内共生菌Wolbachia对Ficus hispida榕小蜂线粒体基因的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Wolbachia是一种广泛存在于节肢动物体内的胞内共生菌,早期研究表明节肢动物中约16%的物种被感染。近来根据Long-PCR等检测手段发现约76%的物种感染Wolbachia,同时发现不少寄主感染多株系的Wolbachia,因此推断Wolbachia可能是目前分布最广、丰度最大的胞内共生微生物类群。
     母系遗传的胞内共生菌Wolbachia能够操纵寄主的生殖活动,如诱导精卵不容、孤雌生殖、雌性化、杀雄作用等。此外,研究表明Wolbachia在物种形成过程中起到重要作用。
     动物的线粒体基因(mtDNA)具有许多独特的优点:母系遗传;基因组较小;重组率低;变异速度快(一般认为线粒体基因是核基因进化速率的4-10倍)等。线粒体基因逐步成为重要的分子标记,广泛应用于种群遗传学、生物进化和系统发育等相关研究。
     mtDNA长期以来被认为是一种中性进化的分子标记,然而近来一些研究者发现跟其它基因组基因相比,整个线粒体实际上处于非常强烈的选择压力之下,接受着来自线粒体本身的直接选择和其它母系遗传因素的间接选择,以一种“非中性”的速率进化。任何母系遗传的相关因素都有可能影响到线粒体基因的变异,胞内共生菌Wolbachia就是一个典型例子。Wolbachia能够影响寄主线粒体基因的变异,因此可以通过寄主线粒体基因的变异来研究Wolbachia的感染情况。Hurst总结前人研究结果表明内共生菌对寄主的线粒体基因(mtDNA)能够产生的影响,对已有的例子进行分析,可以分为四类:(1)内共生菌驱动的mtDNA多样性的降低;(2)内共生菌驱动的多样性的增加;(3)内共生菌驱动的空间范围内mtDNA的变异;(4)内共生菌连带mtDNA并系的产生。
     根据前人对不同地区榕小蜂感染率的研究发现,榕小蜂几乎是感染Wolbachia最多的昆虫之一,达到59%-67%。榕小蜂长期生活在密闭的果内,果内小蜂的感染情况以及对寄主线粒体基因可能的影响引起我们极大的研究兴趣。在本文中,我们主要探讨了榕树Ficus hispida中四种榕小蜂体内Wolbachia感染率以及对不同寄主mtDNA的影响。
     感染率的初步研究结果表明,在Ficus hispida中,传粉榕小蜂Ceratosolen solmsi和非传粉小蜂Philotrypesis pilosa感染Wolbachia,而另外两种非传粉小蜂Philotrypesis sp.和Apocrypta backeri则完全未感染Wolbachia。并且,两个感染Wolbachia物种中的感染率也不同,C. solmsi是89.3%,而P. pilosa的感染率是100%。进一步通过Wolbachia的两个特异基因wsp和ftsZ序列得到结论:传粉榕小蜂C. solmsi只感染一个Wolbachia株系,而非传粉榕小蜂P. pilosa感染多株系Wolbachia,其中两个株系是相对比较稳定的,并且其中一个株系与感染C. solmsi的株系只有一个碱基的差异。这说明Wolbachia除了垂直传播以外,在这两个物种当中很可能还存在水平传播,尽管传播途径还不是很清楚。
     从聚类树上可以看出,所有的C. solmsi个体依据它们的感染状态被分成两大支,并且两个线粒体分子标记(COI和Cytb)得出相似的拓扑结构,意味着它们有着相似的变化趋势。分别对比感染和未感染Wolbachia个体间的线粒体基因序列(COI和Cytb),我们发现二者差异明显:一方面,对于COI和Cytb,感染和未感染类群间的核苷酸差异分别达到9.2%和15.3%;另一方面,同样对于这两个线粒体基因,感染和未感染类群内部核苷酸的差异均小于1%。进一步比较发现这两个线粒体基因,感染个体较未感染个体显示出明显降低的多样性。
     P. pilosa和P. sp.的COI和Cytb两个基因的拓扑结构存在一定差异。对于COI,P. pilosa和P. sp.均出现非常多的单体型;而对于Cytb,P. pilosa种内依然出现较多不同的单体型,而P. sp.中出现的单体型则相对较少。数据表明,对于COI,这两个姐妹种在核苷酸多样性等方面都非常相似,差异不大;对于Cytb,与COI不同,两姐妹种间差异较大。
     使用三个不同的中性检验方法对C. solmsi,P. pilosa和P. sp.进行检测发现,只有C. solmsi中感染Wolbachia个体的COI序列明显偏离中性进化,而所有个体的Cytb基因,以及未感染Wolbachia的C. solmsi的COI基因均符合中性进化。核基因结果也非常有意思,对于ITS2片段来说,种内个体的序列几乎完全一致,从分子数据上确定了我们所取的标本来自同一物种,并且排除了其它因素的作用,证明是Wolbachia的存在对寄主产生了影响。对于EF1-α,姐妹种P. pilosa和P. sp.的序列非常混乱,很难将两个种区分开来,可能是由于我们所取的基因片段非常保守的缘故;另一方面,在传粉榕小蜂中,感染和未感染个体的EF1-α存在三个固定位点碱基的变异,尽管这三个碱基的变化并没有引起任何氨基酸水平的变异,目前还不能对此做出一个满意的解释。
     通过对Wolbachia株系的研究,推测在对叶榕中,Wolbachia的两种传播方式并存,或许水平传播方式也是大量榕小蜂感染Wolbachia的一个可能原因。通过对wsp基因序列研究发现,wsp存在明显的基因重组现象。基因重组现象是细菌新物种形成的一个重要方式。对Wolbachia基因组大量基因的研究发现,存在许多重组的蛋白基因,这也从另一个方面解释了大量不同株系存在的原因。
     在研究Wolbachia对线粒体基因的影响的同时,还在两个姐妹种P. pilosa和P. sp.的COI中发现大量的线粒体假基因,而Cytb中未出现,同时在对叶榕中另外两种小蜂的线粒体基因中均未发现线粒体假基因的存在。这很可能是两姐妹种的COI基因在进化中受到特殊的压力造成的。在这些假基因中,最明显的特征就是大量终止密码子的提前出现。姐妹种中很多个体都同时得到两个或多个不同的线粒体假基因序列。进一步研究发现,这些假基因都是在两个姐妹种发生分离之后产生的;并且可能是通过独立的从线粒体到核基因组的转移和转移后复制事件两种方式产生的。
     在对F. hispida四种小蜂的研究过程中发现,内共生菌Wolbachia和线粒体假基因的存在都对线粒体基因的使用产生不同程度的影响。这对我们一直使用的线粒体分子标记产生影响,尤其是对感染Wolbachia的节肢动物的系统进化、种群结构等研究提出了严峻考验,提醒我们在使用线粒体分子标记时一定要慎重,以防得到的结论有偏差。
     一个如此奇妙的小小的榕果,带给我们如此多的研究结果和未知谜团,等待进一步深入挖掘。
Wolbachia are widespread intracellular bacteria that are found in arthropods and nematodes. Some earlier studies showed that about 16% of the arthropods were infected with Wolbachia, however, a recent meta-analysis estimated that more than 76% of insect species harbor Wolbachia, and some hosts harbor multiple strains of Wolbachia, which probably made it the most abundant intracellular bacteria genus so far discovered.
