钼矿全湿法处理新工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以湖南张家界地区镍钼矿为原料,开发高效、低能耗、环境友好型镍钼矿处理新工艺,提出在盐酸体系中,采用氯酸钠氧化浸出镍钼矿,然后分别用叔胺萃取剂N235和螯合树脂M4195从浸出液中提取钼和镍,主要研究内容包括氯酸钠氧化浸出镍钼矿、N235萃取钼、M4195吸附镍,主要研究结果如下:
     对镍钼矿氧化浸出进行单因素实验,考察盐酸用量、氯酸钠用量、液固比、浸出时间及温度对镍钼浸出率的影响,最佳条件下,镍浸出率达到92%左右,而钼浸出率仅为60%左右。物相分析表明,原矿中镍钼硫化物被充分氧化;采用氢氧化钠溶液浸出酸浸渣,通过单因素实验和机理研究发现,酸浸中石膏(CaSO4·2H2O)的产生是钼浸出率较低的主要原因。
     采用N235—仲辛醇—磺化煤油体系萃取酸浸液中的钼,考察N235浓度、仲辛醇浓度、相比、振荡时间、温度对萃取的影响,并进行五级逆流萃取模拟实验,钼萃取率达98%以上,镍损失率小于1%;采用稀硫酸溶液洗涤负载有机相,考察硫酸浓度、洗涤时间、温度、相比对洗涤的影响,并进行五级错流洗涤实验,铁洗脱率达99.6%,钼损失率仅为0.1%左右;采用氨水溶液反萃钼,考察氨水浓度、振荡时间、相比对反萃的影响,最佳条件下,一级钼反萃率可达97%以上,基本达到分离富集钼及初步除杂的目的。
     萃钼余液采用黄钠铁矾法除铁,除铁率达到99.6%,溶液中铁含量降到0.037g/L左右,镍损失率仅为0.1%。
     采用M4195吸附除铁后液中的镍,考察料液pH值、接触时间对吸附的影响,并研究吸附过程中杂质的行为,最佳条件下,镍的穿透吸附容量为35.7g/L;采用硫酸溶液解吸镍,考察硫酸浓度、接触时间对解吸的影响,并研究解吸过程中杂质的行为,最佳条件下,镍解吸率为99%以上,高峰液含镍19.6g/L,除杂率均为99%以上。
     本工艺采用氯酸钠在盐酸体系中直接氧化浸出镍钼矿,避免了火法脱硫过程的烟气污染和钼挥发损失,并可同时浸出镍和钼。且氯酸钠性质稳定,易于运输、储存和生产操作。采用N235和M4195可有效从酸浸液中分离提取钼和镍,分别得到较高浓度的钼酸铵和硫酸镍溶液,初步除去大部分杂质。
A novel process was put forward to treat nickel-molybdenum ore from Zhangjiajie, Hunan province in this paper. This environment-friendly process could treat nickel-molybdenum ore efficiently with low energy consumption. The process was described as oxidative leaching nickel-molybdenum ore in hydrochloric acid system using sodium chlorate, then extracting molybdenum and nickel from leach liquor using tertiary amine extracting agent N235 and chelating resin M4195 respectively. The main research contents included oxidative leaching of nickel-molybdenum ore, solvent extraction of molybdenum, adsorption of nickel, the main research results were listed as follows:
     The single factor experiments were carried out on oxidative leaching of nickel-molybdenum, and investigated the effect of hydrochloric acid consumption, sodium chlorate consumption, liquid-to-solid mass ratio, leaching time and temperature on leaching rate of nickel and molybdenum respectively, the leaching rate of nickel was about 92% under the optimum process, but the molybdenum was only 60% approximately. The phase analysis indicated that the sulfides of nickel and molybdenum in raw ore were adequately oxidized. The leaching of acid residue was conducted using sodium hydroxide solution; it was found that the low leaching rate of molybdenum in acid leaching was caused by the generation of gypsum according to single factor experiment and mechanics research.
     The experiments of extracting molybdenum from leach liquor were carried out using N235-sec-octyl alcohols-sulfonated kerosene, investigated the effect of concentration of N235 and sec-octyl alcohols, oil-to-water ratio, oscillatory time, temperature on extraction, then the five-stage simulation experiment of countercurrent extraction was conducted, the extraction rate of molybdenum was above 98%, the loss of nickel was less than 1%. The load organic phase was washed by dilute sulfuric acid solution, investigated the effect of concentration of sulfuric acid, washing time, temperature, oil-to-water ratio on wash process, and the five-stage cross flow washing experiment was conducted, the washing rate of iron was above 98%, the loss of molybdenum was only about 0.1%. The ammonia solution was applied to strip molybdenum from load organic phase, investigated the effect of concentration of ammonia, oscillatory time, oil-to-water ratio on stripping process, the stripping rate of molybdenum was above 97% under the optimum process, according to the above process, molybdenum was separated and enriched, and most of the impurities were removed preliminary.
