生物电阻抗断层成像系统在猪脑内血肿模型急性期实时监护的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     脑血管意外分为出血性脑血管病和缺血性脑血管病,是危害人类健康的最严重的杀手之一。每年因为脑血管意外引起的死亡人数在人类死亡原因中位列第三位,同时它也是致残率最高的疾病之一。早期诊断和早期治疗是降低脑血管意外致死率和致残率最好的办法,随着医学辅助技术的发展,尤其是CT和MRI的问世,大大解决了脑血管意外的早期诊断问题,也使得治疗取得了长足的进步。以往的观点认为脑出血,尤其是高血压脑出血的出血过程是单时像过程,很快就会停止,但是越来越多的证据表明血肿的进行性扩大以及再次出血的情况并不少见,这样临床症状的观察以及反复的辅助检查就成为脑出血患者进展期的唯一手段。但是由于现有的影像学检查办法如CT、MRI、TCD等仅仅能显示一个固定的时间点的颅内资料,无法提供一个连续的影像学资料,在两次复查CT之间只能通过医生观察临床症状和生命体征来判断病情有无变化,因此临床上迫切需要一种能够实时提供颅内血肿变化的监护系统。生物电阻抗是生物体的基本属性之一,电阻抗断层成像系统可以提供生物体电阻抗的变化情况。由于电阻抗断层成像技术具有无创无害、成本低廉、操作简便、功能成像等优点,适于进行长时间的图像监护。本实验在猪脑出血模型中应用生物电阻抗断层成像系统实时监护脑出血后猪脑内电阻抗变化状况,旨在提出一种能够实时观察颅内变化的新的监护系统。
     材料与方法
     物理模型试验采用一个半球形容器内放置一个用以模拟颅骨的内石膏壳构成。在球壳内注入饱和CaSO4溶液模拟脑组织和头皮。在半球形容器的内侧壁以等间隔的方式安放16个电极,用与血液电阻率一致的琼脂块来模拟血液在石膏壳模拟的颅腔内移动,观察EIT系统对血液信号的敏感性。
     实验动物采用体重15公斤左右的小猪28只,雌雄不限,术前12小时禁食,4小时禁水。其中打开颅骨状态下注射自体不抗凝动脉血4只,注射生理盐水组8只,注射蒸馏水组8只,保持颅腔完整性注血组8只。采用速眠新和3%戊巴比妥钠复合麻醉,术中给于维持量的戊巴比妥(10mg/kg·h),采用自体血注入的猪额叶脑出血模型。以双眼内龇连线为基准线,层距2mm行CT冠状扫描。根据CT扫描结果,选取双眼外眦连线旁正中1cm处为穿刺点并用颅钻钻孔。取股动脉血10ml,沿钻好的穿刺孔穿刺,进针2cm,用微量泵以40ul/s的速度将5ml动脉血(生理盐水或蒸馏水)在3分钟内注入猪脑。1小时后行CT复查,并计算血肿量。
     EIT测量采用16导联测量法,以猪头最长横径和前后径分别为长短径形成一个圆形的近似颅脑外界,将16个电极等间隔放置。注血前后实时连续监测至少30分钟。
     手术结束后将动物深度麻醉处死,完整取脑组织行大体观察。手术过程采用无菌术,手术过程用恒温毯保持动物体温在38.5度。
     结果:
     1物理模型结果提示模拟血液的琼脂块由“颅腔”内移动过程中,成像结果能相对较好地反映模型中出血区域的大小及位置。
     2所有动物造模均成功,出血模型血肿位置位于右侧额叶皮质下,大小为4.88±0.12ml。CT检查显示血肿形成,大体标本提示血肿形成,符合脑出血急性期病理改变。注蒸馏水及生理盐水模型大体可见注水针道位于脑额叶白质内。
     3 EIT结果背景期图像显示脑EIT值均一。去除颅骨注血组注血开始后,在注血区域可见明显的电阻抗值降低区域,注血停止后,电阻抗值缓慢回升。注射生理盐水组注射开始后,可见明显的信号降低区域,随注水量的增加逐渐降低,随后电阻抗维持一段时间的逐渐回升,注射蒸馏水组注射开始后,可见明显的信号升高区域,随注水量的增加逐渐升高,维持一段时间后逐渐回落;闭合式注血组注血开始后,在注血区域可见明显的电阻抗值升高区域,注血停止后,电阻抗缓慢下降;
     结论
     通过物理模型实验,发现EIT成像结果能相对较好地反映模型中出血区域的大小及位置。通过对去除颅骨后猪颅内注入非抗凝血模型的EIT监护研究,发现随着出血量的不断增加,出血灶区域的阻抗断层图像显示阻抗值逐渐降低。通过对猪颅内注入生理盐水、蒸馏水实验说明EIT图像能灵敏地反映猪颅内阻抗降低和升高的变化。通过闭合式猪颅内注入非抗凝血模型的建立及EIT监护实验图像的变化,提示颅内出血与颅内压的变化有显著相关、颅内压的变化及其代偿机制客观存在脑出血后颅内压变化的动态过程需要研究。
Background and objective
     Stroke includes two types: intracranial hemorrhage and brain infarction. It is one of the grisly killers of the people’s health. And it is one of the most common and dangerous disease with very high mortality & disability rate in alive people. Early detection and diagnosis are the keys to increase the survival rate and decrease the complications of the intracranial hemorrhage (ICH). Following the development of medical imageology, especially the CT and MRI application, early diagnosis became easy and facility and strength assist the earlier treatment. Former viewpoint about the intracranial hemorrhage deemed that the process of the brain hemorrhage was a single vector course, and would stop quickly. But the newer viewpoint considered that this process might be a incessancy process or appear repeated, and those was be approved during the clinical experience. Therefore the repeated clinical symptom observed and assistants examined are obligatory. However, nowadays imaging facility (CT, MRI, TCD et al) only offers incontinuous data, and can not persistent offer the correlative data. During the period of former and latter CT scans, surgeons obtain the accurate clinical data only through the clinical syndromes and heart electricity and breath monitor system. It brings much inconvenient and might affect the treatment in time. Consequently it pressed for a new monitor system that could supply the hemorrhage process in real time in clinical.