     This maternally inherited endosymbiont could manipulate a lot of reproductive processes in invertebrates, including sperm-egg incompatibility (cytoplasmic incompatibility), parthenogenesis, feminization and male killing; meanwhile, it is proposed that Wolbachia also play important roles in speciation.
     Mitochondria possess many ideal properties: maternally inherited; smaller genome size; higher evolutionary rate and lower recombination rate than nuclear genes, and so on. mtDNA has therefore remained the marker of choice in many populations, biogeographic and phylogenetic studies.
     mtDNA were regarded as neutrally evolutionary markers for a long time, however, when compared with other genomes, the whole mitochondrial genome evolves under great pressures, not only from the mitochondria itself (direct) but also from other maternally inherited factors (indirect) influences. Any maternally inherited factor could influence its host mitochondrial variations, and endosymbiont Wolbachia is a splendid case, so the host mtDNA no doubt reflects their long evolutionary history with intracellular bacteria. Hurst (2005) summarized earlier relevant studies and classified into four categories: (1) symbiont-driven reduction in mtDNA diversity, (2) symbiont-driven increases in diversity, (3) symbiont-driven changes in mtDNA variation over space and (4) symbiont-associated paraphyly of mtDNA.
     Based on some Wolbachia prevalence investigation, fig wasps has been proved almost to be the highest infected insects, up to 59%-67%. Fig wasps live in an airtight fig fruit most of their lifetime, so the infection status and the effects of Wolbachia on different hosts attracted our great interests. In this study, we made a survey of the infection status and unveiled the effects of Wolbachia on different hosts of four fig wasps species associated with Ficus hispida.
     The pollinating fig wasp Ceratosolen solmsi and one of the non-pollinating fig wasps, Philotrypesis pilosa, were infected with Wolbachia, and the other two non-pollinating fig wasps, Philotrypesis sp. and Apocrypta backeri, were uninfected. Moreover, the incidences of the two infected species were different, and C. solmsi was 89.3% while P. pilosa was 100%. Based on two Wolbachia specific gene, wsp and ftsZ, all C. solmsi individuals harbored one strain of Wolbachia, while P. pilosa individuals harbored different strains of Wolbachia. Two of the P. pilosa strains were comparatively stable and one strain shared with C. solmsi except one base variation, which suggesting that Wolbachia from the two species may have horizontal transmission besides vertical transmission, although the routes were unknown.
     All the C. solmsi individuals were divided into two groups, according to their infection statuses, based on mtDNA neighbor-joining trees. And the two mitochondrial markers (COI and Cytb) got similar topologies. The nucleotide divergence of COI and Cytb between infected and uninfected were up to 9.2% and 15.3% respectively, meanwhile, the differences within infected and uninfected individuals were both less than 1% for either mitochondrial gene. Compared with uninfected individuals, the infected ones showed reduction in mtDNA diversity.
     Based on the COI and Cytb clustering trees, P. pilosa and P. sp. differed a lot in their topologies. For COI, both of the sister species owned a lot of different haplotypes and they shared a lot in nucleotide diversity; for Cytb, P. pilosa still owned many haplotypes, while P. sp. had few haplotypes, and they differed a lot from each other in nucleotide diversity.
     Based on three tests of neutral evolution, only the infected individuals of C. solmsi evolved departing from neutrality, and all the Cytb genes and the infected individuals of C. solmsi evolved neutrally. And the results of nuclear markers were also very interesting. For ITS2, almost the same results were got from the either species, which confirmed that all our samples were selected from the same species and excluded some demographic factors influences based on the ITS2 data. As for EF1-α, the results of sister species P. pilosa and P. sp. were in chaos, and it was hard to differentiate the two species, probably because EF1-αis conserved and it is more suitable for classifying higher taxonomic level species; on the other hand, the infected and uninfected C. solmsi differed from each other by three fixed nucleotide of EF1-α, although they didn’t cause any variation at the amino acid level, and so far it has not got a satisfying answer.
     It was postulated that vertical and horizontal transmissions of Wolbachia co-existed in F. hispida. Probably the horizontal transmission is one of the reasons why so many fig wasps were infected with Wolbachia. wsp showed evident recombination, which is one way of bacteria speciation. Dipping into Wolbachia genomes, there was a lot of recombinant proteins, which could explain why there are so many different stains of Wolbachia.
     In the process of investigating the effect of Wolbachia on host mtDNA, we co-amplified many Numt (nuclear mitochondrial genes) of COI from two Philotrypesis sister species, while none were found in other two fig wasps. It may suggest that COI of the two Philotrypesis species received different pressures from other genes. The appearance of the stop codon was the most characteristic of these Numt. Many individuals possessed more than two Numt sequences. It was concluded that these transfer events happened after the divergence of the two sister species, and independent transfer from mitochondria into the nuclear and duplications of the transferred fragments were both involved in appearance of so many Numt.
     Based on our research, both the endosymbiont Wolbachia and Numt could influence the employment of authentic mtDNA, which make the results based on the mitochondrial marker unreliable, especially in the phylogeny reconstruction and population structure of infected arthropods. It reminded us to be more careful when using the mitochondrial markers, in case of getting false conclusions.
     Such a small fig fruit has brought us with so many interesting results and puzzles, more and more work needs to be done.
引文
Aris-Brosou S. and Excoffier L. The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Molecular Biology and Evolution, 1996 (13): 494-504.
    Armbruster P., Damsky W.E., Giordano R., Birungi J., Munstermann L.E. and Conn J.E. Infection of New- and Old-World Aedes albopictus (Diptera: Culicidae) by the Intracellular Parasite Wolbachia: Implications for Host Mitochondrial DNA Evolution. Journal of Medical Entomology, 2003 (40): 356-360.
    Avise J.: Molecular Markers, Natural History, and Evolution. Chapman & Hall, New York, 1994.
    Ayliffe M., Scott N. and Timmis J. Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants. Mol Biol Evol, 1998 (15): 738-745.
    Baldo L., Bordenstein S., Wernegreen J.J. and Werren J.H. Widespread recombination throughout Wolbachia genomes. Molecular Biology and Evolution, 2006a (23): 437-449.
