钼矿制备钼酸铵的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钼矿在我国湖南省和贵州省有着丰富的储量,有着巨大的经济价值。由于它是一种难选矿,采用传统的物理选矿技术,较难将有用组分进一步富集。传统的火法冶金技术也达不到将钼、镍等众多金属组分分离的目的,中外也无适用的现成生产技术。
     针对这一现状,通过对各种方案的比较,本论文研究了一种利用镍钼矿制备钼酸铵的新工艺。该工艺主要包括焙烧、浸出、溶剂萃取三个过程。即用氧化焙烧法先氧化镍钼矿,将镍钼矿中的镍钼等金属硫化物转化为氧化物,同时将反应生成的SO_2气体通入到饱和碳酸钠溶液中,用来制备焦亚硫酸钠,可消除SO_2对环境的污染;接着在通入活氧的条件下,用强碱(NaOH)选择性浸出提取钼,则可以达到将钼镍分离的目的;然后通过加入MgCl_2来净化除杂,用溶剂萃取法来提纯浸出液中的钼,最终制备出钼酸铵的崭新工艺流程。
     在焙烧过程中,镍钼矿中镍的硫化物变成了镍的氧化物,从而有利于进一步酸浸提镍。另外该反应在常压下进行,对设备要求低,成本也比较低,并且适应性强,污染少。
     通过单因素实验,研究了焙烧温度和焙烧时间等因素对镍钼矿焙烧脱硫的影响。实验结果表明,焙烧的最佳工艺参数为:镍钼矿(-120目),焙烧温度600℃,焙烧时间2h。
     考察了焙烧情况、浸出温度、反应时间、加碱量等因素对镍钼矿浸出率的影响。实验结果表明,浸出的最佳工艺参数为:NaOH(占理论用量的1.2倍)作浸出剂,浸出温度为90℃,通活氧2h,液固比为3∶1。
     通过活氧碱浸出过程动力学研究,发现钼的浸出过程受化学反应模型控制,浸出过程的速度随反应速度常数的增大而增大,因此提高浸出温度是提高钼浸出率的一个主要强化手段。
     对相比、萃取时间、pH值、反应温度等因素对除杂后母液的萃取工艺的影响进行了研究。实验结果表明,萃取的最佳工艺参数为:相比(O/A)为1∶1,萃取时间3min,母液pH值2.0~3.5,反应温度为常温。
     研究了相比、氨水浓度、反萃时间等对富钼有机相的反萃工艺的影响。实验结果表明,反萃最佳工艺参数为:相比1∶1,氨水浓度12.5%,反萃时间10min,静置时间30min。
     在最佳工艺条件下,焙烧脱硫率为90.1%左右,钼的损失仅为1.86%左右,浸出率可达到99.50%左右,主要杂质磷、砷、硅等的去除率均在99%以上,除钒率为98.7%,萃取率为98.4%,反萃率可达到97.2%。
     应用等离子光谱(ICP-AES)测定了浸出母液和除杂液的化学成分。应用X-射线衍射(XRD)和等离子光谱(ICP-AES)对制备出来的钼酸铵进行了物相分析和化学成分分析,分析结果表明,按此工艺路线生产的钼酸铵,为含少量硫酸铵、氯化铵和偏钒酸铵的粗钼酸铵,钼酸铵样品的纯度为:95.32%,偏钒酸铵的含量为0.65%,本次实验制得的产品还含少量硫酸铵、氯化铵等杂质。钒的问题可以通过购买中南大学肖连生教授的专利来处理(专利号:200510136644.4,公开号:CN1792819),硫酸铵、氯化铵等杂质可以在钼酸铵的精制过程中去除。
The Ni-Mo mineral has a abundant storage capacity in the provinceof Hunan and Guizhou in our country and it has a huge economic value.Because it is a kind of refractory mineral, adopting the traditionalphysical technique for ore-dressing is difficult to enrich the valueelements from the ores.The traditional pyro-metallurgy could not yetachieve the purpose of separation molybdenum, nickel from othermetals.There was no proper productive process to treat with it both inChina and other countries.
     On this condition, through the comparison towarding various project,a new productive process of ammonium molybdate from Ni-Mo ore hadbeen studied in this thesis.