     Electrical bio-impedance is one of the instinctual properties of the organism. Electrical Impedance Tomography (EIT) can provide the variety of the electrical impedance during the pathological process. For EIT technique has the advantages of harmless,low cost, easy to use and functional imaging. Those features make it more fit for long time imaging monitoring. Therefore, in this study, we arrange to image monitoring the intracranial hemorrhage animal model use EIT technique. And try to obtain a new system for monitoring the skull’s impedance variation.
     Material and method
     We place a plaster hemispherical shell into a hemispherical container to simulate the skull layer and filling the container with CaSO4 saturated solution to simulate the scalp and the brain tissues. The resistivity disturbance was made by immersed an agar to simulate the disturbance caused by blood. In animal model experiment, we use animal model with the instrument of EIT to study the resistance changes of the brain in acute ICH. 28 piglets (weight 15 kg) were were deprived of food and water overnight before the experimental procedure. And all the animal were divided into four groups, one group including 4 animals infusing artery blood deprived the skull and scalp;the others group including 8 animals in each one: the second group infusing artery blood, the control groups infusing distilled water and saline separately. After anesthetized successes, a cranial burr hole (1.5 mm) was then drilled 10 mm to the right of the sagittal and 10 mm anterior to the coronal suture. A 7.5-gauge sterile plastic trocar (length 19 mm) was then placed stereotaxically into the center of the frontal cerebral white matter at the level of the caudate nucleus and cemented in place. An infusion pump was then connected, and 5 ml of blood (distilled water or saline) was infused into the brain tissue at a rate of 40μl per second within 3 minutes.
     16 Ag/AgCl electrodes were placed on the scalp of piglets annularly. The centre of a circle was located on the cross of the joining line of two lateral-canthi and the median line of the head. The semidiameter of the circle was 7-8cm. All of the electrodes were located on the circumference orderly. Before the blood infusing, we monitored the foreground at least for 60 frames. After the blood infusion was finished, we continuously collected the data for at least 30 minutes. After EIT monitor finished, we had an X-ray CT (GE Company) scan to validate the model. At the same time, the volume of the hematoma was calculated according to the CT imaging. All surgical procedures were performed with the use of aseptic techniques. Core temperature was measured with a rectal thermistor probe and was maintained at 38.5±0.5°C with the use of a warm water blanket.