    Baldo L., Dunning Hotopp J.C., Jolley K.A., Bordenstein S.R., Biber S.A., Choudhury R.R., Hayashi C., Maiden M.C.J., Tettelin H. and Werren J.H. Multilocus Sequence Typing System for the Endosymbiont Wolbachia pipientis. Applied and Environmental Microbiology, 2006b (72): 7098-7110.
    Baldo L., Lo N. and Werren J.H. Mosaic Nature of the Wolbachia Surface Protein. J. Bacteriol., 2005 (187): 5406-5418.
    Baldo L. and Werren J. Revisiting Wolbachia Supergroup Typing Based on WSP: Spurious Lineages and Discordance with MLST. Current Microbiology, 2007 (55): 81-87.
    Ballard J.W., Hatzidakis J., Karr T.L. and Kreitman M. Reduced variation in Drosophila simulans mitochondrial DNA. Genetics, 1996 (144): 1519-1528.
    Ballard J.W.O. Comparative Genomics of Mitochondrial DNA in Drosophila simulans. Journal of Molecular Evolution, 2000 (51): 64.
    Ballard J.W.O. Sequential evolution of a symbiont inferred from the host: Wolbachia and Drosophila simulans. Molecular Biology and Evolution, 2004 (21): 428-442.
    Ballard J.W.O. and Whitlock M.C. The incomplete natural history of mitochondria. Molecular Ecology, 2004 (13): 729-744.
    Bandi C., McCall J.W., Genchi C., Corona S., Venco L. and Sacchi L. Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. Int J Parasitol, 1999 (29): 357-364.
    Baudry E., Bartos J., Emerson K., Whitworth T. and Werren J.H. Wolbachia and genetic variability in the birdnest blowfly Protocalliphora sialia. Mol Ecol, 2003 (12): 1843-1854.
    Bazin E., Glemin S. and Galtier N. Population Size Does Not Influence Mitochondrial Genetic Diversity in Animals. Science, 2006 (312): 570-572.
    Behura S.K., C. S.S., M. M. and S. N. Wolbachia in the Asian rice gall midge, Orseolia oryzae (Wood-Mason): correlation between host mitotypes and infection status. Insect Molecular Biology, 2001 (10): 163-171.
    Bensasson D. PhD thesis. University of East Anglia, 1999.
    Bensasson D., Zhang D.-X., Hartl D.L. and Hewitt G.M. Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology & Evolution, 2001 (16): 314-321.
    Bensasson D., Zhang D.-X. and Hewitt G.M. Frequent Assimilation of Mitochondrial DNA by Grasshopper Nuclear Genomes. Mol Biol Evol, 2000 (17): 406-415.
    Berg C.C. Classification and distribution of Ficus. Experientia, 1989 (45): 605-611.
    Blanchard J.L. and Schmidt G.W. Pervasive Migration of Organellar DNA to the Nucleus in Plants. Journal of Molecular Evolution, 1995 (41): 397-406.
    Blanchard J.L. and Schmidt G.W. Mitochondrial DNA migration events in yeast and humans: Integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution pattern. Journal of Molecular Evolution, 1996 (13): 537-548.
    Bordenstein S.R.: Wolbachia and Speciation in the Parasitic Wasp Genus Nasonia, Department of Biology, The College of Arts and Sciences The Universtiy of Rochester, Rochester, NY, 2002, pp. 43.
    Bordenstein S.R. and Wernegreen J.J. Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates. Molecular Biology and Evolution, 2004 (21): 1981-1991.
    Bordenstein S.R. and Werren J.H. Effects of A and B Wolbachia and Host Genotype on Interspecies Cytoplasmic Incompatibility in Nasonia. Genetics, 1998 (148): 1833-1844.
    Bou?ek Z.: Australian Chalcidoidea (Hymenoptera): a biosystematic revision of genera and fourteen families, with a reclassification of species (fig wasp section). CAB, International, Wallingford, UK., 1988.
    Bouchon D., Rigaud T. and Juchault P. Evidence for widespread Wolbachia infection in isopod crustaceans: molecular identification and host feminization. Proceedings of the Royal Society B: Biological Sciences, 1998 (265): 1081-1090.
    Bourtzis K., Dobson S.L., Braig H.R. and O'Neill S.L. Rescuing Wolbachia have been overlooked. Nature, 1998 (391): 852-853.
    Bourtzis K., Nirgianaki A., Markakis G. and Savakis C. Wolbachia infection and cytoplasmic incompatibility in Drosophila species. Genetics, 1996 (144): 1063-1073.
    Boyle L., O'Neill S.L., Robertson H.M. and Karr T.L. Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science, 1993 (260): 1796-1799.
    Braig H.R., Guzman H., Tesh R.B. and O'Neill S.L. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature, 1994 (367): 453-455.
    Braig H.R., Zhou W., Dobson S.L. and O'Neill S.L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. Journal of Bacteriology, 1998 (180): 2373-2378.
    Breeuwer J.A. and Werren J.H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature, 1990 (346): 558-560.
    Breeuwer J.A. and Werren J.H. Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. Genetics, 1993 (135): 565-574.
    Brown W.M., George M. and Wilson A.C. Rapid Evolution of Animal Mitochondrial DNA. PNAS, 1979 (76): 1967-1971.
    Bulmer M. Neighboring base effects on substitution rates in pseudogenes. Mol Biol Evol,1986 (3): 322-329.
    Casiraghi M., Bordenstein S.R., Baldo L., Lo N., Beninati T., Wernegreen J.J., Werren J.H. and Bandi C.: Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree, 2005, pp. 4015-4022.
    Castro L.R., Austin A.D. and Dowton M. Contrasting Rates of Mitochondrial Molecular Evolution in Parasitic Diptera and Hymenoptera. Molecular Biology and Evolution, 2002 (19): 1100-1113.
    Charlat S., Reuter M., Dyson E.A., Hornett E.A., Duplouy A., Davies N., Roderick G.K., Wedell N. and Hurst G.D.D. Male-Killing Bacteria Trigger a Cycle of Increasing Male Fatigue and Female Promiscuity. Current Biology, 2007 (17): 273-277.
    Charlat S., Riegler M., Baures I., Poinsot D., Stauffer C. and Merclot H. Incipient evolution of Wolbachia compatibility types. Evolution, 2004 (58): 1901-1908.
    Cho S., Mitchell A., Regier J., Mitter C., Poole R., Friedlander T. and Zhao S. A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1 alpha recovers morphology-based tree for heliothine moths. Molecular Biology and Evolution, 1995 (12): 650-656.
    Cordaux R., Michel-Salzat A. and Bouchon D. Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. Journal of Evolutionary Biology, 2001 (14): 237-243.