     The process mainly consisted of roasting, leaching, and solventextraction three parts. At first, oxygenize the Ni-Mo ore by using themethod of oxidizing roast to make the Ni、Mo and other metals sulphideconversing oxidate. At the same time, using the saturated Na_2CO_3 toimbibite the air of SO_2 which released during the process of response tomake sodium pyrosulfite, it can erase the pollution of SO_2 toenvironments. Nextly, using NaOH to leach molybdenum selectively atthe condition of inleting O_3, so that it can achieve the purpose ofseparating the molybdenum and nickel. Thirdly, MgCl_2 solution isapplied to remove the impurities and solvent extraction technology hasbeen accepted to refine molybdenum to prepare Ammonium molybdate.
     During process of roast, the nickel sulphide of the mineral of Ni-Mohas inverted into the nickel oxide, it has advantageous to furthersour-leach to extract nickel. Moreover, the reaction can carry on in theway of normal atmosphere, hasing a low request to the equipments, lowcost, intensive adaptability, less pollution.
     This thesis researchs the influence of roast temperature and roasttime to the desulphur roasting of Ni-Mo ores through a single factorexperiment. Results show that the best craft parameters are: the Ni-Mominerals (powder was-120 mush), roast temperature 600℃, roast time is 2h.
     The effect for the extraction ratio of Ni-Mo minerals of roastingstate, leaching temperature, leaching times, odium hydroxide quantity isinvestigated.The experimental results show that the optimal technologicalparameters of leach are: NaOH (1.2 times), leaching temperature was90℃, adding active-oxygen time 2 hours, the ratio of liquor to solid was3:1.
     Through the research of dynamics by process of the active-oxygenalkali leaching, discover the process of Mo-leaching being controlled bythe chemical reaction model, the leach speed is added with the thereaction speed constant, so it is a major enhance means to raise the leachrate of molybdate by raising leach temperature.
     The effect for the extraction technique of the volume ratio of organicphase to aqueou, extraction time, pH value, reaction temperature, etc areinvestigated. The experimental result show that the optimal technologicalparameters of extraction process: the volume ratio of organic phase toaqueous (O/A) is 1:1, extraction time is 3 minutes, pregnant solution pHvalue is 2.0~3.5, reaction temperature is normal temperature.
     The effect for the extraction technique of the volume ratio of organicphase to aqueous, Ammonia concentration, anti-extraction time, etc, onthe anti-extraction process for Mo-contain organic phase solution isinvestigated.The experimental results show that the optimal technologicalparameters of anti-extraction process is: the volume ratio of organic phaseto aqueous is 1:1, ammonia concentration is 12.5%, anti-extraction timeis 10 minutes, place time is 30 minutes.
     Under the optimal technological parameters, desulphurizing roastingratio is about 90.1%, the loss ratio of Mo is 1.86%, leaching ratio couldreach 99.50%; disposal ratio of impurities P and As are both over 99%,while V is 98.7%, extraction ratio could reach 98.4%, and anti-extractionratio could reach 97.2%.
     Plasma spectrum (ICP-AES) is instituted to determine the chemicalcomponent of leaching solution and solution which has removedimpurities. X-diffraction(XRD) and the ICP-AES are instituted to analyzethe phase and chemical component of the ammonium molybdate, the results of ranalyze show that the ammonium molybdate specimen whichprepared by this process with a little amount ammonium sulfate,ammonium chloride and ammonium metavanadate are coarse ammoniummolybdate, the purityof ammonium molybdate is 95.32%, the contentammonium metavanadate is 0.65%, also contenting some impurities likeammonium sulfate, ammonium chloride. It is a good way to buy thepatent of Xiao Liansheng coming from CSU to removal the problem of V(patent number: 200510136644.4, public nubmer. CN1792819). It canremoval the ammonium sulfate, ammonium chloride during the refineprocess of ammonium molybdate.