     Iron in leach liquor was removed in the form of amarillite, and more than 99% of iron was removed, the concentration of iron dropped to about 0.037g/L, the loss of nickel was only 0.1%.
     Nickel in solution was adsorbed by chelating resin M4195, investigated the effect of pH value, contact time on adsorption, and studied the behavior of impurities in adsorbing process, the breakthrough adsorption capacity of nickel was about 35.7g/L under the optimum condition. Sulfuric acid solution was applied to desorb nickel from load resin, investigated the effect of sulfuric acid concentration, contact time on desorbing process, and studied the behavior of impurities, the desorbing rate was above 99%, the concentration of nickel in peak liquor was about 19.6g/L, the removal rate of impurities were all beyond 99%.
     This process applied sodium chlorate to leach nickel-molybdenum ore directly, it has the advantage of avoiding smoke pollution and molybdenum lost from pyrometallurgical desulfuration process, aslo leaching nickel and molybdenum simultaneously. In addtion, the chemical property of sodium chlorate is stable, and it's easy to transport, store and operate in production. The molybdenum and nickel could be effectively extracted from leach liquor by N235 and M4195 respectively, and obtained ammonium molybdenum and nickel sulfate solution with high concentration, most of the impurities were removed preliminary.
引文
[1]有色金属提取冶金手册编委会.有色冶金提取手册:稀有高熔点金属(上)[M].北京:冶金工业出版社,1999.
    [2]张启修,赵秦生.钨钼冶金[M].北京:冶金工业出版社,2005.
    [3]张文钲.钼酸铵研发进展[J].中国钼业,2005,29(2):29-30.
    [4]向铁根.铝冶金[M].长沙:中南大学出版社,2002.
    [5]荆春生.我国钼酸铵生产现状综述[J].中国钼业,2000,24(6):21-24.
    [6]李辉,唐丽霞.钼酸铵生产工艺与技术进展状况分析[J].中国铝业,2009,33(6):41-43.
    [7]王淑玲.钼资源形势分析[J].国土资源情报,2004,3:38-42.
    [8]中国有色金属工业协会.中国铝发展战略研究[R].北京:中国有色金属工业协会2003.
    [9]许洁瑜,杨刘晓,王俊龙.中国钼资源利用与可持续发展战略研究[J].中国钼业,2005,29(4):3-9.
    [10]吴爱祥.我国钼资源的分布与特征[J].中国钼业,1994,4(53):5-6.
    [11]李青刚.从镍钼矿中制取钼酸铵的研究:[博士学位论文].长沙:中南大学,2010.
    [12]许洁瑜.中国钼工业发展现状[J].中国钼业,2008,32(5):1-6.
    [13]霍孟申,杨建业,张晰.中国钼矿开发现状及其尾砂的处理[J].矿业快报,2007,8:1-3.
    [14]有色金属提取冶金手册编委会.有色金属提取冶金手册:铜镍[M].北京:冶金工业出版社,2000.
    [15]B·и·别列果夫斯基,H-B·吉吉玛.镍冶金[M]中国工业出版社,1962.
    [16]王多冬,李坚.镍业发展动态及存在的问题[J].金属材料与冶金工程,2009,37(1):13-16.
    [17]邹一德.我国镍工业现状与发展设想[J].冶金经济分析,1990,(4):1-9.
    [18]欧阳淮,贾荣.电池工业用精制硫酸镍的生产[J].有色金属(冶炼部分),2004,(4):23-25.
    [19]蒋婧.精制硫酸镍的提纯生产[J].安徽化工,2008,34(6):32-35.
    [20]程明明.中国镍铁的发展现状、市场分析与展望[J].矿业快报,2008,(8):1-3.
    [21]何焕华.世界镍工业现状及发展趋势[J].有色冶炼,2001,(6):1-3.
    [22]王来存.镍的资源、工业发展现状和未来发展趋势[J].金川科技,2009,(4):56-58.
    [23]彭亮,李俊,袁浩涛,等.我国镍资源现状及可持续发展[J].矿业工程,2004,2(6):1-2.
    [24]陈甲斌,许敬华.我国镍矿资源现状及对策[J].矿业快报,2006,(8):1-3.
    [25]曹异生.国内外镍工业现状及前景展望[J].世界有色金属,2005,(10):67-71.