    Cordaux R., Michel-Salzat A., Frelon-Raimond M., Rigaud T. and Bouchon D. Evidence for a new feminizing Wolbachia strain in the isopod Armadillidium vulgare: evolutionary implications. Heredity, 2004 (93): 78-84.
    Davis R.E., Miller S., Herrnstadt C., Ghosh S.S., Fahy E., Shinobu L.A., Galasko D., Thal L.J., Beal M.F., Howell N. and Parker W.D., Jr. Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease. Proceedings of the National Academy of Sciences, 1997 (94): 4526-4531.
    De-Xing Z. and Hewitt G.M. Nuclear integrations: challenges for mitochondrial DNA markers. Trends in Ecology & Evolution, 1996 (11): 247-251.
    Dean M.D., Ballard K.J., Glass A. and Ballard J.W. Influence of two Wolbachia strains on population structure of East African Drosophila simulans. Genetics, 2003 (165): 1959-1969.
    Dedeine F., Bouletreau M. and Vavre F. Wolbachia requirement for oogenesis: occurrence within the genus Asobara (Hymenoptera, Braconidae) and evidence for intraspecific variation in A. tabida. Heredity, 2005 (95): 394-400.
    Dobson S.L., Bourtzis K., Braig H.R., Jones B.F., Zhou W., Rousset F. and O'Neill S.L. Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochemistry and Molecular Biology, 1999 (29): 153.
    Dobson S.L., Marsland E.J., Veneti Z., Bourtzis K. and O'Neill S.L. Characterization of Wolbachia Host Cell Range via the In Vitro Establishment of Infections. Applied and Environmental Microbiology, 2002 (68): 656-660.
    du Buy H.G. and Riley F.L. Hybridization between the nuclear and kinetoplast DNA's of Leishmania enriettii and between nuclear and mitochondrial DNA's of mouse liver. Proceedings of the National Academy of Sciences of the United States of America,1967 (57): 790-797.
    Duron O., Fort P. and Weill M. Hypervariable prophage WO sequences describe an unexpected high number of Wolbachia variants in the mosquito Culex pipiens. Proceedings of the Royal Society B: Biological Sciences, 2006 (273): 495-502.
    Dyer K.A. and Jaenike J. Evolutionarily stable infection by a male-killing endosymbiont in Drosophila innubila: molecular evidence from the host and parasite genomes. Genetics, 2004 (168): 1443-1455.
    Dyson E.A., Kamath M.K. and Hurst G.D. Wolbachia infection associated with all-female broods in Hypolimnas bolina (Lepidoptera: Nymphalidae): evidence for horizontal transmission of a butterfly male killer. Heredity, 2002 (88): 166-171.
    Fenn K. and Blaxter M. Wolbachia genomes: revealing the biology of parasitism and mutualism. Trends in Parasitology, 2006 (22): 60-65.
    Fialho R.F. and Stevens L. Male-killing Wolbachia in a flour beetle. Proc Biol Sci, 2000 (22): 1469-1473.
    Fleury F., Vavre F., Ris N., Fouillet P. and Bouletreau M. Physiological cost induced by the maternally-transmitted endosymbiont Wolbachia in the Drosophila parasitoid Leptopilina heterotoma. Parasitology, 2000 (121): 493-500.
    Fu Y.X. and Li W.H. Statistical Tests of Neutrality of Mutations. Genetics, 1993 (133): 693-709.
    Fujii Y., Kageyama D., Hoshizaki S., Ishikawa H. and Sasaki T. Transfection of Wolbachia in Lepidoptera: the feminizer of the adzuki bean borer Ostrinia scapulalis causes male killing in the Mediterranean flour moth Ephestia kuehniella. Proceedings of the Royal Society B: Biological Sciences, 2001 (268): 855-859.
    Fujii Y., Kubo T., Ishikawa H. and Sasaki T. Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont. Biochemical and Biophysical Research Communications, 2004 (317): 1183.
    Fukuchi M., Shikanai T., Kossykh V.G. and Yamada Y. Analysis of nuclear sequences homologous to the B4 plasmid-like DNA of rice mitochondria; evidence for sequence transfer from mitochondria to nuclei. Current Genetics, 1991 (20): 487-494.
    Fukuda M., Wakasugi S., Tsuzuki T., Nomiyama H. and Shimada K. Mitochondrial DNA-like sequences in the human nuclear genome Characterization and implications in the evolution of mitochondrial DNA. Journal of Molecular Evolution, 1985 (186): 257-266.
    Gavotte L., Henri H., Stouthamer R., Charif D., Charlat S., Bouletreau M. and Vavre F. A Survey of the Bacteriophage WO in the Endosymbiotic Bacteria Wolbachia. Molecular Biology and Evolution, 2007 (24): 427-435.
    Gavotte L., Vavre F., Henri H., Ravallec M., Stouthamer R. and Bouletreau M. Diversity, distribution and specificity of WO phage infection in Wolbachia of four insect species. Insect Molecular Biology, 2004 (13): 147-153.
    Genchi C., Sacchi L., Bandi C. and Venco L. Preliminary results on the effect of tetracycline on the embryogenesis and symbiotic bacteria (Wolbachia) of Dirofilaria immitis. An update and discussion. Parassitologia, 1998 (40): 247-249.
    Giordano R., O'Neill S.L. and Robertson H.M. Wolbachia infections and the expression of cytoplasmic incompatibility in Drosophila sechellia and D. mauritiana. Genetics,1995 (140): 1307-1317.
    Grandjean F., Rigaud T., Raimond R., Juchault P. and Souty-Grosset C. Mitochondrial DNA polymorphism and feminizing sex factors dynamics in a natural population of Armadillidium vulgare (Crustacea, Isopoda). Genetica, 1993 (92): 55-60.
    Gray M.W. Origin and Evolution of Mitochondrial DNA. Annual Review of Cell Biology, 1989 (5): 25-50.
    Hadler H.I., Devadas K. and Mahalingam R. Selected Nuclear LINE Elements With Mitochondrial-DNA-Like Inserts Are More Plentiful and Mobile in Tumor Than in Normal Tissue of Mouse and Rat. Journal of Cellular Biochemistry, 1998 (68): 100-109.
    Haine E.R. and Cook J.M. Convergent incidences of Wolbachia infection in fig wasp communities from two continents. Proc Biol Sci, 2005 (272): 421-429.
    Harrison R.D. Fig wasp dispersal and the stability of a keystone plant resource in Borneo -Electronic appendices. Proceedings of the Royal Society B-Biological Sciences, 2003 (270): S76-79.
