远缘渐渗杂交引起的水稻基因组遗传和表观遗传变异及其可能机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验室前期通过对预先选择的一些基因片段的研究表明,菰渐渗可以诱导受体水稻基因组产生一系列遗传和表观遗传变异。本实验首先通过采用甲基化敏感的扩增片断多态性(methylation-sensitive amplified polymorphism,MSAP)标记方法,在全基因组范围内估测了三个渐渗杂交系(RZ1, RZ2和RZ35)相对于亲本松前的甲基化变异程度和变异模式。共检测了2700个位点,每个位点代表一个同裂酶HpaII/MspI的识别位点,根据这对同裂酶的不同酶切方式,估测在亲本松前基因组有15.9%的5’-CCGG位点产生了内侧胞嘧啶的完全甲基化或者外侧胞嘧啶的半甲基化,与水稻亲本(松前)比较,这两种甲基化修饰程度在所研究渐渗系中显著提高,分别达到19.2%, 18.6%, 19.6%。以亲本松前的MSAP扩增图谱作为对照,在渐渗系MSAP扩增谱带可以归为四大类,每类又可以细分不同亚类。变化的甲基化模式包括5’-CCGG位点甲基化修饰程度的升高、甲基化的降低和内外侧甲基化修饰模式的互换。大多数发生在低拷贝位点的变化可以被southern杂交的方法所证实,采用相同方法发现在同一渐渗系不同单株间这种变化是一致的。根据MSAP扩增结果选择了31条甲基化修饰模式在渐渗系不同于亲本的扩增片段进行测序,发现这些序列分布于水稻不同12条染色体上,包括了编码蛋白的基因,转座子/反转座及基因的非同源序列。
     另外利用涵盖水稻12条染色体和两种细胞质基因组的微卫星(microsatellites,MS)序列对渐渗系进行了研究。微卫星也称作简单重复序列(simple sequence repeats,SSRs),是在真核生物基因组广泛存在的一种DNA序列,并且这种简单重复序列存在很高的突变几率。发现在所检测的三个渐渗系的微卫星位点均发生了大量相对于亲本的遗传变异,而且这种变异呈现一定规律,即在核基因组所有检测的基因编码区位点均表现出很高的保守性而在非编码区位点渐渗系表现出较高变异性(基因间序列位点变异率达100%,5'端调节区为66.7%,内含子区占83.3% )。而且更意外的是,虽然是母系遗传,在渐渗系细胞器基因组仍然检测到了变异,这种变异甚至发生在基因编码区。根据电泳图谱,共有五类变异模式被检测出来。通过对变异位点的序列分析,发现造成微卫星位点变异的主要原因是微卫星基序重复次数的改变,同时也有少量侧翼序列也产生了变异。通常解释微卫星变异主要机制有染色体重组或基因转换(gene conversion)及DNA复制滑移(DNA replication slippage)。但是无论涉及到哪一种机制,纠正DNA复制错误的错配修复(mismatch repair,MMR)基因均在这些过程中起着重要作用。Real-time PCR分析显示这些基因的表达均表现出相对于亲本的不同变化,说明在渐渗过程中或其后几个世代错配修复基因的表达发生了较大变化。同时发现错配修复基因启动子的DNA甲基化修饰也发生了一定改变,暗示DNA甲基化可能参与了错配修复基因表达改变。最后对渐渗诱导的甲基化改变可能机制及在作物育种的意义及渐渗系是研究微卫星功能的良好材料等问题进行了讨论。
We have reported previously that introgression by Zizania latifolia resulted in extensive genetic and epigenetic changes in the recipient rice genome. In this study, using the methylation-sensitive amplified polymorphism (MSAP) method, we globally assessed the extent and pattern of cytosine methylation alterations in three typical introgression lines (RZ1, RZ2 and RZ35) relative to their rice parent at ~2,700 unbiased genomic loci each representing a recognition site cleaved by one or both of the isoschizomers, HpaII/MspI. Based on differential digestion by the isoschizomers, it is estimated that 15.9% of CCGG sites are either fully methylated at the internal Cs and/or hemi-methylated at the external Cs in the rice parental cultivar Matsumae. In comparison, a statistically significant increase in the overall level of both methylation types was detected in all three studied introgression lines (19.2, 18.6, 19.6%, respectively). Based on comparisons of MSAP profiles between the isoschizomers within the rice parent and between parent and the introgression lines, four major groups of MSAP banding patterns are recognized, which can be further divided into various subgroups as a result of inheritance of, or variation in, parental methylation patterns. The altered methylation patterns include hyper- and hypomethylation changes, as well as interconversion of hemi- to full-methylation, or vice versa, at the relevant CCGG site(s). Most alterations revealed by MSAP in low-copy loci can be validated by DNA gel blot analysis. The changed methylation patterns are uniform among randomly selected individuals for a given introgression line within or among selfed generations. Sequencing on 31 isolated fragments that showed different changing patterns in the introgression line(s) allowed their mapping onto variable regions on one or more of the 12 rice chromosomes. These segments include protein-coding genes, transposon/retrotransposons and sequences with no homology.
     At the same time, 98 microsatellites markers that mapped to all 12 rice chromosomes and the two cytoplasmic genomes were seleceted for detecting the variation in those specific sequences. Microsatellites, also called simple sequence repeats (SSRs), are widely dispersed in eukaryotes and have a high evolutional rate. In this study, we found that microsatellite variated extensively and rapidly in all three introgression lines. All of nuclear noncoding region located microsatellites extensively variated (100% in intergenic sequences, 66.7% in 5' regulatory regions and 83.3% in introns), but no change was detected in coding regions. And more surprisingly, 50% chloroplast DNA loci and 14.3% mitochondrial DNA loci showed variation and the variation even happened in coding regions of cytoplamic DNA. According to electrophoresis in denaturing polyacrylamide sequencing gels, five classes of polymorphic bands were found, and sequence comparison of selected loci between introgression lines and its rice parent showed that the high degree of variability in the microsatellite containing sequences were mainly due to variation in the repeated regions, while variation in the flanking regions of the microsatellite also happened. As methylation variation, the changed microsatellite patterns are uniform among randomly selected individuals for a given introgression line within or among selfed generations. We also found expression of mismatch repair (mismatch repair,MMR) genens in introgression lines changed, considering the relation of MMR genes with genome stability, this may be one of the reason for microsatellite stability in introgression lines. Finally, issues about possible causes for the introgression-induced methylation changes and their implications for genome evolution and crop breeding as well as introgression lines can be very good materials for microsatellite function analysis are discussed.