    [26]李忠国,翟秀静,邱竹贤,等.硫化镍精矿常压金属研究[J].有色矿冶,2005,21(5):28-30.
    [27]刘大星.从镍红土矿中回收镍、钴技术的进展[J].有色金属(冶炼部分),2002,(3):6-10.
    [28]周全雄.氧化镍矿开发工艺技术现状及发展方向[J].云南冶金,2005,34(6):33-36.
    [29]罗仙平,龚恩民.酸浸法从含镍蛇纹石中提取镍的研究[J].有色金属(冶炼部分),2006,(4):28-30.
    [30]Komnitsas K. Pressure Hydrometallurgy[J].Mineral Engineering,2001,14(8):106.
    [31]陈云,周平,张才学.云南某低品位硫化铜镍矿细菌浸出试验研究[J].云南冶金,2006,35(6):16-20.
    [32]陈庆根.氧化镍矿资源开发与利用现状[J].湿法冶金,2008,27(1):7-9.
    [33]李建华,程威,肖志海.红土镍矿处理工艺综述[J].湿法冶金,2004,23(4):191-194.
    [34]汪永红,李胜荣.湘黔地区前寒武-寒武纪时期硅质岩生成环境研究[J].地学前沿,2005,12(4):622-629.
    [35]Jiang S Y, Yang J H, Ling H F, et al. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China[J]. Progress in Nature Science, 2003,13(10):788-794.
    [36]Orberger B, Vymazalova A, Wagner C, et al. Biogenic origin of intergrown Mo-sulphide and carbonaceous matter in Lower Cambrian black shales (Zunyi Formation, Southern China)[J]. Chemical Geology,2007,(238):213-231.
    [37]Kribek B, Sykorova I, Pasava J, et al. Organic geochemistry and petrology of barren and Mo-Ni-PGE mineralized marine black shales of the Lower Cambrian Niutitang Formation (South China)[J]. International Journal of Coal Geology, 2007,(72):240-256.
    [38]潘家永,马东升,夏菲,等.湘西北下寒武统镍-钼多金属富集层镍与钼的赋存状态[J].矿物学报,2005,25(3):283-288.
    [39]Lott D A, Coveney R M, Murowchick J B. Sedimentary exhalative nickel-molybdenum ores in South China[J]. Economic Geology,1999,(94): 1051-1066.
    [40]Murowchick J B, Coveney R M, Grauch R I, et al. Cyclic variations of sulfur isotopes in Cambrian stratabound Ni-Mo-PGE-Au ores of southern China[J]. Geochimica et Cosmochimica Acta,1994,(58):1813-1823.
    [41]鲍正襄,万榕江,包觉敏.湘西北镍钼矿床成矿特征与成因[J].湖北地矿,2001,15(1):14-21.
    [42]曾明果.遵义黄家湾镍钼矿地质特征及开发前景[J].贵州地质,1998,15(4):305-310.
    [43]毛景文,张光弟,杜安道,等.遵义黄家湾镍铝铂族元素矿床地质、地球化学和Re-Os同位素年龄测定-兼论华南寒武系底部黑色页岩多金属成矿作用[J].地质学报,2001,5(2):235-243.
    [44]汪永清.湘西北地区下寒武统钼镍矿地质特征及找矿远景[J].西部探矿工程,2007,(9):136-137.
    [45]罗卫,戴塔根.湘西北下寒武统黑色岩系中贵金属镍-钼-钒矿床的有机成矿作用[J].矿产与地质,2007,21(5):505-508.
    [46]鲍振襄,陈放.湘西北黑色岩系中贵金属矿化地质特征及成矿控制因素[J].有色金属矿产与勘查,1997,6(2):88-94.
    [47]李青刚,肖连生,张贵清,张启修.镍钼矿生产钼酸铵全湿法生产工艺及实践[J].第五届全国稀有金属学术交流会,2006,(11):278-281.
    [48]张成强,李洪潮,张颖新,等.我国复杂难选钼矿资源选矿技术进展[J].中国矿业,2009,18(10):64-66.
    [49]何旭初.一种选冶结合的镍钼矿镍、钼分离方法[P].CN95110744.5,1995-05-03.
    [50]陈礼运,宋平,高晓宝.高品位原生钼矿的综合利用[J].中国铝业,2003,27(3):17-18.
    [51]陈代雄,唐美莲,薛伟,等.高碳钼镍矿可选性试验研究[J].湖南有色金属,2006,22(6):9-11.
    [52]孙伟,胡岳华,邓美姣.一种镍钼矿的高效选矿技术[P].中国专利:200810030795.5,2008-03-12.