    Hazkani-Covo E., Sorek R. and Graur D. Evolutionary Dynamics of Large Numts in the Human Genome: Rarity of Independent Insertions and Abundance of Post-Insertion Duplications. Journal of Molecular Evolution, 2003 (56): 169-174.
    Heath B.D., Butcher R.D.J., Whitfield W.G.F. and Hubbard S.F. Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Current Biology, 1999 (9): 313.
    Hebert P.D.N., Cywinska A., Ball S.L. and deWaard J.R. Biological identifications through DNA barcodes. Proceedings of the Royal Society B-Biological Sciences, 2003 (270): 313-321.
    Hertig M. Studies on rickettsia-like microorganisms in insects. J. Med. Res, 1924 (44): 328-374.
    Hertig M. The rickettsia, Wolbachia pipientis (gen.et sp.n.) and associated inclusions of the mosquito, Culex pipientis. Parasitology Today, 1936 (28): 453-486.
    Hirano M., Shtilbans A., Mayeux R., Davidson M.M., DiMauro S., Knowles J.A. and Schon E.A. Apparent mtDNA heteroplasmy in Alzheimer's disease patients and in normals due to PCR amplification of nucleus-embedded mtDNA pseudogenes. Proceedings of the National Academy of Sciences, 1997 (94): 14894-14899.
    Hoerauf A., Nissen-Pahle K., Schmetz C., Henkle-Duhrsen K., Blaxter M.L., Buttner D.W., Gallin M.Y., Al-Qaoud K.M., Lucius R. and Fleischer B. Tetracycline therapy targets intracellular bacteria in the filarial nematode Litomosoides sigmodontis and results in filarial infertility. J Clin Invest, 1999 (103): 11-18.
    Hoerauf A., Volkmann L., Nissen-Paehle K., Schmetz C., Autenrieth I., Buttner D.W. and Fleischer B. Targeting of Wolbachia endobacteria in Litomosoides sigmodontis: comparison of tetracyclines with chloramphenicol, macrolides and ciprofloxacin. Trop Med Int Health, 2000 (5): 275-279.
    Hoffmann A., Turelli M. and Simmons G.M. Unidirectional incompatibility between populations of Drosophila simulans. Evolution, 1986 (40): 692-701.
    Holden P.R., Brookfield J.F.Y. and Jones P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. MolecularGenetics and Genomics, 1993 (240): 213.
    Hornett E.A., Charlat S., Duplouy A.M.R., Davies N., Roderick G.K., Wedell N. and Hurst G.D.D. Evolution of Male-Killer Suppression in a Natural Population. PLoS Biology, 2006 (4): e283.
    Huigens M.E., de Almeida R.P., Boons P.A.H., Luck R.F. and Stouthamer R. Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proceedings of the Royal Society B: Biological Sciences, 2004 (271): 509-515.
    Hurst G.D., Bandi C., Sacchi L., Cochrane A.G., Bertrand D., Karaca I. and Majerus M.E. Adonia variegata (Coleoptera: Coccinellidae) bears maternally inherited flavobacteria that kill males only. Parasitology, 1999a (118): 125-134.
    Hurst G.D. and Jiggins F.M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc Biol Sci, 2005 (272): 1525-1534.
    Hurst G.D.D., Jiggins F.M., von der Schulenburg J.H.G., Bertrand D., West S.A., Goriacheva I.I., Zakharov I.A., Werren J.H., Stouthamer R. and Majerus M.E.N. Male-killing Wolbachia in two species of insect. Proceedings of the Royal Society B: Biological Sciences, 1999b (266): 735-735.
    Hurst G.D.D., Johnson A.P., v. d. Schulenburg J.H.G. and Fuyama Y. Male-Killing Wolbachia in Drosophila: A Temperature-Sensitive Trait With a Threshold Bacterial Density. Genetics, 2000 (156): 699-709.
    Hurst G.D.D., Schulenburg J.H.G., Majerus T.M.O., Bertrand D., Zakharov I.A., Baungaard J., Volkl W., Stouthamer R. and Majerus M.E.N. Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect Molecular Biology, 1999c (8): 133-139.
    Ironside J.E., Dunn A.M. and Rollinson D.S., J. E. Association with host mitochondrial haplotypes suggests that feminizing microsporidia lack horizontal transmission. Journal of Evolutionary Biology, 2003 (16): 1077-1083.
    Jeyaprakash A. and Hoy M.A. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Molecular Biology, 2000 (9): 393-405.
    Jeyaprakash A., Hoy M.A. and Allsopp M.H. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. Journal of Invertebrate Pathology, 2003 (84): 96-103.
    Jiang Z.-F., Huang D.-W., Zhu C.-D. and Zhen W.-Q. New insights into the phylogeny of fig pollinators using Bayesian analyses. Molecular Phylogenetics and Evolution, 2006 (38): 306-315.
    Jiggins F.M. The rate of recombination in Wolbachia bacteria. Molecular Biology and Evolution, 2002 (19): 1640-1643.
    Jiggins F.M. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics, 2003 (164): 5-12.
    Jiggins F.M., Hurst G.D. and Dolman C.E. High Prevalence of Male-killing Wolbachia in the Butterfly Acraea encedana. Journal of Evolutionary Biology, 2000 (13): 495-501.
    Jiggins F.M., Hurst G.D.D., D.Schulenburg J.H.G.V. and Majerus M.E.N. Two male-killingWolbachia strains coexist within a population of the butterfly Acraea encedon Heredity, 2001 (86): 161-166.
    Jiggins F.M., Randerson J.P., Hurst G.D.D. and Majerus M.E.N. How can sex ratio distorters reach extreme prevalences? Male-killing Wolbachia are not suppressed and have near-perfect vertical transmission efficiency in Acraea encedon. Evolution, 2002 (56): 2290-2295.
    Jousselin E., van Noort S. and Greeff J.M. Labile male morphology and intraspecific male polymorphism in the Philotrypesis fig wasps. Molecular Phylogenetics and Evolution, 2004 (33): 706-718.
    Kageyama D., Narita S. and Noda H. Transfection of Feminizing Wolbachia Endosymbionts of the Butterfly, Eurema hecabe , into the Cell Culture and Various Immature Stages of the Silkmoth, Bombyx mori. Microbial Ecology, 2008 (56): 733-741.
    Kageyama D. and Traut W. Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis. Proceedings of the Royal Society B: Biological Sciences, 2004 (271): 251-258.
    Keller G.P., Windsor D.M., Saucedo J.M. and Werren J.H. Reproductive effects and geographical distributions of two Wolbachia strains infecting the Neotropical beetle, Chelymorpha alternans Boh. (Chrysomelidae, Cassidinae). Molecular Ecology, 2004 (13): 2405-2420.