引文
[1] Zirkie C. The Beginnings of Plant Hybridization[M]. Morris Arboretum Monographs 1. University of Pennsylvania Press. 1935.
    [2] Roberts H F. Plant hybridization before Mendel[M]. Princeton, NJ, USA: Princeton University Press. 1929.
    [3] Linne C. Disquisito de sexu plantarum. Amoenitates Academicae [J]. 1760, 10: 100-131.
    [4] Ellstrand N C, Whitkus R, Rieseberg L H. Distribution of spontaneous plant hybrids[J]. Proc Natl Acad Sci USA, 1996, 93: 5090-5093.
    [5] Stebbins G L. The hybrid origin of microspecies in the Elymus glaucus complex[J]. Cytologia Supplemental Vol, 1957,36: 336-340.
    [6] Arnold M L, Hamrick J L, Bennett B D. Interspecific pollen competition and reproductive isolation in Iris[J]. J. Hered, 1993,84: 13-16.
    [7] Carney S E, Cruzan M B, Arnold M L. Reproductive interactions beween hybridizing irises : analyses of pollen-tube growth and fertilization success[J]. Am J Bot, 1994, 81: 1169-1175.
    [8] Naudin C. De l’hybriditéconsidérée comme cause de variabilitédans les végétaux[J]. Comptes Rendus de l’Académie des Sciences, 186, 59: 837-845.
    [9] Templeton A R. Mechanisms and speciation - a population genetic approach[J]. Annual Review of Ecology and Systematics, 1981,12: 23-48.
    [10] Strasburger E. Neue Untersuchungenüber den Befruchtungsvorgang bei den Phanerogamen als Grundlage fur eine Theorie der Zeugung[Z].Jena Germany: Verlag von Gustav Fischer, 1884.
    [11] Nawaschin S. Resultate einer Revision der Befruchtungsvorg ange bei Lilium martagon und Fritillaria tenella[J]. Bulletin de l‘Academie imperiale de SaintPetersbourg Sci. Saint- Petersbourg, 1898,9:377-382.
    [12] Guuignard L. Sur les anth′erozoides et la copulation sexuelle chez le v′eg′etaux angiospermes[J]. Revue g′en′erale de botanique, 1899,11: 129-135.
    [13] Winge O. The chromosomes: their number and general importance[J]. Comptes Rendus des Travaux du Laboratoire Carlesberg, 1917,13: 131-275.
    [14] Muntzing A. Outlines to a genetic monograph of the genus Galeopsis[J]. Hereditas, 1930,13: 185-341.
    [15] Grant V. The regulation of recombination in plants[J]. Cold Spring Harbor Symposium in Quantitative Biology, 1958,23: 337-363.
    [16] Rieseberg L H. Hybrid origins of plants species[J]. Annual Review of Ecology and Systematics, 1997,27: 359-389.
    [17] Anderson E. An experimental study of hybridization in the genus Apocynum[J]. Annals of the Missouri Botanical Garden, 1936,23: 159-167.
    [18] Otto S P, Whitton J. Polyploid incidence and evolution[J]. Annu. Rev. Genet, 2000,34, 401–437.
    [19] Leitch I J, Bennett M D. Polyploidy in angiosperms[J]. Trends in Plant Science,1997,2: 470-476.
    [20] Soltis D E, Soltis P S. Molecular data and the dynamic nature of polyploidy[J]. Critical Reviews in Plant Science,1993,12: 243-275.
    [21] Ramsey J,Schemske D W. Neopolyploidy in flowering plants[J]. Annu. Rev. Ecol. Syst,2002,33, 589-639.
    [22] Randolph L F. Some effects of high temperature on polyploidy and other variations in maize[J]. Proc Natl Acad Sci USA,1932,18 :222-229.
    [23] Dorsey E. Induced polyploidy in wheat and rye. Chromosome doubling in Triticum, Secale and Triticum Secale hybrids produced by temperature changes[J]. J Hered,1936,27 : 155-160.
    [24] Ballington J R, Galletta G J. Potential fertility levels in four diploid Vaccinium species[J]. J Am Soc Hortic Sci, 1976,101 :507-509.
    [25] Maceira N O , De Haan A A , Lumaret R , et al. Production of 2n gametes in diploid subspecies of Dactylis glomerata L. 1. Occurrence and frequency of 2n pollen[J]. Ann Bot, 1992, 69: 335-343.
    [26] Ramsey J , Schemske D W. Pathways, mechanisms, and rates of polyploid formation in flowering plants[J]. Annu Rev Ecol Syst,1998, 29 : 467-501.
    [27] Astaurov B L. Experimental polyploidy in animals[J]. Annu. Rev. Genet,1969,3:99-126.
    [28] Levin D A. Minority cytotype exclusion in local plant populations[J]. Taxon,1975,24: 35-43.
    [29] Baack E J. Succeed globally, disperse locally: a stochastic spatial model for tetraploid establishment[J]. Heredity,2005,94: 538-546.
    [30] Rausch JH, Morgan MT. The effect of self-fertilization, inbreeding depression, and population size on autopolyploid establishment[J]. Evolution,2005, 59:1867-1875.
    [31] Rodriguez D. A model for the establishment of polyploidy in plants[J]. American Naturalist,1996,147: 33-46.
    [32] Husband, B. C. Constraints on polyploid evolution: a test of the minority cytotype exclusion principle[J]. Proc R Soc Lond B,2000,267: 217-223.
    [33] Mallet J. Hybrid speciation[J]. Nature,2007,446: 279-283.
    [34] Bullini, L. Origin and evolution of animal hybrid species[J]. Trends Ecol. Evol,1994,9: 422–426.
    [35] Muller, H. J. Why polyploidy is rarer in animals than in plants[J]. Am. Nat,1925,59:346–353.
    [36] Bowers J E, Chapman B A, Rong J K,et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events[J]. Nature,2003,422: 433-438.
    [37] Vision T, Brown D, Tanksley S. The origins of genomic duplications in Arabidopsis[J]. Science,2000, 290: 2114-2117.