    [53]伍宏培,冯光芬.钼镍矿的浓酸熟化浸出解聚溶剂萃取工艺[P].中国专利:88102597.6,1988-04-19.
    [54]秦纯.用碳酸钠转化处理黑色页岩分离钼镍的工艺[P].中国专利:97107568.9,1997-06-23.
    [55]皮关华,徐徽,陈白珍,等.从难选镍钼矿中回收铝的研究[J].湖南有色金属,2007,23(1):9-12.
    [56]徐徽,皮关华,陈白珍,等.用溶剂萃取法从碱浸液中回收钼的研究[J].湖南师范大学自然科学学报,2007,30(1):43-46.
    [57]皮关华.镍钼矿制备铝酸铵的研究:[硕士学位论文].长沙:中南大学,2007.
    [58]Wang M Y, Wang X W, Liu W L. A novel technology of molybdenum extraction from low grade Ni-Mo ore[J]. Hydrometallurgy,2009,(97):126-130.
    [59]Wang M Y, Wang X W. Extraction of molybdenum and nickel from carbonaceous shale by oxidation roasting, sulphation roasting and water leaching[J]. Hydrometallurgy,2010,(102):50-54.
    [60]邹贵田.用弱碱从钼镍共生矿提取钼和镍盐的方法[P].中国专利:99114736.7,1999-03-23.
    [61]邹贵田.用稀酸从钼镍共生矿提取铝和镍盐的方法[P].中国专利:99114737.5,1999-03-23.
    [62]赵中伟,李洪桂.湿法分解镍铝矿提取钼的工艺[P].中国专利:200610031788.8,2006-06-08.
    [63]Zhao Z W, Li J T, Cao C F, at el. Recovery and purification of molybdenum from Ni-Mo ore by direct air oxidation in alkaline solution[J]. Hydrometallyrgy, 2010,(103):68-73.
    [64]Zhao Z W, Zhang G, Huo G S, et al. Kinetics of atmospheric leaching molybdenum from metalliferous black shales by air oxidation in alkali solution[J]. Hydrometallurgy,2009,(97):233-236.
    [65]张刚,赵中伟,霍广生,等.镍钼矿提钼渣中镍的浸出工艺[J].中南大学学报(自然科学版),2010,41(4):1263-1267.
    [66]黄少波.镍铝矿湿法处理新工艺研究-复杂含镍溶液制备镍产品:[硕士学位论文].长沙:中南大学,2009.
    [67]关文娟,肖连生,张贵清,等.利用低品位镍钼矿生产高纯多钼酸铵技术的工业应用[J].中国钼业,2010,34(1):42-45.
    [68]陈家武,高从增,张启修,等.硫化叶菌对镍钼硫化矿的浸出作用[J].过程工程学报,2009,9(2):258-262.
    [69]Hou X C, Xiao L S, Gao C J, at el. Kinetics of leaching selenium from Ni-Mo ore smelter dust using sodium chlorate in a mixture of hydrochloric and sulfuric acids [J]. Hydrometallurgy,2010,(104):76-80.
    [70]吴海国.含碳镍钼矿提取镍钼冶炼新工艺试验研究[J].湖南有色金属,2008,24(2):16-18.
    [71]Cao Z F, Zhong H, Qiu Z H, et al. A novel technology for molybdenum extraction from molybdenite concentrate [J]. Hydrometallurgy,2009,(99):2-6.
    [72]张平民.工科大学化学下册[M].长沙:湖南教育出版社,2002.
    [73]沈明伟,朱昌洛,李华伦.P507-煤油体系在钒钼萃取分离中的试验研究[J].矿产综合利用,2007,(4):14-18.
    [74]赵品质,程光荣,马秀华.采用分步萃取法从高铝、铀溶液中分离钼和铀[J].铀矿冶,1996,15(4):244-249.
    [75]朱薇,肖连生,肖超,等.N235萃取镍钼矿硫酸浸出液中钼的研究[J].稀有金属与硬质合金,2010,38(1):1-4.
    [76]Wang X W, Wang M Y, Shi L H, et al. Recovery of vanadium during ammonium molybdate production using ion exchange[J]. Hydrometallurgy,2010,(104):76-80.
    [77]李青刚,张启修,肖连生.离子交换树脂吸附镍钼矿氯浸液中钼的研究[J].稀有金属,2007,31(3):351-356.
    [78]车荣睿.离子交换法在治理含钼废水中的应用[J].离子交换与吸附,1994,10(2):180-184.
    [79]梁宏,卢基爵.离子交换法从含钼酸性废液中回收钼[J].中国钼业,199,(6):43-45.