     Result
     The results in physical model show that the skull handicapped the detection of resistivity disturbance inside cranial greatly. And in animal model expericment, in the group of infusing blood with deprived the skull and scalp, the resisitivity decreased rapidly, and after the stopping the infusing the resistivity increased slowly; in the distilled water, the resisitivity iecreased rapidly, and after the stopping the infusing the resistivity decreased slowly. In the saline group, the resisitivity decreased rapidly, and after the stopping the infusing the resistivity increased slowly.In exam group, the region of hematoma can represent clearly higher impedance variation. And during infusing blood, the resisitivity increased rapidly, and after a little decreasing the resistivity increased slowly.
     Conclusion
     Although the configuration of human head is so complex which limited the application of EIT on the head, it could obtain the definition imaging by polar driver pattern. In the forepart of the ICH, resistivity configuration increased at the region of the hematoma, and the resistivity configuration of the whole head increased too. The mechanism of the resistivity variation might be related with the cerebral-spinal fluid shifting to the further region following the intracranial pressure increasing. Although the detail of the changing rule is still not clear, it might have a widely application in early diagnosis and assistant treatment in clinical.
引文
1. 王忠诚. 神经外科学. 武汉: 湖北科学技术出版社,1998,686-690
    2. 史玉泉,周孝达. 实用神经病学.上海: 上海科学技术出版社,2004,834-842
    3. 刘承基. 脑血管外科学.南京: 江苏科学技术出版社,2000,307-341
    4. 王忠诚. 神经外科学. 武汉: 湖北科学技术出版社,1998,33-38
    5. 朱长庚. 神经解剖学.北京: 人民卫生出版社,2002,1007-1032
    6. 王忠诚. 神经外科学. 武汉: 湖北科学技术出版社,1998,22-23
    7. 史玉泉,周孝达. 实用神经病学.上海: 上海科学技术出版社,2004,64-72
    8. 朱长庚. 神经解剖学.北京: 人民卫生出版社,2002,986-1006
    9. 王忠诚. 神经外科学. 武汉: 湖北科学技术出版社,1998,58-60
    10. 吴智平,蒲传强. 脑出血后血肿扩大. 国外医学脑血管疾病分册 2004;12(9):672-674
    11. 夏一鲁,谢鹏,董为伟.原发性高血压性脑出血的早期血肿扩大.中华神经科杂志1999;32(3):183-185
    12. 李文华,刘一尔,伍龙.脑出血血肿扩大的机制及防治对策.河北医学.2003;9(6):551-553
    13. 孙 树 杰 . 脑 出 血 的 诊 断 和 治 疗 (2). 世 界 急 危 重 病 医 学 杂志.2006;3(4):1374-1378
    14. Fujii Y, Tanaka R, Takeuchi S, et al . Hematoma enlargement in spontaneous intracerebral hemorrhage. J Neurosurg, 1994, 80:51-57.
    15. Kazui S, Naritomi H, Yamamoto H, et al . Enlargement of spontaneous intracerebral hemorrhage. Incidence and time course. Stroke, 1996, 27: 1783-1787.
    16. Brott T, Broderick J, Kothari R, et al . Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke, 1997, 28:1-5.
    17. Fujii Y, Takeuchi S, Sasaki O, et al. Multivariate analysis of predictors of hematoma enlargement in spontaneous intracerebral hemorrhage. Stroke, 1998, 29:1160-1166.
    18. Kazui S, Minematsu K, Yamamoto H, et al. Predisposing factors to enlargement of spontaneous intracerebral hematoma. Stroke, 1997, 28:2370-2375.
    19. Fehr MA, Anderson DC. Incidence of progression or rebleeding in hypertensive intracerebral hemorrhage. J Stroke Cerebrovasc Dis, 1991,1:111-116.
    20. Fujii Y, Takeuchi S, Sasaki O, et al. Hemostasis in spontaneous subarachnoid hemorrhage. Neurosurgery, 1995, 37(2):226-234.
    21. 尹延河,朱俊岭,高龙飞,等.脑出血后继续出血的临床研究.临床神经病学杂志,1999;12(6):358-359.
    22. Kazui , Minematsu K, Yamamoto H , et al. Predisposing fastors to enlargement of spontaneous intracerebral hematoma.Stroke ,1997,28(12):2370-2375.
