然河道有着显著差异,由于水库水温沿垂向的分层特性,下泄水温多偏低,故对下游河道的生态环境会造成不良影响。为保证下游河道的生态用水需要,分层取水措施正逐步应用于大型水库水电站进水口的设计中。
     本文主要通过物理模型试验与数值模拟相结合的方法,对大型水电站下游生态用水要求而采取的分层取水进水口的下泄水温进行研究,以糯扎渡水电站分层取水进水口为背景,研究大型水库分层取水的下泄水温,探求水库水温分层、叠梁门高度、下泄水温之间的关系,分析水库分层对取水过程的影响,探讨分层取水的取水范围与下泄水温的形成机理。最后总结下泄水温的规律,为大型水电站分层取水进水口的设计提供参考依据。主要的研究内容和成果如下:
     (1)总结分析了国内外水库水温分层的研究进展。介绍了水库水温分层的形成、低温下泄水对生态坏境的影响以及减免下泄低温水影响的措施,并对水库水温的预测方法和试验方法进行了介绍。
     (2)分析了水库水温分层取水模型试验的相似关系。依据连续性方程、运动方程和能量方程,考虑水库分层取水的流动特点,对水库水温模型相似进行了理论分析。在几何相似的前提下,保证库区弗劳德数相等和密度弗劳德数相等,得到了模型与原型下泄水温的换算关系,且正确性得到了原型观测资料的验证。
     (3)建立了糯扎渡水电站分层取水进水口物理模型,采用直接加热水体的方法模拟水库水温。在水库垂向水温分布已知的条件下,试验得到了典型平水年的下泄水温,分析下泄水温的变化规律,为水电站进水口的实际运行提供依据。而后,在水温分布与水位不变的情况下,研究了叠梁门高度对下泄水温的影响;在不同水库水温分布的情况下,讨论下泄水温升高幅度与水温分布间的关系;在淹没深度相同时,分析下泄水温的变化。
     (4)详细介绍了Flow-3D数值模型,以此为基础建立精细的进水口三维数学模型,模拟大型水库分层取水的过程,并利用物理模型试验值对其进行验证。模型能够反映进水口细部体型,且具有较高模拟精度。通过水库水温分层与水体均一情况的对比计算,分析了水温分层情况下进水口水体的流动特性。利用三维数学模型,得到进水口附近取水时流动与温度分层共同作用下的温度场和流场,分析下泄水温的形成机理;对下泄水体的主要来源进行了分析,得到了下泄水温对应水库水温分布中的位置。
After the construction of a large reservoir, a large area of backwater field isformed. And because of the physical chemistry characteristics of water and thefunction of the radiation of the sunlight and the atmosphere, the water temperaturedownstream which is totally different from original river is formed and the characterof the water temperature is distribution of seasonal stratification. The meaner ofbottom withdrawal from reservoir are adopted in large reservoir. But the character ofthe stratification in reservoir and the lower water temperature released will haveharmful effects on the environment downstream. And in order to satisfy the ecologicalwater in downstream, selective withdrawal is adopted gradually in the design of thehydropower station of large reservoir.
     Based on the multi-level intake of Nuozhadu Reservoir, this paper mainly studiedthe water temperature released from stratification reservoir via model experiment andnumerical simulation, searched the relationship of the water stratification, the heightof stop-logs gate and the water temperature released and discussed the formation ofthe water temperature released. At last this paper summed up the disciplinarian of thewater temperature released and the results provided theoretical basis for the design ofselective withdrawal in large reservoirs. The main contents and conclusions are asfollowed:
     (1) A review of temperature distribution and selective withdrawal was made. Theformation of the characteristics of the stratification in reservoir, the effects oflower-temperature released on the downstream environment, and the measures ofalleviation of the effects mentioned above was introduced, and the method ofprediction and experiment was also presented.