    [38] Abbott R J,Low A J. Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles[J]. Biol. J. Linn. Soc, 2004, 82: 467-474.
    [39] Ainouche M L,Baumel A,Salmon A. Spartina anglica C. E. Hubbard: a natural model system for analysing early evolutionary changes that affect allopolyploid genomes[J]. Biol. J. Linn. Soc, 2004, 82:475-484.
    [40] Grant V. Plant Speciation[M],Columbia Univ. Press, New York, 1981.
    [41] Coyne J A, Orr H A. Speciation[M] Sinauer Associates, Sunderland, Massachusetts, 2004.
    [42] Soltis D E, Soltis P S, Tate J A. Advances in the study of polyploidy since plant speciation[J]. New Phytol,2004,161:173-191.
    [43] Brochmann C, Brysting A K, Alsos I G,et al. Polyploidy in arctic plants[J]. Biological Journal of the Linnean Society, 2004,82: 521-536.
    [44] Buerkle C A, Morris R J, Asmussen MA, et al. The likelihood of homoploid hybrid speciation[J]. Heredity,2000,84: 441-51.
    [45] Gross B L, Rieseberg L H. The ecological genetics of homoploid hybrid speciation[J]. Journal of Heredity,2005,96: 241-252.
    [46] Rieseberg L H, Willis J H. Plant speciation[J]. Science,2007,317: 911-914.
    [47] Rieseberg L. H, Raymond O, Rosenthal D M, et al. Major ecological transitions in wild sunflowers facilitated by hybridization[J]. Science, 2003,301:1211-1216.
    [48] Nolte A W, Freyhof J, Stemshorn K C,et al. An invasive lineage of sculpins, Cottus sp. (Pisces, Teleostei) in the Rhine with new habitat adaptations has originated from hybridization between old phylogeographic groups[J]. Proc. R. Soc. Lond. B,2005,272:2379-2387.
    [49] Stebbins G L. The inviability, weakness and sterility of interspecific hybrids[J], Advances in Genetics, 1958, 9: 147-215.
    [50]孟金陵等编.植物生殖遗传学.北京:科学出版社,1995,321-334.
    [51]景士西主编,园艺植物育种学总论[M].北京:中国农业出版社,2002, 12-217.
    [52]李振声.小麦远缘杂交[M].北京:科学出版社, 1985.
    [53]孟金陵羿国香.甘蓝型油菜与芥菜型油菜正反杂交的胚胎学研究[J].中国农业科学, 1988, 21(2): 46-50.
    [54] Cooking E C. Method for the isolation of plant protoplasts and vacuoles [J]. Nature, 1960, (187): 927-929.
    [55] Chen J, Ding J, Ouyang Y, et al. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice[J]. Proc. Natl. Acad. Sci. USA,2008,105:11436-11441.
    [56]潘家驹主编.作物育种学总论[M].北京:中国农业出版社,1994.
    [57]王敬驹,徐振.以普通小麦和天兰冰草杂种花药诱导花粉植株[J]。遗传学报,1975,2(1); 72-80.
    [58] Anderson E, Hubricht L. Hybridization in Tradescantia. III. The evidence for introgressive hybridization[J]. Am. J. Bot, 1938,25:396-402.
    [59] Rieseberg L H, Wendel J. Introgression and its consequences in plants. In: Harrison R, ed. Hybrid Zones and the Evolutionary Process[M]. New York, USA: Oxford University Press, 1993,70-109.
    [60] Barton N H, Hewitt G M. Analysis of hybrid zones[J]. Annual Review of Ecology and Systematics,1985,16: 113-148.
    [61] Hajjar R, Hodgkin T. The use of wild relatives in crop improvement: a survey of developments over the last 20 years[J]. Euphytica, 2007,156:1-13.
    [62] Prescott-Allen C, Prescott-Allen R The First Resource: Wild Species in the North American Economy[M]. Yale University, New Haven,1986.
    [63] Rick C, Chetelat R. Utilization of related wild species for tomato improvement, First International Symposium on Solanacea for Fresh Market[J]. Acta Hortic, 1995,412: 21-38.
    [64] Brar D S, Khush G S. Alien introgression in rice[J]. Plant Mol Biol, 1997,35: 35-47.
    [65] Hoisington D, Khairallah M, Reeves T, et al. Plant genetic resources: What can they contribute toward increased crop productivity? [J]. Proc Natl Acad Sci USA, 1999,96:5937-5943.
    [66] Suszkiw J. Hessian Fly-Resistant Wheat Germplasm Available Agricultural Research Service[N], News and Events, United States Department of Agriculture,2005.
    [67] Nweke F. New Challenges in the Cassava Transformation in Nigeria and Ghana[N]. Environment and Production Technology Division Discussion Paper. International Food Policy Research Institute, Washington, DC,2004.
    [68] Brar DS,Broadening the gene pool of rice through introgression from wild species. In K. Toriyama, K.L. Heong and B. Hardy (eds.): Rice is life: scientific perspectives for the 21st century. 2005,157-160.
    [69] Karpechenko G D,Polyploid hybrids of Raphanus sativus L.×Brassica oleracea L. Zeitschrift für induktive Abstammungs- undVererbungslehre 1928,48: 1–85.
    [70] Blakeslee A F, Avery A G. Methods of inducing doubling of chromosomes in plants by treatment with colchicine[J]. J Hered,1937,28:393–411.
    [71]鲍文奎.从小黑麦工作想到的两个问题[J].生物学通报, 1981,1: 28-31.
    [72]鲍文奎.八倍体小黑麦育种与栽培[M].贵州:贵州人民出版社, 1981.
    [73] Avraham A. levy, Moshe Feldman. The impact of polyploidy on grass genome evolution[J]. Plant Physiology,2002,130:1587-1593.
    [74] Adams K L, Wendel J F. Novel patterns of gene expression in polyploid plants[J]. Trends Genet,2005,21:539–543.
    [75] Comai L. The advantages and disadvantages of being polyploidy[J]. Nature Reviews Genetics, 2005, 6: 836–846.
    [76] Wendel J F. Genome evolution in polyploids[J]. Plant Molecular Biology 2000,42: 225–249.
    [77] Chen Z J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids[J]. Annual Review of Plant Biology, 2007,58: 377–406.