    23. Ohwaki K, Yano E , Nagashima H , et al . Blood pressure managementin acute intracerebral hemorrhage : relationship between elevated blood pressure and hematoma enlargement. Stroke, 2004,35:1364-1367.
    24. 詹焱,李志强,马涤辉.脑出血继续出血的临床研究.中风与神经疾病杂志 ,2002,19(6):363-364.
    25. 瞿学栋.脑出血继续出血54例临床分析. 临床医学,2002 ,22(2):1-2.
    26. 于荣焕,何蕴,荆宏健,等.高血压脑出血继续出血相关因素的临床分析.河南实用神经疾病杂志,2002 ,5(1):16-18.
    27. 朱飚,罗小林,杨国清,等.脑出血后继续出血的临床分析.河南实用神经疾病杂志,2001,4(5):12-13.
    28. 楮晓凡,曲松滨,石峰,等.高血压脑出血继续出血问题研究.中风与神经疾病杂志,1998,15(1):25-26
    29. Jauch EC, Barsan WG, Khoury J, et al. An analysis of factors associated with early intracerebral hemorrhage (ICH) growth. Stroke, 2001,32:338.
    30. Mayer SA, Lignelli A , Fink ME, et al. Perilesional blood flow and edema formation in acute intracerebral hemorrhage: a SPECT study. Stroke,1998, 29:1791-1798.
    31. Flemming KD, Wijdicks EF, St Louis EK, et al. Predicting deterioration in patients with lobar haemorrhages. J Neurol Neurosurg Psychiatry,1999,66:600-605.
    32. Becker KJ, Baxter AB, Bybee HM, et al. Extravasation of radiographic contrast is an independent predictor of death in primary intracerebral hemorrhage. Stroke, 1999,30:2025-2032.
    33. Broderick JP, Adams HP, Barsan W, et al. Guidelines for the management of spontaneous intracerebral hemorrhage : A statement for health care professionals from a special writing group of the Stroke Council,American Heart Association. Stroke,1999,30:905-915.
    34. Yang GY, BetzAL, Chenevert TL, et al. Experimental intracerebral hemorrhage relation-ship between brain edema, blood flow,and blood-brain barrier permeability in rats . J Neurosurg, 1994 , 81(1):93-102.
    35. 张朋奇,朱贤立,赵甲山,等. 一种大鼠脑内出血模型的建立与评价. 中国临床神经外科杂志, 2005, 10(1):33-35.
    36. Nath FP, Kelly PT, JenkinsA, et al. Effects of experimental intracerebral hemorrhage on blood flow, cap illary permeability and histochemistry. Neurosurg, 1987, 66(4):555-562.
    37. Nath FP, JenkinsA, Mendelow AD, et al. Early hemodynamic changes in experimental intracerebral hemorrhage . J Neurosurg, 1986, 65(5):697-703.
    38. 张祥建,刘春燕,祝春华,等.大鼠自体动脉血脑出血动物模型的建立.脑与神经疾病杂志,2003,11(6):341-344.
    39. 夏鹰 , 陈衔城 , 季耀东 , 等 . 脑出血的大鼠模型 . 中国临床神经科学,2003,11(1):71-75.
    40. 徐颖峰,佟岩.实验性脑出血动物模型.中华神经外科疾病研究杂志.2007;6(2):189-190
    41. 李红玲,李玉敏,杨静. 自体血注入法和胶原酶注入法诱导脑出血动物模型的比较. 中国临床康复, 2006, 10(8):148-150.
    42. 程小燕,王红云,安沂华. 自体血脑内注射建立大鼠脑出血模型实验研究.中国康复理论与实践,2004,10(6):346-3471
    43. Wagner KR, Xi GH, Hua Y, et al. Lobar intracerebral hemorrhage model in p igs: rap id edema development in perihematomal white matter. Stroke, 1996, 27(3):490-497
    44. Chesney JA, Kondoh T, Conrad JA, et al. Collagenase – induced intrastriatal hemorrhage in rats in long-term locomotor deficits. Stroke, 1995, 26(2):312-317.
    45. Lee KR, Kawai N, Kim S, et al. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a ratmodel . Neurosurg, 1997, 86(2):272-278.
    46. Xi GH, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. Neurosurg, 1998, 89(12):991-996.
    47. Xi GH, Wagner KR, Keep RF, et al. Role of blood clot formation on early edema development after experamental intracerebral hemorrhage. Stroke, 1998, 29(12):2580-2586.