     (2) Similarity relationship of water temperature experiment for selectivewithdrawal from reservoirs was analyzed. Based on continuity equation, motionequation and heat balance equation, and considering the flow features of selectivewithdrawal the similarity relationship of water temperature experiment was analyzed.In the condition of the geometry similarity, ensure the the equality of Froude numberand density Froude number in the reservoir of prototype and experiment respectively.And the relationship for conversion of water temperature between model andprototype had been proposed. And the results were consistent with those in prototype.
     (3) A model experiment was conducted based on multi-level intake in NuozhaduHydropower station, by heating up water directly to realize the thermal stratificationin reservoir. The water temperature released was gained via the experiment, and thevariations of the water temperature released were analyzed. On the condition of thefixedness of the water temperature distribution and water level, the variety of thewater temperature released with the height of the stop logs gate was studied; on thecondition of different water temperature distributions, the relationship of the increasescope of the water temperature released and the water temperature distribution wasdiscussed; and on the condition of the same submerge depth, the water temperaturereleased also was analyzed.
     (4) An comprehensive introduction of the Flow-3D model was made in the paper,and based on the model a refined3-D intake model was established to simulate theselective withdrawal. And the model results had a good agreement with that in theexperiment. The flow characteristics near the intake in case of thermal stratificationwere analyzed via the comparison of the thermal stratification and homogeneoustemperature in reservoir. The temperature field and flow field near the intake weregained. And the formation of the water temperature released and the position of thewater temperature released in the thermal stratification were analyzed.
引文
[1]中华人民共和国水利部.2006年全国水利发展统计公报[R].北京:水利部,2007
    [2]贾金生,袁玉兰,郑璀莹等.中国水库大坝统计和技术进展及关注的问题简论[J].水力发电,2010,36(1):4-10
    [3]刘仲桂.水库水温与水稻丰产灌溉[M].北京:水利电力出版社,1985
    [4] K.Michioku, T.Kanda, T.Itoh et al Water quality behavior in a reservoir havinganaerobic heavy bottom layer coupled with inverse temperature gradient[J].Eviroment and Coast Hydraulics. IAHR,Vol.1, San Francisco, California,1997.8,10-15:100-105
    [5] Vermeyen T. B. Hungry Horse selective withdrawal system evaluation2000–2003[R]. U.S. Department of the Interior Bureau of ReclamationTechnical Service Center Hydraulic Investigations and Laboratory GroupDenver, Colorado September2006
    [6] Bartholow J., Hanna R. B. Saito L. et.al Simulated limnological effects of theshasta lake temperature control device [J]. Environmental Management,2001,27(4):609–626
    [7] Eliseev N. A., Koren'kov V. A., Lyapin V. E. et al Approximation of thetemperature regime of a river to the natural in the lower pool of the a high-headhydro development by selective withdrawal[J]. Translated fromGidrotekhnicheskoe Stroitel'stvo,1993.6:10-17, Power Technology andEngineering,1993,27(6):321-329