    [80]Luo L, Wei J H, Wu G Y, et al. Extraction studies of cobalt(Ⅱ) and nickel(Ⅱ) from chloride solution using PC88A[J]. Trans. Nonferrous Mrt. Soc. China, 2006,(16):687-692.
    [81]Tsakiridis P E, Agatzini-Leonardou S. Process for the recovery of cobalt and nickel in the presence of magnesium from sulphate solutions by Cyanex 272 and Cyanex 302[J]. Minerals Engineering,2004,(17):913-923.
    [82]Thakur N V, Mishra S L. Separation of Co, Ni and Cu by solvent extraction using di-(2-ethylhexyl) phosphonic acid, PC 88A[J]. Hydrometallurgy,1998,(48):277-289.
    [83]邓涛.溶剂萃取在镍钴分离中的应用[J].金川科技,2001,(2):26-28.
    [84]兰兴华.镍和钴溶剂萃取进展[J].世界有色金属,2004,(9):35-38.
    [85]Ramachandra Reddy B, Kyung Ho Park, Mohapatra D. Process development for the separation and recovery of copper from sulphate leach liquors of synthetic Cu-Ni-Co-Fe matte using LIX 84 and LIX 973N[J]. Hydrometallurgy, 2007,(87):51-57.
    [86]蒋训雄,尹才硚,周冰毅.从大洋多金属结核氨浸液中萃取分离铜、镍、钴[J].有色金属(冶炼部分),1997,(1):7-11.
    [87]李先柏,周勤俭,杨静.用LIX622从大洋多金属结核盐酸浸出液中萃取镍的研究[J].有色金属与稀土应用,1996,(4):32-35.
    [88]吴文健.LIX984萃取分离铜、镍的试验研究[J].矿业工程,1995,15(4):43-47.
    [89]Sayar N A, Filiz M, Sayar A A. Extraction of Co(II) and Ni(II) from concentrated HCl solutions using Alamine 336[J]. Hydrometallurgy,2009,(96):148-153.
    [90]Nayl A A. Extraction and separation of Co(Ⅱ) and Ni(Ⅱ) from acidic sulfate solutions using Aliquat 336[J]. Journal of Hazardous Materials,2010,(173):223-230.
    [91]范艳青,蒋训雄,汪胜东.富钴结壳浸出液中钴镍的N235萃取分离[J].有色金属,2006,58(3):70-72.
    [92]周学玺,朱屯.季铵萃取分离钴镍的研究[J].中国有色金属学报,1995,5(3):34-38.
    [93]Tsakiridis P E, Agatzini S L. Process for the recovery of cobalt and nickel in the presence of magnesium and calcium from sulphate solutions by Versatic 10 and Cyanex 272[J]. Minerals Engineering,2004,(17):535-543.
    [94]Cheng C Y. Solvent extraction of nickel and cobalt with synergistic systems consisting of carboxylic acid and aliphatic hydroxyoxime[J]. Hydrometallurgy, 2006,(84):109-117.
    [95]张平伟,朱屯.钴镍协同萃取体系[J].化工冶金,1997,18(3):282-288.
    [96]Deepatana A, Valix M. Recovery of nickel and cobalt from organic acid com-plexes:Adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin[J]. Journal of Hazardous Materials,2006,(137):925-933.
    [97]Zainol Z, Nicol M J. Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings [J]. Hydrometallurgy, 2009,(96):283-287.
    [98]Diniz C V, Virginia, Ciminelli S T, et al. The use of the chelating resin Dowex M-4195 in the adsorption of selected heavy metal ions from manganese solutions[J]. Hydrometallurgy,2005,(78):147-155.
    [99]Mendes F D, Martins A H. Selective nickel and cobalt uptake from pressure sulfuric acid leach solutions using column resin sorption[J]. International Journal of Mineral Process,2005,(77):53-63.
    [100]王荣耕,李学平,翟学良.离子交换树脂回收钻镍技术进展[J].无机盐工业,2005,37(11):11-13.
    [101]杨丽梅,李玲,黄松涛,等.离子交换法在镍湿法冶金工艺中的应用进展[J].金属矿山,2009,(3):41-44.
    [102]陈远强,林娟.黄钠铁矾法除铁在钴系统中的应用[J].四川有色金属,2002,(1):38-42.
    [103]龚金瑞,余枫峰.黄钠铁矾法除铁技术的应用[J].化肥工业,1991,(3):49-51.
    [104]张寅生,王成彦.N235萃取处理含铁废盐酸工艺研究[J].矿冶,2002,11(4):66-68.
    [105]孙亚丽,李涛,黄新.钴溶液中除铁工艺的研究[J].化学工程师,2008,(11):4-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700