    48. Nehls DG, Mendelow DA, Graham DI, etal. Experimental intracerebral hemorrhage: early removal of a spontaneous mass lesion improves late outcome. Neurosurgery, 1990,27(5):674-682.
    49. Clark W, Gunion Rinker L, Lessov N, e tal. Citicoline treatment for experimental intracerebral hemorrhage in mice. Stroke, 1998,29(10):2136-2140.
    50. Elger B, Seega J, Brendel R. Magnetic resonance imaging study on the effect of levemopamilon the size of intracerebral hemorrhage in rats. Stroke, 1994,25(9):1836-1841.
    51. Del Bigio MR, Yan HJ, Buist R, et al. Experimental intracerebral hemorrhage in rats: Magnetic resonance imaging and histopathological correlates. Stroke, 1996,27(12):2312-2320.
    52. 许东,文玉军,张莲香,等. 胶原酶注入小鼠尾状核建立脑出血模型. 中国实验动物学报, 2006, 14(1):36-39.
    53. 丰浩荣,许鹏程.实验性脑出血动物模型研究进展. 徐州医学院学报,2007, 27(4):274-277
    54. Rosenberg GA, MunBryce S, Wesley M, et al.Collagenase-induced intracerebral hemorrhage in rats. Stroke,1990,21(5):801-807
    55. 李红玲,樊金兰,陈维 .脑出血实验动物模型 神经损伤与功能重建.2006;1(4):238-240
    56. 黄如训,曾进胜,苏镇培,等.易卒中型肾血管性高血压大鼠模型.中国神经精神疾病杂志,1991,17(5):257-260
    57. 周爽,方邦江,孙国杰.一种高血压性脑出血动物模型的建立及评价.医学理论与实践,2004,17(2):127-129
    58. JP Broderick, HJ Adams, W Barsan et a1. Guidelines for the management of spontaneous intracerebral hemorrhage: A statement for healtheare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke, l999; 30: 905-9l5
    59. T Brott, J Broderick, R Kothari, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke, 1997; 28 (1): 1-5.
    60. S Kazui, H Naritomi, H Yamamoto, et al. Enlargement of spontaneous intracerebral hemorrhage: Incidence and time course. Stroke, l996; 27: l783-l787.
    61. 董 秀 珍 . 生 物 电 阻 抗 技 术 研 究 进 展 . 中 国 医 学 物 理 学 杂志.2004;21(6):211-317
    62. 肖贵遐, 韩冰, 刘国庆 等. 生物电阻抗技术的医学运用.中国医学物理学杂志. 2003;20(4):287-290
    63. 任超世. 生物电阻抗测量技术. 中国医疗器械信息. 2004;10(1);21-25
    64. 徐桂芝,杨硕,李颖 等. 电阻抗断层成像技术综述. 河北工业大学学报. 2003;33(2):35-40
    65. 刘锐岗. 电阻抗断层成像的驱动模式.国外医学生物医学工程分册 1999;(22)1:20-24
    66. 尤富生,董秀珍,史学涛 等.电阻抗断层成像硬件系统的初步研究. 中国体视学与图像分析 2003;8(2):114-118
    67. 董 秀 珍 . 生 物 电 阻 抗 断 层 成 象 研 究 的 几 个 关 键 问 题 . 心 脏 杂志,2000;12(5):392-397
    68. 董秀珍,秦明新,付峰.生物电阻抗成像技术的研究进展. 第四军医大学学报 2000;20(3):252-255
    69. 秦明新.生物电阻抗脑功能成像研究. 国外医学生物医学工程分册1999;22(6):325-330
    70. 吴小明, 董秀珍,秦明新.家兔脑组织复电阻抗频率特性及其等效电路模型. 中国生物医学工程学报 2003;22(3):228-234
    71. Saulnier G J , Blue R S , Newell J C ,. Electrical Impedance Tomography.IEEE Signal Processing Magazine,2001,11:31-43.
    72. Boone K,Barber D.Rrview: Imaging with electricity:Report of the European Concerted Action on Impedance Tomography [J].Journal of Medical Engineering &Technology,1997,21(6):201-232.
    73. GW Crile, H Hosmer and AF Rowland. The electrical conductivity of animal tissues under normal and pathological conditions. Am. J. Physiol., 1921; 60(1):59-106.