    [8] Sherman B. Hume Reservoir thermal monitoring and modelling-final report [R].CSIRO Land and Water Client, Adelaide Sinclair, Knight, Merz, BendigoBaker McKenzie, Sydney,2005.4
    [9]蔡为武.水库及下游河道的水温分析[J].水利水电科技进展,2001,21(5):20-23
    [10]刘金禄.水库水温结构划分的模糊回归预测模型及其应用[J].水资源与水工程学报,2004,15(3):54-58
    [11]黄永坚.水库分层取水[M].北京:水利电力出版社,1985
    [12] Riera J. L., Jaume D., Manuel J De. et al Patterns of variation in the limnologyof Spanish reservoirs: a regional study [J]. Limnetica,1992(8):111–123
    [13]刘宁,江春波,陈永灿.三峡蓄水初期水库近坝区水环境特性分析[J].水利学报,2006,37(12):1447-1453
    [14]张宏安,伊国栋.黄河三门峡水库不同运行期水温状况分析[J].西北水电,2002,(1):17-19
    [15] Richard W. LaFond. Evaluation of selective withdrawal concepts for GlenCanyon Dam [A]. Proceedings of Waterpower [C]. Las Vegas, July4-9,1999
    [16]杜效鹄.沙斯塔大坝分层取水改建设计[J].水力发电,2008,34(3):17-19
    [17]吴莉莉,王惠民,吴时强.水库的水温分层及其改善措施[J].水电站设计,2007,23(3):97-99
    [18] Sherman B. Scoping option for mitigating cold water discharge from dams[R].CSIRO Land and Water,Cabnberra,2000.5
    [19] Johnson P.L. Hydro-power intake design considerations [J]. Journal ofHydraulic Engineering.1988114:651-661
    [20] Howington S.E. Intake structure operation study: Elk Creek Dam [R]. Oregon.National Technical Information Service, U.S. Army Engineer WaterwaysExperiment Station, Vicksburg, Mississipi,1990
    [21] Price R.E. Meyer E.B.Water operations technical support program[R]. TechnicalReport E-89-1: Water quality management for reservois and tailwaters. Report2:Operational and structural water quality enhancement techniques Department ofthe Army, Waterways Experiment Station, Corps of Engineering, Vicksburg,1986
    [22] Lee K. S. Determination of selective withdrawal system capcity for intake towerdesign [A]. Proceedings: CE Workshop on design and operation of selectivewithdrawal intake structure [C].1985.6.24-28, San Francisco, CA
    [23] Vovk F., Horihan L. S. Water quality outlet Warm Springs Dam [A].Proceedings: CE Workshop on design and operation of selective withdrawalintake structure [C].1985.6.24-28, San Francisco, CA
    [24] Cassidy R.A. Reservoir regulation and selective withdrawal in Oregon [A].Proceedings: CE Workshop on design and operation of selective withdrawalintake structure [C].1985.6.24-28, San Francisco, CA
    [25]李剑明.分层取水技术改造在清凉山水库的应用[J].广东水利水电,2008(3):21-25
    [26] Boles G. L. Water temperature and control in Lewiston Reservoir for fisheryenhancement at Trinity River hatchery in Northern California[R]. CaliforniaDepartment of Water Resources, Red Bluff, CA,1985
    [27] Bohac C. E. Underwater dam and embayment aeration for striped bass refuge [J].Journal of Environmental,1989.115(2):428-446
    [28] Vermeyen T. B. Use of temperature control curtains to control reservoir releasewater temperatures[R]. Bureau of Reclamation,1997
    [29] Shammaa Y, Zhu D Z. Experimental study on selective withdrawal in atwo-layer reservoir using a temperature-control curtain [J]. Journal of hydraulicengineering,2010,136(4):234-246
    [30]中华人民共和国水利部.水利水电工程水文计算规范[S].北京:中国水利出版社,2002
    [31]国家环境保护总局环境工程评估中心.水利水电建设项目河道生态用水、低温水和过鱼设施环境影响评价技术指南(试行)[S].北京:中国水利出版社,2006
    [32]朱伯芳.库水温度估算[J].水利学报,1985,(2):12-21
    [33]张大发.水库水温分析及估算[J].水文,1984,(1):19-27
    [34]李怀恩.分层型水库的垂向水温分布公式[J].水利学报,1993,(2):43-49
    [35]中南勘测设计研究院《水工建筑设计规范》编制组.水库水温的统计分析