引文
[1] 殷为宏.现代高科技中的钼[J].中国钼业,1997,21(3):27~33
    [2] 罗振中.我国钼工业现状及发展对策浅议[J].中国钼业,2000,24(4):3~6
    [3] 邹志强.难熔金属与硬质材料进展[J].稀有金属与硬质合金,1994,12(1):23~26
    [4] 刘光跃.耐高温强度钼的研究[J].中国钼业,1994,6(3):34~37
    [5] 吴海瀛.国际钼市场回顾与展望[J].中国钼业,1995,57(19):2
    [6] 李宝蓉.钼及其合金的应用[J].航天工艺,1995,12(4):24~25
    [7] Katte. A. R. Effects of Complet additions of Re or Ti with C on the strength and Ductility of Recrystallized Molybdenum[J].okayama University of Science yutaka Hiraoka, Satonu Yoshinura Kastsush Takebe Inernational, Journal of Refractory metals & Hard materials, 2001, 12(5): 1993~1994
    [8] Roman. Low temperature fracture strength and ductility of carburized Mo-Ti alloys[J].Yulaka Hiraoka & statoru yoshimura International,Journal of refractory metals & Hard materials, 2002,12(3): 23~26
    [9] 董允杰.我国工业钼酸铵生产和进出口现状及其建议[J].中国钼业,1997,21(2):83~85
    [10] 周勃.国外钼矿资源的分布与开发[J].中国钼业,1995,5(1):32~33
    [11] 冯进城.当前钼矿开发热与资源开发政策[J].资源论坛,2005,6(9):26~27
    [12] 梁有彬,朱文风.张家界天门山地区镍钼矿床铂族元素富集特征及成因探讨[J].地质找矿论丛,1998,10(3):55~65
    [13] 曾明果.遵义黄家湾镍钼矿地质特征及开发前景[J].贵州地质,1998,15(4):305~310
    [14] 鲍正襄,万榕江,包角敏.张家界镍钼矿床特征与成因[J].湖北地矿,2001,15(1):14~32
    [15] 吴爱祥.用细菌从辉钼矿中浸出钼的探讨[J].中国钼业,1996,20(1):15~19
    [16] 秦玉楠.离子交换法从铜钼精矿生产纯MoO_3新工艺[J].离子交换与吸附,1997,13(1):88~92
    [17] 车荣睿.离子交换法在治理含钼废水中的应用[J].离子交换与吸附,1994,10(2):180~184
    [18] 李洪桂.离子交换技术在钼冶金中的应用[J].中国钼业,1994,18(3):1~7
    [19] 刘建中.略论加压碱浸—离子交换吸附法在浸出渣中回收处理钼的试验与应用[J].工程设计与研究,1994,86(3):15~20
    [20] 梁宏,卢基爵.离子交换法从含钼酸性废液中回收钼[J].中国钼业, 1996,23(3):43~45
    [21] 张晓东,成肇安.用Swc树脂提取钼的研究[J].中国钼业,1997,21(1):26~27
    [22] 用性阴离子交换剂吸附钼规律性研究[J].江西有色金属,1991,5(3):148~150
    [23] 赵桂荣,张国维.用离子交换法从工业废液中回收钼[J].离子交换与吸附,1989,5(4):287~291
    [24] 张兴元.用离子交换法从酸沉母液中回收钼[J].中国钼业,1997,21(4):23~25
    [25] Gillett, H.W. Mack, etal. Molybdenum Cerium and Related Alloy Steels[J]. Chemical Catalogue, New York.1996, 8(7): 12~14
    [26] Haber.J. The role of molyubdenum in catalysis[J]. London,AMAX, Greenwich, Connecticut,Bulletin of Climax Molybdenum, 1981, 7(8): 3
    [27] Kummer, J.T. Molybdenum, Mineral Commodity Profiles[J]. U.S. Dept.of the Interior, Bureau of Mines,1979, 7(5): 33~36
    [28] Northcott,L. Molybdenum[M]. London: Butterworths Scientific Publications, 1995: 67~69
    [29] Sutulov, A. International Molybdenum Encyclopedia[J]. Santiago, Chile, Molybdenum Mines, 1999, 4(11): 1973~1978
    [30] 李菁华.N263萃取分离钼钨的硫代盐[J].稀有金属,1989,13(4):296~300
    [31] 李菁华.用N263从碱性溶液中萃取分离钨钼[J].钨钼科技,1991,5(8):14~18
    [32] 黄蔚庄,龚柏凡,张启修.溶剂萃取硫代钼酸盐分离钨钼[J].中国有色金属学报,1995,5(1):45~47