    74. JF McLendon. Colloidal properties of surface of the living cell, II. J. Biol. Chem., 1926; 69: 733.
    75. H Fricke and S Morse. The electrical capacity of tumours of the breast. J. Cancer Res., 1926; 10:340-376.
    76. Bache RJ, Harley A, Greenfield JC. Evaluation of thoracic impedance plethysmography as an indicator of stroke volume in man. Am J Med Sci. 1969;258(2):100-113.
    77. Kubicek WG, Karnegis JN, Patterson RP, et al. Development and evaluation of an impedance cardiac output system. Aerosp Med. 1966;37(12):1208-12.
    78. Sramek BB .Stroke volume equation with a linear base impedance mode and its accuracy as compared to thermodilution and magnetica flowmeter techniques in human and animal. Proceedings of the 6th Interational Conference on Electrical Bioimpedance .Zadar: Yugoslania, 1983.38-41
    79. Parry MJ, McFetridge-Durdle J. Ambulatory impedance cardiography: a systematic review. Nurs Res. 2006;55(4):283-91.
    80. Rosenberg P, Yancy CW. Noninvasive assessment of hemodynamics: an emphasis on bioimpedance cardiography. Curr Opin Cardiol. 2000;15(3):151-5.
    81. RP Henderson and JG Webster. An Impedance Camera for spatially specific measurements of the thorax, IEEE Trans. Biomed. Eng., 1978; 25: 250-254.
    82. G Piperno, EH Frei and M Moshitzky. Breast cancer screening by impedance measurements. Frontiers Med. Biol. Eng, 1990; 2: 111-117.
    83. FDA. 1999. Available from: http://www.fda.gov/cdrh/pdf/p970033.html
    84. TA Hope and SE Iles. Technology review: The use of electrical impedance scanning in the detection of breast cancer. Breast Cancer Res., 2004; 6: 69-74.
    85. H Griffiths and A Ahmed. A dual-frequency applied potential tomography technique: computer simulations. Clin. Phys. Physiol. Meas., 1987; 8(Suppl A): 103-107.
    86. H Griffiths and Z Zhang. A Dual-frequency EIT system. Phys. Med. Biol, 1989; 34: 1465-1476.
    87. J Jossinet and C Trillaud. Imaging complex impedance in EIT. Clin. Phys. Physiol. Meas., 1992; 13(Suppl A): 47-50.
    88. P Riu, J Rosell, A Lozano and R Pallas-Areny. A broadband system formultifrequency static imaging in EIT. Clin. Phys. Physiol. Meas., 1992; 13(Suppl A): 61-65.
    89. BH Brown, AD Leathard, L Lu et al. Measured and expected Cole parameters from electrical impedance tomographic spectroscopy images of the human thorax. Physiol. Meas., 1995; 16: A57-A67.
    90. Current state of bioimpedance technologies in dialysis. Nephrol Dial Transplant. 2008;23(3):808-12.
    91. Goncalves S I, De M J, Verbunt J P, et al. In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head. IEEE Trans Biomed Eng, 2003,50(6):754-767.
    92. Holder DS.Electrical impedance tomography (EIT) of brain function.Brain Topogr. 1992;5(2):87-93.
    93. Shi Xuetao, You Fusheng, Fu Feng, Liu Ruigang, Dong Xiuzhen. High precision Multifrequency Electrical Impedance Tomography System and Preliminary imaging results on saline tank. Proc. IEEE/EMBS 27th Ann. Int. Conf., 2005:1492- 1495.
    94. Shi Xuetao, Shuai Wangjun, You Fusheng, Fu Feng, Liu Ruigang, Dong Xiuzhen. Quasi-polar drive pattern for brain electrical impedance tomography. Proc. IEEE/EMBS 27th Ann. Int. Conf., 2005:2648- 2651.
    95. Barbara E. Lingwooda , Kimble R. Dunstera, et al. Noninvasive measurement of cerebral bioimpedance for detection of cerebral edema in the neonatal piglet. Brain Research 2002.945:97–105
    96. Boone, K., Lewis, A.M., Holder, D.S.,. Imaging of cortical spreading depression by EIT: Implictions for localization of epileptic foci. Physiol Meas, 1994 15(6):A189-A198.