    [M].北京:中国电力出版社,1998
    [36]鞠石泉,苏怀智,侯玉成等.简述水库水温预测计算方法[J].水电能源科学,2004,22(3):74-77
    [37] Orlob G. T. Mathematical modeling of water quality: streams, lakes, andreservoirs [J]. Journal of Hydrology,1983,77:379-380
    [38] Orlob G. T., Selna L. G. Temperature variation in deep reservoirs [J]. Journal ofthe Hydraulics Division, ASCE,1970,96:391-410
    [39] Harleman D. R. F. Hydrothermal analysis of lakes and reservoirs [J]. Journal ofthe Hydraulics Division, ASCE,1982,108:301-325
    [40] Huber W. C., Harleman D.R.E Temperature prediction in stratified reservoirs [J].Journal of the Hydraulics Division, ASCE,1972,98:645-666
    [41]安艺周一,白砂孝夫.水库流态的模拟分析[A].大型水利工程环境影响文集[C].长江水资源保护局译,1981
    [42]安艺周一.水库水质的性状和预测[A].大型水利工程环境影响文集[C].长江水资源保护局译,1981
    [43] Stefan H. G., Ford D. E. Temperature dynamics in dimictic lakes [J]. Journal ofthe Hydraulics Division, ASCE,1975,101:97-114
    [44] Ford D. E., Stefan H. G. Thermal prediction using integral energy model [J].Journal of the Hydraulics Division, ASCE,1980,106:39-55
    [45] Imberger J., Panerson J., Hebbert B. et al Dynamics of reservoir of medium size[J]. Journal of the Hydraulics Division, ASCE,1978,104:725-743
    [46] Sturm T.W., Fulford J.M., Fay K. J. Lake temperature dynamics in hybridcooling system [J]. Journal of Environment Engineering, ASCE,3,109,1983
    [47] Graillard J. Multilevel withdrawal and water quality [J]. Journal of EnvironmentEngineering, ASCE.1984,110(1):123–130
    [48] Graeme C. H, Sherman B. S. Patterson J. C. Algorithm for selective withdrawalfrom stratified reservoir[J]. Journal of Hydraulic Engineering,1988,114(7):707-719
    [49]范乐年,柳新之.湖泊、水库和冷却池水温预报通用模型[M].水利水电科学研究论文—第17集(冷却水),北京:水利电力出版社,1984
    [50]李怀恩,沈晋.一维垂向水库水温数学模型研究与黑河水库水温预测[J].陕西机械学院院报,1990,(4):234-243
    [51]沈晋,沈冰,李怀恩等.环境水文学[M].安徽:安徽科学技术出版社,1992
    [52]陈永灿,张宝旭,李玉梁.密云水库垂向水温模型研究[M].水利学报,1998,(9):14-20
    [53]蒋红.水库水温计算方法探讨[J].水力发电学报,1999,65(2):60-69
    [54] Brian Henderson-Sellers. Role of eddy diffusivity in thermocline formation [J].Journal of Environment Engineering Division.1976,102(3):517-531
    [55] Adams E. E, Scott A. W, Edmond K. H. Vertical diffusion in a stratified coolinglake [J]. Journal of Hydraulic Engineering,1987,113(3):293-307
    [56] Ellis C. R., Stefan H. G. Vertical diffusion in small stratified lake: data and erroranalysis [J]. Journal of Hydraulic Engineering,1991,117(10):1352-1369
    [57] Hondzo M., Stefan H G. Lake water temperature simulation model [J]. Journalof Hydraulic Engineering,1992,119,(11):1251-1273
    [58] Hondzo M., Stefan H G. Three case studies of lake temperature and stratificationresponse to warmer climate [J]. Water Resources Research,1991,27(8):1837-1846
    [59] Aldama A. A., Harleman D. R. F., Admas E. E.. Hypolimnetic mixing in aweakly stratified lake [J]. Water Resources Research,1989,25(5):1014-1024
    [60] Rodi. W. Prediction method for turbulent flows [M]. New York: McGraw-HillInternational Book Company,1980
    [61] Edinger J.E., Buehck E.M. A hydrodynamic, two-dimensional reservoir model:the computational basis [R]. Prepared for US Army Engineer, Ohio RiverDivision, Cineinnati, Ohio,1975