    Kittayapong P., Jamnongluk W., Thipaksorn A., Milne J.R. and Sindhusake C. Wolbachia infection complexity among insects in the tropical rice-field community. Molecular Ecology, 2003 (12): 1049-1060.
    Lassy C.W. and Karr T.L. Cytological analysis of fertilization and early embryonic development in incompatible crosses of Drosophila simulans. Mechanisms of Development, 1996 (57): 47-58.
    Laven H. Eradication of Culex pipiens fatigans through Cytoplasmic Incompatibility. Nature, 1967 (216): 383-384.
    Li W.-H., Gojobori T. and Nei M. Pseudogenes as a Paradigm of Neutral Evolution. Nature, 1981 (292): 237-239.
    Lo N., Casiraghi M., Salati E., Bazzocchi C. and Bandi C. How Many Wolbachia Supergroups Exist? Molecular Biology and Evolution, 2002 (19): 341-346.
    Lo N., Paraskevopoulos C., Bourtzis K., O'Neill S.L., Werren J.H., Bordenstein S.R. and Bandi C. Taxonomic status of the intracellular bacterium Wolbachia pipientis. Int J Syst Evol Microbiol, 2007 (57): 654-657.
    Lopez J.V. Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. Journal of Molecular Evolution, 1994 (39): 174-190.
    Marcad I.I., Souty-Grosset C., Bouchon D., Rigaud T. and Raimond R. Mitochondrial DNA variability and Wolbachia infection in two sibling woodlice species. Heredity, 1999 (83 (1)): 71-78.
    Marshall J.L. The Allonemobius-Wolbachia host-endosymbiont system: evidence for rapid speciation and against reproductive isolation driven by cytoplasmic incompatibility. Evolution, 2004 (58): 2409-2425.
    Masui S., Kamoda S., Sasaki T. and Ishikawa H. Distribution and Evolution of BacteriophageWO in Wolbachia, the Endosymbiont Causing Sexual Alterations in Arthropods. Journal of Molecular Evolution, 2000 (51): 491.
    Masui S., Kuroiwa H., Sasaki T., Inui M., Kuroiwa T. and Ishikawa H. Bacteriophage WO and Virus-like Particles in Wolbachia, an Endosymbiont of Arthropods. Biochemical and Biophysical Research Communications, 2001 (283): 1099.
    McDonald J. and Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature, 1991 (351): 652-654.
    McGraw E.A. and O'Neill S.L. Evolution of Wolbachia pipientis transmission dynamics in insects. Trends in Microbiology, 1999 (7): 297.
    Mercot H., Llorente B., Jacques M., Atlan A. and Montchamp-Moreau C. Variability Within the Seychelles Cytoplasmic Incompatibility System in Drosophila simulans. Genetics, 1995 (141): 1015-1023.
    Meunier J., Khelifi A., Navratil V. and Duret L. Homology-dependent methylation in primate repetitive DNA. PNAS, 2005 (102): 5471-5476.
    Min K.-T. and Benzer S. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proceedings of the National Academy of Sciences, 1997 (94): 10792-10796.
    Monnerot M., Solignac M. and Wolstenholme D.R. Discrepancy in divergence of the mitochondrial and nuclear genomes of Drosophila teissieri and Drosophila yakuba. Journal of Evolutionary Biology, 1990 (30): 500-508.
    Moret Y., Juchault P. and Rigaud T. Wolbachia endosymbiont responsible for cytoplasmic incompatibility in a terrestrial crustacean: effects in natural and foreign hosts. Heredity, 2001 (86): 325-332.
    Morimoto S., Nakai M., Ono A. and Kunimi Y. Late male-killing phenomenon found in a Japanese population of the oriental tea tortrix, Homona magnanima (Lepidoptera: Tortricidae). Heredity, 2001 (87): 435-440.
    Mundy N.I., Pissinatti A. and Woodruff D.S. Multiple Nuclear Insertions of Mitochondrial Cytochrome b Sequences in Callitrichine Primates. Mol Biol Evol, 2000 (17): 1075-1080.
    Narita S., Nomura M., Kato Y. and Fukatsu T. Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Molecular Ecology, 2006 (15): 1095-1108.
    Negri I., Pellecchia M., Mazzoglio P., Patetta A. and Alma A. Feminizing Wolbachia in Zyginidia pullula (Insecta, Hemiptera), a leafhopper with an XX/X0 sex-determination system. Proceedings of the Royal Society B: Biological Sciences, 2006 (273): 2409-2416.
    Noda H., Miyoshi T., Zhang Q., Watanabe K., Deng K. and Hoshizaki S. Wolbachia infection shared among planthoppers (Homoptera: Delphacidae) and their endoparasite (Strepsiptera: Elenchidae): a probable case of interspecies transmission. Mol Ecol, 2001 (10): 2101-2106.
    O'Neill S.L., Giordano R., Colbert A.M.E., Karr T.L. and Robertson H.M. 16S rRNA Phylogenetic Analysis of the Bacterial Endosymbionts Associated with Cytoplasmic Incompatibility in Insects. Proceedings of the National Academy of Sciences, 1992 (89): 2699-2702.
    O'Neill S.L. and Karr T.L. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature, 1990 (348): 178-180.
    Olson L.E. and Yoder A.D. Using Secondary Structure to Identify Ribosomal Numts: Cautionary Examples from the Human Genome. Molecular Biology and Evolution, 2002 (19): 93-100.
    Pamilo P., Viljakainen L. and Vihavainen A. Exceptionally High Density of NUMTs in the Honeybee Genome. Molecular Biology and Evolution, 2007 (24): 1340-1346.
    Pannebakker B.A., Loppin B., Elemans C.P.H., Humblot L. and Vavre F. Parasitic inhibition of cell death facilitates symbiosis. PNAS, 2007 (104): 213-215.
    Paraskevopoulos C., Bordenstein S.R., Wernegreen J.J., Werren J.H. and Bourtzis K. Toward a Wolbachia multilocus sequence typing system: discrimination of Wolbachia strains present in Drosophila species. Current Microbiology, 2006 (53): 388-395.
    Petrov D.A. and Hartl D.L. Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proceedings of the National Academy of Sciences of the United States of America, 1999 (96): 1475-1479.
    Poinsot D., Bourtzis K., Markakis G., Savakis C. and Mercot H. Wolbachia Transfer from Drosophila melanogaster into D. simulans: Host Effect and Cytoplasmic Incompatibility Relationships. Genetics, 1998 (150): 227-237.
    Presgraves D.C. A genetic test of the mechanism of Wolbachia-induced cytoplasmic incompatibility in Drosophila. Genetics, 2000 (154): 771-776.
    Ramírez B.W. Host specificity of fig wasps (Agaonidae). Evolution, 1970 (24): 680-691.