    [78] Paun O, Fay M F, Soltis D E, et al. Genetic and epigenetic alterations after hybridization and genome doubling[J]. Taxon,2007,56: 649–656.
    [79] Song, K., Lu, P., Tang, K. and Osborn, T.C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution[J]. Proc. Natl. Acad. Sci. USA, 1995,92: 7719-7723.
    [80] Liu, B., Vega, J.M. and Feldman, M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences[J]. Genome, 1998,41:535-542.
    [81] Liu B, Wendel J F, Epigenetic phenomena and the evolution of plant allopolyploids[J]. Mol Phylogenet Evol,2003,29:365–379.
    [82] Feldman M, Levy A A. Allopolyploidy– a shaping force in the evolution of wheat genomes[J]. Cytogenetic and Genome Research,2005,109: 250–258.
    [83] Ma X F, Gustafson J P. Timing and rate of genome variation in triticale following allopolyploidization[J]. Genome,2006,49: 950–958.
    [84] Ozkan H, Levy A A, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group[J]. Plant Cell,2001,13: 1735–1747.
    [85] Shaked H, Kashkush, K., Ozkan, H., Feldman, M., and Levy, A A. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat[J]. Plant Cell,2001,13:1749–1759.
    [86] Han F, Fedak G, Guo W, Liu B. Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGc1R-1a) in newly synthesized wheat allopolyploids[J]. Genetics, 2005,170: 1239–1245.
    [87] Skalicka K, Lim K Y, Matyasek R, et al. Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco[J]. New Phytologist,2005,166: 291–303.
    [88] Chen Z J, Pikaard C S. Epigenetic silencing of RNA polymerase I transcription: a role for DNAmethylation and histone modification in nucleolar dominance[J]. Genes Dev, 1997,11:2124–2136.
    [89] Adams K L, Cronn R, Percifield R, et al. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing[J]. Proc Natl Acid Sci USA, 2003, 100: 4649–4654.
    [90] Mochida K, Yamazaki Y, Ogihara Y. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet Genomics, 2004, 270:371–377.
    [91] Adams K L, Percifield R, Wendel J F. Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid[J]. Genetics, 2004, 168:2217–2226.
    [92] Lynch M, Force A, The probability of duplicate gene preservation by subfunctionalization[J]. Genetics, 2000,154:459–473.
    [93] Rachel W A, Durrett R, Subfunctionalization: How often does it occur? How long does it take? [J]. Theor Popul Biol,2004,66:93–100.
    [94] Hovav R, et al. (2008) A majority of genes are expressed in the single-celled seed trichome of cotton[J]. Planta,227:319–329.
    [95] Flavell R B. Inactivation of gene expression in plants as a on sequence of specific sequence duplication [J]. Proc Natl Acid Sci USA, 1994 91:3490-3496.
    [96] Cao X, Springer N M, Muszynski M G, et al. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases[J]. Proc Natl Acad Sci USA, 2000, 97(9): 4979?4984.
    [97] Bestor T H. The DNA methyltransferases of mammals[J]. Hum Mol Genet, 2000, 9(16): 2395?2402.
    [98] Cao X, Jacobsen S E. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing[J]. Curr Biol, 2002, 12(13): 1138?1144.
    [99] Chan SW, Zilberman D, Xie Z, et al. RNA silencing genes control de novo DNA methylation[J]. Science, 2004, 303(5662): 1336.
    [100] Xie Z, Johansen L, Gustafson A, et al, Carrington JC. Genetic and functional diversification of small RNA pathways in plants[J]. PLoS Biol, 2004, 2(5): 642?652.
    [101] Cao X, Aufsatz W, Zilberman D, et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation[J]. Curr Biol, 2003, 13(24): 2212?2217.
    [102] Zilberman D, Cao X, Johansen LK, et al. Role of Arabidopsis ARGONAUTE 4 in RNA-directed DNA methylation triggered by inverted repeats[J]. Curr Biol, 2004, 14(13): 1214?1220.
    [103] Finnegan E J, Dennis E S. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. [J]. Nucleic Acids Res, 1993, 21(10): 2383?2388.
    [104] Finnegan E J, Peacock W J, Dennis E S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development[J]. Proc Natl Acad Sci USA, 1996, 93(16): 8449?8454.
    [105] Kankel M W, Ramsey D E, Stokes T L, et al. Arabidopsis MET1 cytosine methyltransferase mutants[J]. Genetics, 2003, 163(3): 1109?1122.
    [106] Henikoff S, Comai L. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis[J]. Genetics, 1998, 149(1): 307?318.
    [107] Gruenbaum Y, Naveh M T, Cedar H, et al. Sequence specificity of methylation in higher plant DNA[J]. Nature, 1981, 292(5826): 860?862.
    [108] Papa C M, Springer N M, Muszynski M G, et al. Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation[J]. Plant Cell, 2001, 13(8): 1919?1928.
    [109] Lindroth A M, Cao X, Jackson J P, et al. Requirement of CHROMOMETHYLASE 3 for maintenance of CpXpG methylation[J]. Science, 2001, 292(5524): 2077?2080.
    [110] Bartee B K. Extraction site reconstruction for alveolar ridge preservation. Part 2:membrane-assisted surgical technique [J]. J Oral Implantol, 2001,27(4):194-197.
    [111] Brzeski J, Jerzmanowski A. Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin remodling factors[J]. J Biol Chem, 2003, 278(2): 823?828.
    [112] Zemach A, Li Y, Wayburn B, et al. DDM1 binds Arabidopsis Methyl-CpG binding domain proteins and affects their subnuclear localization[J]. Plant Cell, 2005, 17(5): 1549?1558.
    [113] Chan S W, Henderson I R, Jacobsen S E. Gardening the genome: DNA methylation in Arabidopsis thaliana[J]. Nat Rev Genet, 2005, 6(5): 351?360.
    [114] Gong Z, Morales-Ruiz T, Ariza RR, et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase[J]. Cell, 2002, 111(6): 803?814.
    [115] Agiu F, Kapoor A, Zhu J K. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation[J]. Proc Natl Acad Sci USA, 2006, 103(31): 11796?11801.
    [116] Wassenegger M, Heimes S, Riedel L, et al. RNA-directed de novo methylation of genomic sequences in plants[J]. Cell, 1994, 76: 567-576.