    [33] 阮志农,陈加山,傅晓,等.从废催化剂中湿法回收Mo和Co的工艺研究[J].福州大学学报(自然科学版),2005,9(1):116~119
    [34] 施友富,黄宪法.加压浸出-萃取法从钼钴废催化剂中回收钼[J].中国钼业,2006,30(3):21~23
    [35] 崔燕,许民才.钴-钼废催化剂的回收利用现状及发展前景[J].安徽化工,2001,8(1):23~24
    [36] 邹振球,周勤俭.钼精矿石灰焙烧—N235萃取工艺提取钼铼[J].矿冶工程,2002,22(1):79~82
    [37] 喻庆华,陈庭章.从选钼尾矿中回收钼[J].矿冶工程,1992,12(2):47~50
    [38] B.B.Kar, P. Datta, V.N. Misra. Hydrometallurgy Spent catalyst[J]. Secondary source for molybdenum recovery, 2003, 5(6): 34~36
    [39] Bhappu. Hydrometallurgy roasting of molybdenite[J]. Molybdenum Encyclopedia, 1979, 8 (79): 45~48
    [40] Bhave V.S. A study of purification of molybdenum laden solution by carbon adsorption-desorption[J]. Proc. Nat. Symposium, Udaipur, India. Research and Practice in Hydrometallurgy, Indian Institute of Metals, Calcutta, 1990, 90 (9): 35~40
    [41] 孙铁,吴青.焦亚硫酸钠及其生产工艺[J].上海化工,2001,4(12):16~18
    [42] 《有色金属提取冶金手册》编辑委员会.有色金属提取冶金手册-稀有搞熔点金属(上)[M].北京:冶金工业出版社,1999:258~259
    [43] 叶大伦,胡建华.实用无机物热力学数据手册[M](第二版).北京:冶金工业出版社,2002:1~24
    [44] 李洪桂.稀有金属冶金学[M].长沙:中南大学出版社,2001:19~20
    [45] 向铁根.钼冶金[M].长沙:中南大学出版社,2002:6~15
    [46] 张启修等.钨钼冶金[M].北京:冶金工业出版社,2005:59~61
    [47] A.N.泽列克曼等著.宋晨光,陆雨泽译.稀有金属冶金学[M].北京:冶金工业出版社,1982:86~107
    [48] 叶大伦.冶金热力学[M].长沙:中南工业大学出版社,1987:28~48
    [49] 徐徽,皮关华,陈白珍,等.从难选镍钼矿中回收钼的研究[J].湖南有色金属,2007,23(1):9~12
    [50] 李洪桂.冶金原理[M].长沙:中南大学出版社,2002:3~37
    [51] 李洪桂.稀有金属冶金学[M].北京:冶金工业出版社,2002:68~85
    [52] 赵中伟.辉钼矿湿法浸出过程某些理论问题之浅见[J].稀有金属与硬质合金,1995,12(1):1~3
    [53] 顾珩,李洪桂,刘茂盛.辉钼矿湿法浸出新工艺研究[J].中国钼业,1997,21(5):29~32
    [54] 张文钲.从低品位钼精矿或钼中间产品生产工业氧化钼、二钼酸铵和纯三氧化钼.中国钼业[J],2004,28(4):33~36
    [55] 梅支舵.利用非标钼精矿(含钼<37%)生产钼酸铵及钼酸钠的新工艺.中国钼业[J],2000,24(3):35~37
    [56] Mehra, O.K. Bose, D.K. Gupta, C.K. Studies on processing of molybdenum concentrate[J]. Trans. Indian Inst. Met, 1993, 26 (1): 1~7
    [57] Mukherjee, T.K. BoseGupta. Studies on molybdenum extraction[M]. Extractive Metallurgy of Refractory Metals, 1980: 25~27
    [58] 李培佑,张能成,林喜斌.从废催化剂中回收钼的工艺流程研究[J].中国钼业,1999,8(2):16~18
    [59] 赵天从.有色金属提取冶金手册—稀有高熔点金属(上)[M].北京:冶金工业 出版社,1999:345~346
    [60] 陈兴龙,肖连生,等.从废石油催化剂中回收钒和钼的试验研究[J].矿业工程,2004,24(3):47~49
    [61] 唐忠阳,李洪桂,霍广生.高压氧分解-萃取法回收铜钼中矿中的钼[J].稀有金属与硬质合金,2003,10(3):1~3
    [62] J.M.Juneja, Sohan Singh,D.K.Bose. Investigations on the extraction of molybdenum and rhenium values from low grade molybdenite concentrate[J]. Hydrometallury, 1996, 41(2): 201~209
    [63] P. Henry, A.Van lierde.Selective separation of vanadium from molybdenum by electrochemical ion exchange[J]. Hydrometallury, 1998, 48(2): 73~81