    [62] Buehak E. M., Edinger J. E. User guide for LARM2: A longitudinal-verticaltime-varying hydrodynamic reservoir model [R]. Instruction Report E-82-3, U.S. Army Corps of Engineerings, Waterways Experiment Station, Vicksburg,Miss, USA.,1982
    [63] Johnson B. H. A review of multidimensional reservoir hydrodynamic modeling
    [A]. Surface Water Impoundments: Proc of the Symp on Surface WaterImpoundments [C]. Stefan H F. New York: ASCE,1980:497-507
    [64] Johnson B. H. A review of numerical reservoir hydrodynamic modeling [R]. U.S.Army Engr. Waterways Experiment Station, Vicksburg, Miss.1981
    [65] Cole T., Buchak E., CE-QUAL-W2: A two-dimensional, laterally averaged,hydrodynamic and water quality model, Version1.0[R]. Teehnieal ReportEI-95-l, U.S.Army Engineer Waterways Eperiment station, Vieksburg, MS,1986
    [66] Cole T., Buchak E., CE-QUAL-W2: A two-dimensional, laterally averaged,hydrodynamic and water quality model, Version2.0[R].Teehnieal ReportEI-95-l, U.S.Army Engineer Waterways Eperiment station, Vieksburg, MS,1995
    [67] Cole T., Buchak E., CE-QUAL-W2: A two-dimensional, laterally averaged,hydrodynamic and water quality model, Version3.1[R]. Teehnieal ReportEI-2002-l, U.S.Army Engineer Waterways Eperiment station, Vieksburg, MS,2002
    [68] Cole T., Buchak E., CE-QUAL-W2: A two-dimensional, laterally averaged,hydrodynamic and water quality model, Version3.6[R]. Teehnieal ReportEI-95-l, U.S.Army Engineer Waterways Eperiment station, Vieksburg, MS,2008
    [69] Kuo J. T., Wu J. H., Chu W. S. Water quality simulation of the Te-Chi Reservoirusing two-dimensional models [J]. Water Science and Technology,1994,30(2):63-73
    [70] Huang P., DiLorenzo J. L., Najarian T O. Mixed-layer hydrothermal reservoirmodel [J]. Journal of Hydraitlic Engineering,1994,120,(7):844-862
    [71]陈小红.湖泊水库垂向二维水温分布预测[J].武汉水利电力学院学报,1992,25(4):374-383
    [72]陈小红,刘美南,林艳珊.水库垂向二维水质分布研究[J].水利学报,1997,(4):9-16
    [73]江春波,张庆海,高忠信.河道立面二维非恒定水温及污染物分布预报模型.水利学报,2000,(9):20-24
    [74]邓云.大型深水库的水温预测模型:[博士学位论文],成都;四川大学,2003
    [75]邓云,李嘉,罗麟.河道型深水库的温度分层模拟[J].水动力学研究与进展A辑,2004,19(5):604-609
    [76]郝红升,李克锋,李然等.取水口高程对过渡型水库水温分布结构的影响[J].长江流域资源与环境,2007,16(1):21-25
    [77] Haque M. M., Koken.M., Constantinescu G. et al. Use of a3d RANS model topredict stratification effects related to fish passage at hydropower dams[A].Proceedings of the congress-international association for hydraulic research[C].2005(1):552-554
    [78] Politano M, Haque M. M., George S. et al. A three-dimensional thermal modelfor Mc Nary dam [A]. World Environmental and Water Resources Congress[C].Omaha, Nebraska, USA,2006.5
    [79]李凯.三峡水库近坝区三维流场温度场数值模拟:[硕士学位论文],北京:清华大学,2005
    [80]李冰冻,李克锋,李嘉等.水库温度分层流动的三维数值模拟[J].四川大学学报(工程科学版),2007,39(1):23-27
    [81]任华堂,陈永灿,刘昭伟.大型水库水温分层数值模拟[J].水动力学研究与进展A辑,2007,22(6):667-675
    [82]高学平,李妍,宋慧芳.糯扎渡水电站进水口分层取水数值模拟研究[J].水力发电学报,2010,29(6):132~137
    [83]李妍,高学平,徐茂杰等.水电站进水口水力特性数值模拟研究[J].水利水电技术,2010,41(1):29~32
    [84]徐茂杰.大型水电站取水口分层取水水温数值模拟:[硕士学位论文],天津;天津大学,2008
    [85]高学平,张少雄,张晨.糯扎渡水电站多层进水口下泄水温三维数值模拟[J].水力发电学报,2012,31(1):195-201
    [86]张少雄,高学平,张晨.糯扎渡水库流场及水电站下泄水温三维数值模拟
    [A].第四届水力学与水信息学大会[C].西安:西安交通大学出版社,2009,50-56
    [87] Zhang S. X., Gao X. P. Effects of selective withdrawal on temperature of waterreleased of Glen Canyon Dam [A]. The International Conference onEnvironmental Pollution and Public Health[C]. Cheng Du, China,2010.