    Rasgon J.L., Gamston C.E. and Ren X. Survival of Wolbachia pipientis in Cell-Free Medium. Applied and Environmental Microbiology, 2006 (72): 6934-6937.
    Reuter M. and Keller L. High Levels of Multiple Wolbachia Infection and Recombination in the Ant Formica exsecta. Molecular Biology and Evolution, 2003 (20): 748-753.
    Ricchetti M., Tekaia F. and Dujon B. Continued Colonization of the Human Genome by Mitochondrial DNA. PLoS Biology, 2004 (2): e273.
    Richly E. and Leister D. NUMTs in Sequenced Eukaryotic Genomes. Mol Biol Evol, 2004 (21): 1081-1084.
    Rigaud T., Bouchon D., Souty-Grosset C. and Raimond R. Mitochondrial DNA Polymorphism, Sex Ratio Distorters and Population Genetics in the Isopod Armadillidium vulgare. Genetics, 1999 (152): 1669-1677.
    Rigaud T., C. Souty-Grosset, R. Raimond, J. Mocquard and Juchault. P. Feminizing endocytobiosis in the terrestrial crustacean Armadillidium vulgare Latr. (Isopoda): recent acquisitions Endocytobiosis and Cell Research, 1991 (7): 259-273
    Rigaud T. and Juchault P. Conflict between feminizing sex ratio distorters and an autosomal masculinizing gene in the terrestrial isopod Armadillidium vulgare Latr. Genetics, 1993 (133): 247-252.
    Rigaud T. and Juchault P. Success and failure of horizontal transfers of feminizing Wolbachia endosymbionts in woodlice. Journal of Evolutionary Biology, 1995 (8): 249-255.
    Rigaud T., Pennings P.S. and Juchault P. Wolbachia Bacteria Effects after Experimental Interspecific Transfers in Terrestrial Isopods. Journal of Invertebrate Pathology, 2001 (77): 251.
    Rokas A., Atkinson R.J., Nieves-Aldrey J.-L., West S.A. and Stone G.N. The incidence anddiversity of Wolbachia in gallwasps (Hymenoptera; Cynipidae) on oak. Mol Ecol, 2002 (11): 1815-1829.
    Rokas I.I. Wolbachia as a speciation agent. Trends in Ecology and Evolution, 2000 (15): 44-45.
    Rousset F. and Solignac M. Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. PNAS, 1995 (92): 6389-6393.
    Rozas J., Sanchez-DelBarrio J.C., Messeguer X. and Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003 (19): 2496-2497.
    Sanogo Y.O. and Dobson S.L. Molecular discrimination of Wolbachia in the Culex pipiens complex: evidence for variable bacteriophage hyperparasitism. Insect Molecular Biology, 2004 (13): 365-369.
    Sanogo Y.O. and Dobson S.L. WO bacteriophage transcription in Wolbachia-infected Culex pipiens. Insect Biochemistry and Molecular Biology, 2006 (36): 80-85.
    Sato A., O'hUigin C., Figueroa F., Grant P.R., Grant B.R., Tichy H. and Klein J. Phylogeny of Darwin's finches as revealed by mtDNA sequences. Proceedings of the National Academy of Sciences of the United States of America, 1999 (96): 5101-5106.
    Schilthuizen M. and Gittenberger E. Screening Mollusks for Wolbachia Infection. Journal of Invertebrate Pathology, 1998 (71): 268.
    Schulenburg J.H., Hurst G.D., Huigens T.M., van Meer M.M., Jiggins F.M. and Majerus M.E. Molecular evolution and phylogenetic utility of Wolbachia ftsZ and wsp gene sequences with special reference to the origin of male-killing. Molecular Biology and Evolution, 2000 (17): 584-600.
    Schulenburg J.H.G.v.d., Hurst G.D.D., Tetzlaff D., Booth G.E., Zakharov I.A. and Majerus M.E.N. History of infection with different male-killing bacteria in the two-spot ladybird beetle Adalia bipunctata revealed through mitochondrial DNA sequence analysis. Genetics, 2002 (160): 1075-1086.
    Shafer K.S., Hanekamp T., White K.H. and Thorsness P.E. Mechanisms of Mitochondrial DNA Escape to the Nucleus in the Yeast Saccharomyces cerevisiae. Current Genetics, 1999 (36): 183-194.
    Shoemaker D., Keller G. and Ross K.G. Effects of Wolbachia on mtDNA variation in two fire ant species. Mol Ecol, 2003 (12): 1757-1771.
    Shoemaker D.D., Dyer K.A., Ahrens M., McAbee K. and Jaenike J. Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics, 2004 (168): 2049-2058.
    Shoemaker D.D., Katju V. and Jaenike J. Wolbachia and the evolution of reproductive isolation between Drosophilla recens and Drosophila subquinaria. Evolution, 1999 (53): 1157-1164.
    Shoemaker D.D., Machado C.A., Molbo D., Werren J.H., Windsor D.M. and Herre E.A. The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecology and population structure. Proceedings of the Royal Society B-Biological Sciences, 2002 (269): 2257-2267.
    Shoemaker D.D., Ross K.G., Keller L., Vargo E.L. and Werren J.H. Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp.). Insect Molecular Biology, 2000 (9): 661-673.
    Simon C., Frati F., Beckenbach A., Crespi B., Liu H. and Flook P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 1994 (87): 651-701.
    Sinkins S.P., Braig H.R. and O'Neill S.L. Wolbachia pipientis: bacterial density and unidirectional cytoplasmic incompatibility between infected populations of Aedes albopictus. Exp Parasitol, 1995 (81): 284-291.
    Sinkins S.P., Curtis C.F. and O'Neill S.L.: The potential application of inherited symbiont systems to pest control. In: O'Neill, S.L., Hoffmann, A. and Werren, J. (Eds.), Influential passengers. Oxford University Press, Oxford, 1997, pp. 155-175.
    Sinkins S.P. and Godfray H.C.J. Use of Wolbachia to drive nuclear transgenes through insect populations. Proceedings of the Royal Society B: Biological Sciences, 2004 (271): 1421-1426.
    Sinkins S.P. and O'Neill S.L.: Wolbachia as a vehicle to modify insect populations. In: Handler, A. and James, A.A. (Eds.), Insect Transgenesis: Methods And Applications. CRC Press, Boca Raton, FL., 2000, pp. 271-287.
    Sintupachee S., Milne J., Poonchaisri S., Baimai V. and Kittayapong P. Closely Related Wolbachia Strains within the Pumpkin Arthropod Community and the Potential for Horizontal Transmission via the Plant. Microbial Ecology, 2006 (51): 294-301.
    Sironi M., Bandi C., Sacchi L., Sacco B.D., Damiani G. and Genchi C. Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Molecular and Biochemical Parasitology, 1995 (74): 223-227.