    [117] Noma K, Sugiyama T, Cam H, et al. RITS acts in cis to promote RNA interference-mediated transcriptional and posttranscriptional silencing[J]. Nat Genet, 2004, 36: 1174-1180.
    [118] Matzke M, Kanno T, Huettel B, et al. Targets of RNA-directed DNA methylation[J]. Curr Opin Plant Biol, 2007, 10: 512–519.
    [119] Zilberman D, Cao X, Jacobsen S E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation[J]. Science, 2003, 299: 716–719.
    [120] Chan S W, Zhang X, Bernatavichute Y V, et al. Two-step recruitment of RNA-directed DNA methylation to tandem repeats[J]. PLoS Biol, 2006, 4: 1923–1933.
    [121] Huettel B, Kanno T, Daxinger L, et al. Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis[J]. EMBO J, 2006, 25: 2828–2836.
    [122] Katti M V, Panjekar P K, gupta V S. differential distribution of simple sequence repeats in eukaryotic genome sequences[J]. 2001, Mol Biol Evol, 18: 1161-1167.
    [123] Metzgar D, Tiiomas E, Field C,et al. The microsatellites of Escherichia coli: rapidly evolving repetitive DNAs in a non-pathogenic prokaryote[J]. Mol. Microbio, 2001, 39: 183-190.
    [124] Toth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis[J]. Genome Res, 2000, 10: 967–981.
    [125] Weber J L, Wong C. Mutation of human short tandem repeats[J]. Hum Mol Genet, 1993, 2: 1123–1128.
    [126] Chen X, Temnykh S., Xu Y, et al. Development of a microsatellite framework map providing genome-wide coverage in rice ( Oryza sativaL.) [J]. Theor Appl Genet, 1997, 95: 553-567.
    [127] Weissenbach J, Gyapay G, Dib C, et al. A second-generation linkage map of the human genome[J]. Nature, 1992, 359(6398): 794-801.
    [128] Weissenbach J. microsatellite polymorphisms and the genetic linkage map of the human genome[J]. Current opinon in genetics and development, 1993, 3: 414-417.
    [129] Banks M A, Rashbrook V K, Calavetta M J, et al. Analysis of microsatellite DNA resolves genetic structure and diversity of chinook salmon (Oncorhynchus tshawytscha) in California's Central Valley Can. J. Fish. Aquat[J]. Science, 2000, 57: 915-927.
    [130] Bruford M W, Wayne R K. microsatellites and their application to population genetic syudies[J]. Current opinion in genetics and development, 1993, 3: 939-943.
    [131] Levinson G, Gutman G A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution[J], Mol Biol Evol, 1987, 4: 203-221.
    [132] Tachida H, Iizuka M. Persistence of repeated sequences that evolve by replication lippage [J]. Genetics, 1992, 131: 471 -478.
    [133] Tautz, D. and C. Schlotterer. Simple sequences[J]. Curr Opin Genet Dev, 1994, 4: 832-837.
    [134] Tautz D, Renz M. Simple sequence are ubiquitous repeats components of eukaryotic genomes[J]. Nuclei Acid Res, 1984, 12: 4127-4138.
    [135] Bichara M, Wagner J, Lambert I B. Mechanisms of tandem repeat instability in bacteria[J]. Mutat Res, 2006, 598: 144-63.
    [136] Metzgar D, Bytof J, Wills C. Selection against frameshift mutations limits microsatellite expansion in coding DNA[J]. Genome Res, 2000, 10: 72-80.
    [137] Sia E A, Kokoska R J, Dominska M, et al. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes[J]. Mol Cell Biol, 1997, 17: 2851-2858.
    [138] Streisinger G, Okada Y, Emrich J, et al. Frameshift mutations and the genetic code[J]. Cold Spring Harbor Symp. Quant. Biol, 1996, 31: 77-84.
    [139] Jakupciak J P, Wells R D. Gene conversion (recombination) mediates expansions of CTG.CAG repeats[J]. Journal of Biological Chemistry, 2000, 275: 4003-401.
    [140] Paques F, Wegnez M. Deletions and amplifications of tandemly arranged ribosomal 5S genes internal to a P element occur at a high rate in a dysgenic context[J]. Genetics, 1993, 135: 469-476.
    [141] Pearson C E and Sinden R R. Alternative DNA structures within the trinucleotide repeats of the myotonic dystrophy and fragile X locus[J]. Biochemistry, 1996, 35: 5041-5053.
    [142] Richard G F, P?ques F. Mini- and microsatellite expansions: the recombination connection[J]. EMBO Rep, 2000, 1: 122-126.
    [143] Welch J W, Maloney D H, Fogel S. Unequal crossing-over and gene conversion at the amplified CUP1 locus of yeast[J]. Mol Gen Genet, 1990, 222: 304–310.
    [144] Hawk J D, Stefanovic L, Boyer J C, et al. Variation in efficiency of DNA mismatch repair at different sites in the yeast genome[J]. Proc Natl Acad Sci USA, 2005, 102: 8639–8643.
    [145] Leonard J M, Bollmann S R, Hays J B. Reduction of Stability of Arabidopsis Genomic and Transgenic DNA-Repeat Sequences (Microsatellites) by Inactivation of AtMSH2 Mismatch-Repair Function[J]. Plant Physiol, 2003, 133(1): 328–338.
    [146] Hoffman P D, Leonard J M, Lindberg G E, et al. Rapid accumulation of mutations during seed-to-seed propagation of mismatch-repair-defective Arabidopsis[J]. Genes & Dev, 2004, 18: 2676 - 2685.
    [147] Tran H T, Keen J D, Kricker M, et al. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading mutants[J]. Mol Cell Biol, 1997, 17: 2859-2865.
    [148] Modrich P. Mechanisms and biological effects of mismatch repair[J]. Annu Rev Genet, 1991, 25: 229–253.
    [149] Hall M C, Matson S W. The E. coli MutL protein physically interacts with MutH and stimulates the MutH-associated endonuclease activity[J]. J Biol Chem, 1999, 274: 1306–1312.
    [150] Depeiges A, Farget S, Degroote F, et al. A new transgene assay to study microsatellite instability in wild-type and mismatch-repair defective plant progenies[J]. Plant Science, 2005, 168: 939–947.