    97. Boone, K., Barber, D.C., Brown, B.H.. Imaging with electricity: report of the European Concerted Action on impedance tomography. J. Med. Eng. Technol. , 1997;21, 201–232.
    98. Cherepenin, V., Karpov, A., Korjenevsky, A., et al. A 3D electricalimpedance tomography (EIT) system for breast cancer detection. Physiol. Meas. 2001 22, 9–18.
    99. Gibson, A.,. Electrical impedance tomography of human brain function. Ph.D. thesis. 2000, University College London, UK.
    100. Harris, N.D., Suggett, A.J., Brown, B.H., et al., Applied potential tomography: a new technique for monitoring pulmonary function. Clin. Phys. Physiol. Meas. 1988.9, 79–86
    101. H Lux, U Heinemann, and I Dietzel. Ionic changes and alterations in the size of the extracellular space during epileptic activity. In Advances in Neurology, 1986; 44: 619 – 639.
    102. R Andrew and BM Vicar. Imaging cell volume changes and neuronal excitation in the hippocampal slice. Neuroscience, 1994; 62(2): 371–383.
    103. DS Holder. The feasibility of developing a method of imaging neuronal activity in the human brain: A theoretical review. Med. Biol. Eng. Comput., 1987; 25: 211.
    104. Holder D S. Electrical impedance tomography with cortical or scalp electrodes during global cerebral ischaemia in the anaesthetised rat. Clin Phys Physiol Meas, 1992,13(1):87-98.
    105. Holder, D.S., Rao, A., Hanquan, Y., Imaging of physiologically evoked responses by electrical impedance tomography with cortical electrodes in the anaesthetised rabbit [J]. Physiol. Meas. 1996, 17, A179–186.
    106. W Adey, R Kado and J Didio. Impedance measurements in brain tissue of animals using microvolt signals. Exp. Neurol., 1962; 5: 47-66
    107. JB Ranck. pecific impedance of rabbit cerebral cortex. Exp. Neurol., 1963; 7: 144-152.
    108. Rao, A., Electrical impedance tomography of brain activity: studies into its accuracy and physiological mechanisms. Ph.D. thesis. Univ. College London, 2000. UK.
    109. Tidswell, A.T., Gibson, A., Bayford, R.H., er.al,. Three dimensionalelectrical impedance tomography of human brain activity. NeuroImage 2001:13, 283–294.
    110. Schuier FJ, Hossmann KA. Experimental brain infarcts in cats. II. Ischemic brain edema. Stroke, 1980,11(6):593-601.
    111. Matsuoka Y, Hossmann KA. Cortical impedance and extracellular volume changes following middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab, 1982, 2(4): 466 - 474.
    112. Suga S, Mitani S, Shimamoto Y, et al. In vivo measurement of intra- and extracellular space of brain tissue by electrical impedance method. Acta Neurochir Suppl (Wien), 1990,51:22-24.
    113. Holder DS. Detection of cerebral ischaemia in the anaesthetised rat by impedance measurement with scalp electrodes: implications for non-invasive imaging of stroke by electrical impedance tomography. Clin Phys Physiol Meas, 1992, 13(1): 63 – 75
    114. Holder DS. Detection of cortical spreading depression in the anaesthetized rat by impedance measurement with scalp electrodes: implications for non-invasive imaging of the brain with electrical impedance tomogra. Clin Phys Physiol Meas, 1992, 13(1): 77 - 86.
    115. Holder DS. Impedance changes during the compound action potential in crab nerve measured with 50 kHz or direct current : implications for impedance imaging of neuronal depolarization in the brain. Med Biol Eng Comput, 1992, 30: 140-146
    116. Barbara E Lingwood, Kimble R Dunster, Genevieve N. Healy, et al. Cerebral impedance and neurological outcome following a mild or severe hypoxic/ischemic episode in neonatal piglets. Brain Research, 2003, 969: 160 - 167.
    117. Barbara E Lingwood, Kimble R Dunster, Genevieve N. Healy, et al. Effect of cooling and re-warming on cerebral and whole body electrical impedance. Physiol Meas, 2004, 25:413–420.
    118. Liu L, Dong W, Ji X,, et al. A new method of noninvasive brain-edema monitoring in stroke: cerebral electrical impedance measurement [J]. Neurol Res. 2006;28(1):31-37.