    [88]张少雄,大型水库分层取水下泄水温研究:[博士学位论文],天津;天津大学,2012
    [89] Craya. A. Theoretical research on the flow of nonhomogeneous fluids [A]. LaHouille Blanche[C]. French,1949,4:44-55.
    [90] Gariel. P. Experimental research on the flow of nonhomogeneous fluids[A]. LaHouille Blanche[C]. French949.(1),54-64
    [91] Debler W R. Stratified flow into a line sink[J]. Journal of the EngineeringMechanics Division. ASCE,1959,85(3):51-65
    [92] Yih. C. S., On the flow of a stratified fluid[A]. The3rd US National Congress onApplied Mechanics[C].1958,857-861
    [93] Harleman D.R.F., Elder Rex A. Withdrawal from two-layer stratified flows[J].Journal of the Hydraulics Division,1965,7:43-57
    [94] Robert C. Y. Koh. Viscous stratified flow towards a line sink:[Phd disseration],Laboratory of Hydraulics and Water Resources Division of Engineering andApplied Science California Institute of Technology Pasadena, California,1964
    [95] Ettema R., Muste M., Odgaard A. J. et al. Lake Almanor cold-water feasibilitystudy: hydraulic model [RI IHR, Hydroscience&Engineering College ofEngineering, The University of Iowa Iowa City, Iowa2004.7
    [96]陈惠泉.冷却池水流特性和水工布置方面的几点总结[J].水利学报,1962,(5):8-17
    [97]陈惠泉.冷却水运动模型相似性的研究[J].水利学报,1988,(11):1-9
    [98]赵振国.冷却池试验模型律探讨[J].水利学报,2005,36(3):265-273
    [99]陈惠泉,岳钓堂.温差异重流与水面冷却问题[J].水利学报,1966,(1):21-36
    [100]高学平,赵耀南,陈弘.水库分层取水水温模型试验的相似理论[J].水利学报,2009,40(11):1374-1380
    [101]高学平,陈弘,王鳌然等.糯扎渡水电站多层进水口下泄水温试验研究[J].水力发电学报,2010,29(3):124-131
    [102]中国水利水电科学研究院,糯扎渡水电站分层取水水温预测数值分析报告
    [R].北京:2008.
    [103]Hirt C. W., Nichols, B. D., Volume of fluid (VOF) method for the dynamics offree boundaries [J]. Journal of Computational Physics,39(1):201-225
    [104]Zienkiewicz.有限元方法[M].北京:清华大学出版社,2008,36-75
    [105]Saad Y., Schultz M. H. GMRES: A generalized minimal residual algorithm forsolving nonsymmetric linear systerms [J]. SIAM Journal on Scientific andStatistical Computing,1986,7:854-869
    [106]Nachtigal N.M., Reichel L., Treferthenk L.N. A hybrid GMRES algorithm fornonsymmetric linear system [J]. SIAM Journal on Matrix Analysis andApplications,1992,13(3):794-825
    [107]Saad Y. Least squares polynomials in the complex plane and their use forsloving any linear systems [J]. SIAM Journal on Numerical Analysis,1987,24(1):155-169
    [108]Venkatakrishnan V. Preconditioned conjugate gradient methods for thecompressible Navier-Stokes equations [J]. AIAA Journal,1991,29(7):1092-1100
    [109]Hong L., Joseph D. B., Rainald L. A fast, matrix-free implicit method forcompressible flows on unstructured grids [J]. Journal of Computational Physics,1998,146(2):664-690
    [110]Yao G. F. Development of new pressure-velocity solvers in Flow-3D. FlowScience, Inc,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700