    [151] Wang Z, Weber J L, Zhong G, et al. Survey of plant short tandem DNA repeats[J]. Theoretical and Applied Genetics, 1994, 88: 1-6.
    [152] Schug M D, Wetterstrand K A, Gaudette M S et al. The distribution and frequency of microsatellite loci in Drosophila melanogaster[J]. Molecular Ecology, 1998, 7: 57-70.
    [153] Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant Genomes[J]. Nat Genet, 2002, 30: 194–200.
    [154] Scotti I, Vendramin G G, Matteotti L S, et al. Postglacial recolonization routes for Picea abies K. in Italy as suggested by the analysis of sequence-characterized amplified region (SCAR) markers[J]. Molecular Ecology, 2000, 9: 699-708.
    [155] Lisowska K, Loch T, Fiszer-Kierzkowska A, et al. Identification of a microsatellite region composed of a long homopurine/homopyrimidine tract surrounded by AT-richsequences upstream of the rat stress-inducible hsp 70.1 gene[J]. Acta Biochimica Polonica, 1997, 44: 147-152.
    [156] Zhang L, Zuo K, Zhang F, et al. Conservation of noncoding microsatellites in plants: implication for gene regulation[J]. BMC Genomics, 2006, 7: 323-337.
    [157] Li Y C, Fahima T, Korol A B, et al. Microsatellite diversity correlated with ecological-edaphic and genetic factors in three microsites of wild emmer wheat in North Israel[J]. Molecular Biology and Evolution, 2000, 17: 851-862.
    [158] Li Y C, R.der M S, Fahima T, et al. Climatic effect on microsatellite diversity in wild emmer wheat, Triticum dicoccoides, at Yehudiyya microsite, Israel[J]. Heredity, 2002, 89: 127-132.
    [159] Eichler E E. Repetitive conundrums of centromere structure and function[J]. Human Molecular Genetics, 1999, 8: 151-155.
    [160] Templeton A R, Clark A G, Weiss K M, et al. Recombinational and mutational hotspots within the human lipoprotein lipase gene[J]. Am J Hum Genet, 2000, 66: 69-83.
    [161] Aharoni A , N Baran , H Manor. Characterization of a multisubunit human protein which selectively binds single stranded d(GA) n and d( GT) n sequence repeats in DNA[J]. Nucleic Acids Res. 1993, 21: 5221-5228.
    [162] Wahls W P, P D Moore. Relative frequencies of homologous recombination between plasmids introduced into DNA repair-deficient and other mammalian somatic cell lines[J]. Som Cell Mol Genet, 1990, 16: 321-329.
    [163] Biet E, Sun J, Dutreix M. Conserved sequence preference in DNA binding among recombination proteins: an effect of ssDNA secondary structure[J]. Nucleic Acids Res, 1999, 27: 596 - 600.
    [164] Karlin A, Campbell A M, Mrázek J. Comparative and analysis across diverse genomes[J]. Annu Rev Genet, 1998, 32: 185 -225.
    [165] Hammock E A D, Young LJ. Microsatellite instability generates diversity in brain and sociobehavioral traits[J]. Science,2005,308: 1630-1634.
    [166] Mallet, J. Hybridization as an invasion of the genome[J]. Trends Ecol Evol,2005,20:229-237.
    [167] Feldman M, Liu B, Segal G, et al. Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes[J]. Genetics,1997,147: 1381-1387.
    [168] Gaeta RT, Pires JC, Iniguez-Luy F, et al. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype[J]. Plant Cell, 2007, 19: 3403-3417.
    [169] Rieseberg L, Van Fossen C, Desrochers A. Hybrid speciation accompaniedby genomic reorganization in wild sunflowers[J]. Nature, 1995, 375: 313-316.
    [170]夏永生。水稻-菰属间杂交研究初报[J].遗传学集刊, 1964,(5):39-52.
    [171]杨福,王晓丽。菰(Zizania)离体培养的初步研究[J].吉林农业大学学报, 1996, 18(1): 15-18.
    [172] Liu B, Piao H M, Zhao F S, et al. Production and molecular characterization of rice lines derived from a distant cross between rice and Ziazania latifolia (Griseb.) [J]. J Genent & Breed, 1999, 53: 279-284.
    [173] Liu Z L, Dong Y Z, Liu B. Isolation of Ziazania latifolia spieces-specific DNA sequences and their utility in identification of Z. latifolia DNA introgressed into rice[J]. Acta Botanica Sinica, 2000, 42 (3):324-332.
    [174] Wang Y M, Dong Z Y, Zhang Z J, et al. Extensive de novo Genomic Variation in Rice Induced by Introgression from Wild Rice (Zizania latifolia Griseb.) [J]. Genetics, 2005, 170: 1945-1956.
    [175] Shan X H, Liu Z L, Dong Z Y, et al. Mobilization of the active mite transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.) [J]. Mol Biol Evol, 2005, 22: 976-990.
    [176] Jiang N, Bao Z, Zhang X, et al. An active DNA transposon family in rice[J]. Nature, 2003, 421: 163-167.
    [177] Kikuchi K, Terauchi K, Wada M, et al, The plant MITE mPing is mobilized in anther culture [J]. Nature, 2003, 421: 167-170.
    [178] Capy P, Chakrani F, Lemeunier F, et al. Active mariner transposable elements are widespread in natural populations of Drosophila simulans[J]. Proc R Soc Lond B Biol Sci, 1990, 242: 57-60.
    [179] Capy P, Gasperi G, Biemont C, et al. Stress and transposable elements, co-evolution or useful parasites? [J] Heredity, 2000, 85: 101-106.
    [180] Evgenev M B, Zelentsova H, Shostak N, et al. Penelope, a new family of transposable elements and its possible role in hybrid dysgenesis in Drosophila virilis[J]. Proc Natl Acad Sci USA, 1997, 94: 196-201.
    [181] O’Neill, R. J. W., M. J. O’Neill et al. Undermethylation associated with retroelement activation and chromosome remodeling in an interspecific mammalian hybrid[J]. Nature, 1998, 393: 68-72.
    [182] Liu Z L, Wang Y M, Shen Y, et al. Extensive alterations in DNA methylation and transcription in rice caused by introgression from Zizania latifolia[J]. Plant Mol Biol, 2004, 54: 571-582.