    119. A Van-Harreveld, and J Schade. Changes in the electrical conductivity of cerebral cortex during seizure activity. Exp. Neurol. 1962; 5: 383-400.
    120. Boone K, Lewis A M, Holder D S. Imaging of cortical spreading depression by EIT: implications for localization of epileptic foci. Physiol Meas, 1994,15 Suppl 2a:189-198.
    121. Lux, H., Heinemann, U., Dietzel, I, Ionic changes and alterations in the size of the extracellular space during epileptic activity [J]. Adv. Neurol. 1986,44, 619–639.
    122. Murray PW. Field calculations in the head of a newborn infant and their application to the interpretation of transcephalic impedance measurements. Med Biol Eng Comput. 1981;19(5):538-46
    123. Tarassenko L, Rolfe P, Bristow CJ, et. al. Use of digital techniques to process cerebral electrical impedance signals in the new born. Med Biol Eng Comput. 1984;22(1):55-62.
    124. J Netz, E Forner, S Haggemann et al. Contactless impedance measure- ment by magnetic induction-a possible method for investigation of brain impedance. Physiol. Meas. 1993; 14: 463-471.
    125. CM Towers, IL Freeston and RC Tozer. Imaging of the head using induced current impedance tomography. Proc. IEEE/EMBS 18th Ann. Int. Conf. 1996, 3.4.2.
    126. R Merwa, K Hollaus, O Biró et al. Detection of brain oedema using magnetic induction tomography: a feasibility study of the likely sensitivity and detectability. Physiol. Meas. 2004; 25: 347-354.
    127. 史学涛. 颅内出血电阻抗断层成像图像监护技术的探索研究. 第四军医大学博士学位论文, 2006
    128. 吴小明. 脑组织电阻抗测量的基础研究. 第四军医大学硕士学位论文,2001.
    129. You F, Shi X, Dong X, et al. A quantitative method based on total relative change for dynamic electrical impedance tomography. IEEE Trans Biomed Eng. 2008;55(3):1224-1226.
    130. Wanjun S, Fusheng Y, Wei Z, et al. Image monitoring for an intraperitoneal bleeding model of pigs using electrical impedance tomography.Physiol Meas. 2008 Feb;29(2):217-225.
    131. Wang C, Liu R, Fu F, et al. Image reconstruction for Magnetic Induction Tomography and Preliminary simulations on a simple head model. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:4406-4409
    132. Liu R, Dong X, Fu F, et al. Multi-frequency parameter mapping of electrical impedance scanning using two kinds of circuit model. Physiol Meas. 2007 Jul;28(7):S85-100.
    133. Zhenyu J, Feng F, Ruigang L, et al. Study of influencing factors on Electrical Impedance Scanning Imaging. Conf Proc IEEE Eng Med Biol Soc. 2005;3:2910-2913.
    134. Xuetao S, Wangjun S, Fusheng Y, et al. Quasi-polar drive pattern for brain electrical impedance tomography. Conf Proc IEEE Eng Med Biol Soc. 2005;3:2648-2651
    135. Ye L, Xiuzhen D, Ruigang L, et al. The influence of position to phase and magnitude detecting in medical magnetic induction imaging. Conf Proc IEEE Eng Med Biol Soc. 2005;2:1656-1658.
    136. Liu R, Dong X, Fu F, et al.Primary Multi-frequency Data Analyze in Electrical Impedance Scanning. Conf Proc IEEE Eng Med Biol Soc. 2005;2:1504-1507.
    137. Fusheng Y, Xiuzhen D, Xuetao S, et al. An image monitoring system for intraperitoneal bleeding using electrical impedance tomography and its preliminary results in vivo. Conf Proc IEEE Eng Med Biol Soc. 2005;2:1500-1503.
    138. Xuetao S, Fusheng Y, Feng F, et al. High precision Multifrequency Electrical Impedance Tomography System and Preliminary imaging results on saline tank. Conf Proc IEEE Eng Med Biol Soc. 2005;2(1):1492-1495
    139. Shi X, Dong X, Shuai W, et al. Pseudo-polar drive patterns for brain electrical impedance tomography. Physiol Meas. 2006 Nov;27(11):1071-80.
    140. Tidswell A T, Gibson A, Bayford R H, et al. Electrical impedance tomography of human brain activity with a two-dimensional ring of scalp electrodes. Physiol Meas, 2001,22(1):167-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700