    [64] Zhang Jian-rong, Zhang Zai-hai, etal. Research Report About The Technics Of Separating Nickel And Molybdenum By The Method Of Biology And Extraction To The Ni-Mo Ores From GuiZhou[M].The Cai-hai Exploitation of Biology-technique Ltd of Kun Ming, 2005: 4~8
    [65] Zhang Yong-qiang, Li Ying. Study on the Reacting Dynamics of Leaching Low-Grade Roasted molybdenite with Sodium Carbonate Solution[J]. Inorganic Chemicals Industry, 2000, 32(3): 1~3
    [66] Park, Kyung Ho. Hydrometallurgical processing and recovery of molybdenum trioxide from spent catalyst [J]. International Journal of Mineral Processing, 2006, 80(18): 261~265
    [67] 莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987:193~207
    [68] 张训鹏.冶金工程概论[M].长沙:中南工业大学出版社,1998;175~179
    [69] 张启修.冶金分离科学与工程[M].北京:科学出版社,2004:10~65
    [70] 何焕华,蔡乔方.中国镍钴冶金[M].北京:冶金工业出版社,2000:359~364
    [71] 袁茂强,曾雪.钼酸铵溶液深度净化工艺探索[J].中国钼业,2003,27(3):19~21
    [72] 张之洁,汪金发.钼酸铵生产中杂质的分离方法[J].稀有金属与硬质合金,1994,5(1):34~36
    [73] 孟宪红,李悦.萃取法由废催化剂制取钼酸铵[J].环境工程,1998,5(2):23~26
    [74] 李循勋,文星照.用萃取法从酸沉母液中回收钼[J].中国钼业,1995,7(6):11~13
    [75] 王开毅等.溶剂萃取化学[M].长沙:中南工业大学出版社,1991:56~57
    [76] 高自立,孙思修.溶剂萃取化学[M].北京:科学出版社,1991:66~93
    [77] 徐光宪,王文清,等.萃取化学原理[M].上海:科学技术出版社,1984:119~136
    [78] 唐谟堂.有色冶金设备[M].长沙:中南大学出版社,1998:23~38
    [79] 李循勋,文星照.用萃取法从酸沉母液中回收钼[J].中国钼业,1995,8(8):11~13
    [80] 钟宏,符剑刚,刘凌波.采用N235从含Mo、Mn酸浸液中萃取回收Mo[J],过程工程学报,2006,6(1):2~5
    [81] I, M. EL-Naggar, E. A. Mowafy, G. M. Ibrahim. Sorption Behaviour of Molybdenum on Different Antimonates Ion Exchangers[J]. El—Naggar et al. 2003, 9(4): 331~336
    [82] Pingwei, Zhang, HiromiTsuyama.Extraction and selective stripping of molybdenum(Ⅵ) and vanadium(Ⅴ) from sulfuric acid solution containing aluminum(Ⅲ), cobalt(Ⅱ), nickel(Ⅱ) and iron(Ⅲ) by LⅨ 63 in Exxsol DS0[J]. Hydrometally, 1996, 12(6): 45~53
    [83] J. A. M. van den Berg, Y. Yang, H. H. K. Nauta, A.van Sandwijk, M. A. Reuter. Comprehensive processing of low grade sulphidic molybdenum ores[J]. Minerals Enginering, 2002, 15(2): 879~883
    [84] 余建民.贵金属萃取化学[M].北京:化学工业出版社,2005:31~37
    [85] 徐徽,皮关华,陈白珍,等.用溶剂萃取法从碱浸液中回收钼的研究[J].湖南师范大学学报,2007,30(1):43~46
    [86] 马福军.叔胺型萃取剂从溶液中提取钼[J]_青海民族师专学报,2000,8(1):27~28
    [87] 陈礼运,宋平,高晓宝.高品位原生钼矿的综合利用[J].中国钼业,2003,27(3):17~18
    [88] 邢会敏,刘艳,陈刚,等.国外铀钼伴生矿综合回收技术[J].铀矿冶,2006,25(4):186~191
    [89] 张邦胜,蒋开喜,王海北,等.萃取法分离钨钼的研究进展[J].有色金属.2004,56(4):89~91
    [90] 黄汉年,李子如,冯新锐.溶剂萃取分离钨钼[J].钨钼科技,.983,(6):25~27
    [91] 李伟宣,张礼权.液液萃取法分离钨钼的研究[J].稀有金属与硬质合金,1989,97(2):21~24
    [92] 翁华民.溶剂萃取法从钨酸铵碱性溶液中分离钨钼试验研究[J].稀有金属与硬质合金,1987,6(2):36~41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700