    [183] Kidwell K K, Osborn T C. Simple plant DNA isolation procedures, In Plant genomes: Methods for Genetic and Physical Mapping[M]. J. S. Beckman and T.C. Osborn, eds (Dordrecht, The Netherlands: Kluwer Academic Publishers), 1992.1-13.
    [184] Vos P, Hogers R, Bleeker M,et al. AFLP: a new technique for DNA fingerprinting[J]. Nucl Acids Res, 1995, 23: 4407-4414.
    [185] Ellis R P, Forster B P, Waugh R, et al. Mapping physiological traits in barley[J]. New Phytologist, 1997, 137: 149-157.
    [186] Hongtrakul V, Huestis G M, Knapp S J. Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: Genetic diversity among oilseed inbred lines[J]. Theor Appl Genet, 1997, 95: 400-407.
    [187] Elias M, Panaud O, Robert T. Assessment of genetic variability in a traditional cassava (Manihot esculenta Crantz) farming system using AFLP markers[J]. Heredity, 2000, 85: 219-230.
    [188] Kardolus J P, van Eck, HJ, van den Berg, R.G. The potential of AFLPs biosystematics: a first application in Solanum taxonomy (Solanaceae) [J]. Pl. Syst. E, 1998, 210: 87–103.
    [189] Wang Y H, Thomas C E, Dean R A. A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers[J]. Theor Appl Genet. 1997, 95: 791-797.
    [190] Rouppe van der Voort, J N A M, van Zandvoort, et al. Use of allele specificity of comigrating AFLP bands to align genetic maps from different potato genotypes[J]. Mol Gen Genet, 1997, 255: 438-447.
    [191] McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases[J]. Nucleic Acids Res, 1994, 22: 3640-3659.
    [192] Ashikawa I. Surveying CpG methylation at 5-CCGG in the genomes of rice cultivars[J]. Plant Mol Biol, 2001, 45: 31–39.
    [193] Cervera M T, Ruiz-Garcia L, Martinez-Zapater J M. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers[J]. Mol Genet Genomics, 2002, 268: 543-552.
    [194] Xiong L Z, Xu C G, Maroof M A S, et al. Patterns of cytosine methyaltion in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique[J]. Mol Genet Genomics, 1999, 261: 439–446.
    [195] Ware D H, Jaiswal P, Ni J, et al. Gramene, a tool for grass genomics[J]. Plant Physiol, 2002, 130: 1606–1613.
    [196] Reyna-Lopez GE, Simpson J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms[J]. Mol Genet Genomics, 1997, 253: 703–710.
    [197] Hashimoto Z, Mori N, Kawamura M, et al. Genetic diversity and phylogeny of Japanese sake-brewing rice as revealed by AFLP and nuclear and chloroplast SSR markers[J]. Theor Appl Genet, 2004, 109: 1586-1596.
    [198] Ishii T, McCouch S R. Microsatellites and microsynteny in the chloroplast genomes of Oryza and eight other Gramineae species[J]. Theor Appl Genet, 2000, 100: 1257-1266.
    [199] Leonard J M, Bollmann S R, Hays J B, Reduction of stability of Arabidopsis genomic and transgenic DNA-repeat sequences (microsatellites) by inactivation of AtMSH2 mismatch-repair function[J]. Plant Physiol, 2003, 133: 328-338.
    [200] Strand M, Prolla TA, Liskay RM, et al. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair[J]. Nature, 1993, 365: 274-276.
    [201] Yamada N A, Smith G , Castro A, et al.Rlative rates of insertion and deletion mutations in dinucleotide repeats of various lengths in mismatch repair proficient mouse and mismatch repair deficient human cells[J]. Mutat Res, 2002, 499: 213-225.
    [202] Martin P, Makepeace K, Hill S, et al. Microsatellite instability regulates transcription factor binding and gene expression[J]. Proc Natl Acad Sci USA, 2005, 102(10): 3800-4.
    [203] Hammock E A, Young L J. Microsatellite instability generates diversity in brain and sociobehavioral traits[J]. Science, 2005, 308: 1630–1634.
    [204] Portis E, Acquadro A, Comino C, et al. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP) [J]. Plant Sci, 2003, 166: 169-178.
    [205] Bender J. Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing[J]. Trends Biochem Sci, 1998, 23:252-256.
    [206] Matzke M A, Aufsatz W, Kanno T, et al. Homology-dependent gene silencing and host defense in plants[J]. Adv Genet, 2002, 46: 235-275.
    [207] Matzke M A, Scheid O M, Matzke A J. Rapid structural and epigenetic changes in polyploid and aneuploid genomes[J]. BioEssays, 1999, 21: 761-767.
    [208] Madlung A, Masuelli R W, Watson B, et al. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids[J]. Plant Physiol, 2002, 129: 733-746.
    [209] Pikaard C S. Genomic change and gene silencing in polyploids[J]. Trends Genet, 2001, 17: 675-677.
    [210] Comai L, Madlung A, Josefsson C, et al. Do the different parental‘heteromes’cause genomic shock in newly formed allopolyploids? [J]. Philos Trans R Soc Lond B Biol Sci, 2003, 358: 1149-1155.
    [211] Levy A A, Feldman M. Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization[J]. Biol J Linn Soc, 2004, 82: 607-613.
    [212] Heller H, Kammer C, Wilgenbus P, Doerfler W. The chromosomal insertion of foreign (adenovirus type 12, plasmid of bacteriaphage) DNA is associated with enhanced methylation of cellular DNA segments[J]. Proc Natl Acad Sci USA, 1995, 92: 5515-5519.
    [213] Muller K, Heller H, Doerfler W. Foreign DNA integration. Genome-wide perturbations of methylation and transcription in the recipient genomes[J]. J Biol Chem, 2001, 276: 14271-14278.
    [214] Remus R, Kammer C, Heller H, et al. Insertion of foreign DNA into an established mammalian genome can alter the methylation of cellular DNA sequences[J]. J Virol, 1999, 73: 1010-1022.
    [215] Riddle N\C, Richards E J. The control of natural variation in cytosine methylation in Arabidopsis[J]. Genetics, 2002, 162: 355-363.