    Song Q., Yang D., Zhang G. and Yang C. Volatiles from Ficus hispida and their attractiveness to fig wasps. Journal of Chemical Ecology, 2001 (27): 1929-1942.
    Sorenson M.D. and Quinn T.W. Numts: A challenge for avian systematics and population biology. The Auk, 1998 (115): 214-221.
    Stouthamer R. Wolbachia-induced parthenogenesis. In: O'Neill S.L., Werren J.H., Hoffmann A.A. (eds) Influential passengers: Inherited microorganisms and arthropod reproduction. Oxford University Press, 1997: 102-124.
    Stouthamer R., Breeuwer J.A.J. and Hurst G.D.D. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annual Review of Microbiology, 1999 (53): 71-102.
    Stouthamer R., Breeuwert J.A., Luck R.F. and Werren J.H. Molecular identification of microorganisms associated with parthenogenesis. Nature, 1993 (361): 66-68. Stouthamer R., Luck R.F. and Hamilton W.D. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proc Natl Acad Sci U S A, 1990 (87): 2424-2427.
    Sunnucks P. and Hales D. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol, 1996 (13): 510-524.
    Tajima F. Evolutionary Relationship of DNA Sequences in Finite Populations. Genetics, 1983 (105): 437-460.
    Tamura K., Dudley J., Nei M. and Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 2007 (24): 1596-1599.
    Taylor M.J. and Hoerauf A. Wolbachia Bacteria of Filarial Nematodes. Parasitology Today, 1999 (15): 437.
    Thompson J.D., Higgins D.G. and Gibson T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting,
    position-specific gap penalties and weight matrix choice. Nucl. Acids Res., 1994 (22): 4673-4680.
    Tourmen Y., Baris O., Dessen P., Jacques C., Malthièry Y. and Reynier P. Structure and Chromosomal Distribution of Human Mitochondrial Pseudogenes. Genomics, 2002 (80): 71-77.
    Vala F., Breeuwer Johannes A.J. and Sabelis Maurice W. Wolbachia-induced 'hybrid breakdown' in the two-spotted spider mite Tetranychus urticae Koch. Proceedings of the Royal Society B-Biological Sciences, 2000 (267): 1931-1937.
    Vala F., Van Opijnen T., Breeuwer J.A.J. and Sabelis M.W. Genetic Conflicts over Sex Ratio: Mite-Endosymbiont Interactions. The American Naturalist, 2003 (161): 254-266.
    Vavre F., Fleury F., Lepetit D., Fouillet P. and Bouletreau M. Phylogenetic evidence for horizontal transmission of Wolbachia in host- parasitoid associations. Molecular Biology and Evolution, 1999 (16): 1711-1723.
    Veneti Z., Clark M.E., Zabalou S., Karr T.L., Savakis C. and Bourtzis K. Cytoplasmic Incompatibility and Sperm Cyst Infection in Different Drosophila-Wolbachia Associations. Genetics, 2003 (164): 545-552.
    Verne S., Johnson M., Bouchon D. and Grandjean F. Evidence for recombination between feminizing Wolbachia in the isopod genus Armadillidium. Gene, 2007 (397): 58-66.
    Wade M.J. and Chang N.W. Increased male fertility in Tribolium confusum beetles after infection with the intracellular parasite Wolbachia. Nature, 1995 (373): 72-74.
    Walker T., Klasson L., Sebaihia M., Sanders M., Thomson N., Parkhill J. and Sinkins S. Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia from the Culex pipiens group. BMC Biology, 2007 (5): 39.
    Wallace D.C., Stugard C., Murdock D., Schurr T. and Brown M.D. Ancient mtDNA sequences in the human nuclear genome: A potential source of errors in identifying pathogenic mutations. Proceedings of the National Academy of Sciences, 1997 (94): 14900-14905.
    Weeks A.R., Marec F. and Breeuwer J.A. A mite species that consists entirely of haploid females. Science, 2001 (292): 2479-2482.
    Werren J.H. Wolbachia run amok. PNAS, 1997 (94): 11154-11155.
    Werren J.H., Baldo L. and Clark M.E. Wolbachia: Master Manipulators of Invertebrate Biology. Nat Rev Microbiol., 2008 (6): 741-751.
    Werren J.H. and Bartos J.D. Recombination in Wolbachia. Current Biology, 2001 (11): 431.
    Werren J.H., Windsor D. and Guo L. Distribution of Wolbachia among Neotropical Arthropods. Proceedings of the Royal Society B: Biological Sciences, 1995a (262): 197-204.
    Werren J.H., Zhang W. and Guo L.R. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc. R. Soc. London B Biol., 1995b (261): 55-71.
    White T., Bruns T., Lee S. and Taylor J. Amplification and direct sequencing of fungal ribosomal genes for phylogenies. In: PCR Protocols: A Guide to Methods andApplications, 1990: 315 - 322.
    Williams S.T. and Knowlton N. Mitochondrial Pseudogenes Are Pervasive and Often Insidious in the Snapping Shrimp Genus Alpheus. Mol Biol Evol, 2001 (18): 1484-1493.
    Wright J.D., Sjostrand F.S., Portaro J.K. and Barr A.R. The ultrastructure of the rickettsia-like microorganism Wolbachia pipientis and associated virus-like bodies in the mosquito Culex pipiens. J Ultrastruct Res, 1978 (63): 79-85.
    Wu M., Sun L.V., Vamathevan J., Riegler M., Deboy R., Brownlie J.C., McGraw E.A., Martin W., Esser C., Ahmadinejad N., Wiegand C., Madupu R., Beanan M.J., Brinkac L.M., Daugherty S.C., Durkin A.S., Kolonay J.F., Nelson W.C., Mohamoud Y., Lee P., Berry K., Young M.B., Utterback T., Weidman J., Nierman W.C., Paulsen I.T., Nelson K.E., Tettelin H., eacute, Neill S.L. and Eisen J.A. Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements. PLoS Biology, 2004 (2): e69.
    Zeh D.W., Zeh J.A. and Bonilla M.M. Wolbachia, sex ratio bias and apparent male killing in the harlequin beetle riding pseudoscorpion. Heredity, 2005 (95): 41-49.
    Zhou W., Rousset F. and Neill S.O. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc. R. Soc. Lond. B, 1998 (265): 509.
    Zischler H., Geisert H., Haeseler A.v. and P??bo S. A nuclear 'fossil' of the mitochondrial D-loop and the origin of modern humans. Nature, 1995 (378): 489-492.
    甘波谊,周伟国,冯丽冰,沈大棱和李昌本沃尔巴克氏体在中国三种稻飞虱中的感染. 昆虫学报,2002(45):14-17
    陈琳琳博士毕业论文中国科学院动物研究所2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700