    [216] Schumacher A, Koetsier P A, Hertz J, et al. Epigenetic and genotype-specific effects on the stability of de novo imposed methylation patterns in transgenic mice[J]. J Biol Chem, 2000, 275: 37915-37921.
    [217] Luff B, Pawlowski L, Bender J. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis[J]. Mol Cell, 1999, 3: 505-511.
    [218] Melquist S, Luff B, Bender J. Arabidopsis PAI gene arrangements, cytosine methylation and expression[J]. Genetics, 1999, 153: 401-413.
    [219] Scheid O M, Afsar K, Paszkowski J. Formation of stable epialleles and their paramutation-like interaction in tetraploid Arabidopsis thaliana[J]. Nat Genet, 2003, 34: 450-454.
    [220] Hirochika H, Sugimoto K, Otsuki Y,et al. Retrotransposons of rice involved in mutations induced by tissue culture[J]. Proc Natl Acad Sci USA, 1996, 93: 7783-7787.
    [221] Nakazaki T, Okumoto Y, Horibata A, et al. Mobilization of a transposon in the rice genome[J]. Nature, 2003, 421: 170-172.
    [222] Liu B, Wendel J F. Retrotransposon activation followed by rapid repression in introgressed rice plants[J]. Genome, 2000, 43: 874-880.
    [223] Grandbastien M A. Retroelements in higher plants[J]. Trends Genet, 1992, 8: 103-108.
    [224] Grandbastien M A. Activation of plant retrotransposons under stress conditions[J]. Trends Plant Sci, 1998, 3: 181-187.
    [225] Kato M, Takashima K, Kakutani T Epigenetic control of CACTA transposon mobility in Arabidopsis thaliana[J]. Genetics, 2004, 168: 961-969.
    [226] Martienssen R A, Colot V. DNA methylation and epigenetic inheritance in plants and lamentous fungi[J]. Science, 2001, 293: 1070-1074.
    [227] Ros F, Kunze R. Regulation of activator/dissociation transposition by replication and DNA methylation[J]. Genetics, 2001, 157: 1723-1733.
    [228] Wang L, Heinlein M, Kunze R. Methylation pattern of Activator transposase binding sites in maize endosperm[J]. Plant Cell, 1996, 8: 747–758.
    [229] Wessler S R. Plant retrotransposons: turned on by stress[J]. Curr Biol, 1996, 6: 959-961.
    [230] Wolffe A P, Matzke M A. Epigenetics: regulation through repression[J]. Science, 1999, 286: 481-486.
    [231] Arnold M L. Natural hybridization and evolution[M]. Oxford University Press, New York, 1997.
    [232] Finnegan E J. Epialleles—a source of random variation in times of stress[J]. Curr Opin Plant Biol, 2001, 5: 101-106.
    [233] Kakutani T. Epi-alleles in plants: inheritance of epigenetic information over generations[J]. Plant Cell Physiol, 2002, 43: 1106-1111.
    [234] Kalisz S, Purugganan M D. Epialleles via DNA methylation: consequences for plant evolution[J]. Trend Ecol Evol, 2004, 19: 309–314.
    [235] Rapp R A, Wendel J F. Epigenetics and plant evolution[J]. New Phytol, 2005, 168: 81-91.
    [236] Li Y C, Korol A B, Fahima T, et al. Microsatellites within genes: structure, function, and evolution[J]. Mol Biol Evol, 2004, 21: 991-1007.
    [237] Jankowski C, Nasar F, Nag D K. Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast[J]. Proc Natl Acad Sci USA, 2000, 97: 2134-2139.
    [238] Zoghbi H Y, Orr H T. Glutamine repeats and neurodegeneration[J]. Annu Rev Neurosci, 2000, 23: 217-237.
    [239] Symonds V V, Lloyd A M. An analysis of microsatellite loci in arabidopsis thaliana: Mutational dynamics and application[J]. Genetics, 2003, 165: 1475-1488.
    [240] Wierdl M., M. Dominska, T. D. Petes, Microsatellite instability in yeast: dependence on the length of the microsatellite[J]. Genetics, 1997, 146: 769-779.
    [241] Tautz D. Hypervariablity of simple sequences as a general source of polymorphic DNA markers[J]. Nucleic Acids Res, 1989, 17: 6463-6471.
    [242] Garza J C, Slatkin M, Freimer N B, Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size[J]. Mol Biol Evol, 1995, 12: 594-603.
    [243] Dettman J R, Taylor J W. Mutation and Evolution of Microsatellite Loci in Neurospora[J]. Genetics, 2004, 168: 1231-1248.
    [244] Grimaldi M C, Crouau-Roy B, Microsatellite allelic homoplasy due to variable flanking sequences[J]. J. Mol Evol, 1997, 44: 336-340.
    [245] Kinzler K, Vogelstein B. Lessons from hereditary colorectal cancer[J]. Cell, 1996, 87:159-170.
    [246] Levinson G, Gutman G A. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12[J]. Nucleic Acids Res, 1987, 15: 5323-5338.
    [247] Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology[J]. Annu Rev Biochem, 1996, 65: 101-133.
    [248] Umar A, Kunkel T A. DNA-replication fidelity, mismatch repair and genome instability in cancer cells[J]. Eur J Biochem, 1996, 238: 297-307.
    [249] Iyer R R , Pluciennik A, Burdett V et al. DNA mismatch repair: functions and mechanisms[J]. Chem Rev, 2006, 106: 302-323.
    [250] Reenan R A, Kolodner R D. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions[J]. Genetics, 1992, 132: 975-985.
    [251] Harfe B D, Jinks-Robertson S. DNA mismatch repair and genetic instability[J]. Annu Rev Genet, 2000, 34: 359-399.
    [252] Surtees J A, Argueso J L, Alani E. Mismatch repair proteins: key regulators of genetic recombination. Cytogenet[J]. Genome Res, 2004, 107: 146-159.
    [253] Lin Z, Nei M, Ma H. The origins and early evolution of DNA mismatch repair genes multiple horizontal gene transfers and co-evolution[J]. Nucleic Acids Res, 2007,35: 7591-7603.
    [254] Herman J G, Gra J R, Myohanen S et al. Myohanen S Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci. USA,1998,95:6870–6875.
    [255] Young J, Simms L A, Biden K G et al. Features of colorectal cancers with high-level microsatellite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis. Am J Pathol, 2001, 159: 2107-2116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700