DNA条形码在中国榕小蜂中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
榕树(桑科:榕属)与榕小蜂(昆虫纲:膜翅目:小蜂总科)在形态学、生理学和行为学上的协同适应使其成为协同进化研究的经典模型。根据是否为榕树传粉可以将榕小蜂分为传粉榕小蜂和非传粉榕小蜂。榕树为榕小蜂提供食物和栖息场所来保证小蜂的生长、发育及繁衍后代,同样传粉榕小蜂又为榕树传粉以保证其有性繁殖,形成了典型的互惠共生现象。通常情况下,榕树与传粉榕小蜂之间是专性共生关系。但是随着大量分子研究的深入,逐步瓦解了这种严格意义上的“一对一”关系。同样,作为榕树——榕小蜂系统中的重要组成部分——非传粉榕小蜂也受到越来越多的关注,其寄主专一性问题也成为热点。
     然而,关于榕树与榕小蜂关系的大量研究的进行,都必需建立在准确有效的分类系统之上。令人堪忧的是,榕小蜂的分类面临着传统分类难以逾越的难题。绝大部分榕小蜂种存在极端的雌雄异形和雄性多型现象,使仅依靠形态的分类很难正确鉴定这些小蜂的身份,更不用说进一步解决种内雌雄配对问题。除此之外,通常非传粉榕小蜂的几个亚科或属的物种同时寄生一种榕树,使整个系统更加复杂。有时几种形态上相似的近缘种共存于同一种榕果,以及隐蔽的交配行为等都大大加剧了榕小蜂(特别是非传粉榕小蜂)物种鉴定和同种雌雄配对的难度。这也是非传粉榕小蜂分类研究相对滞后的原因之一。这些榕小蜂的特殊现象直击传统分类的弱点,让我们不得不寻求新的有效的方法来解决问题,同时也给我们提供了很好的机会来探讨分类学上令人头痛的问题。因此,榕小蜂分类系统急需结合分子手段来帮助传统分类的发展。
     2003年,由Hebert等提出的DNA条形码技术,根据标准基因序列(线粒体基因COI)的种间差异大于种内差异的原理实现准确快速的物种鉴定,并且在昆虫类、鱼类、鸟类、贝类、植物、菌类等物种中得到了较好地应用。目前,COI基因在动物中的广泛使用,不仅快速补充了已命名物种的分子数据,而且加速了新物种的发现;COI序列甚至有时成为至关重要不可比拟的“分类特征”,并在一些类群中发现了大量的隐存种,让分类学家、生态学家需要重新估计生物多样性。尽管DNA条形码也受到年轻种、近缘种、祖先多型现象、Wolbachia感染等多个因素的制约,但大量的事实证明它的鉴定能力和效果是不容忽视的。
     目前世界范围内,对传粉榕小蜂的研究较为深入;相比较而言,非传粉榕小蜂的研究只是刚刚开始。尤其是中国,小蜂的研究更是刚刚起步,目前为止还没有系统地将中国境内的榕小蜂进行大规模的形态分类及分子鉴定的研究。本研究选择了来自中国南方5个省市的雌雄同株和雌雄异株的榕树共38种上生活的约388个临时形态种共2256个标本进行试验。预计解决榕小蜂的身份鉴定、种内雌雄配对、寄主专一性、COI基因多样性格局等方面的问题。结果显示:DNA条形码能成功将榕小蜂鉴定到种级水平,共得到189个种,并解决95%以上榕小蜂雌雄配对问题,大于一半以上的榕小蜂种内差异小于2%。未解决的种主要表现在:本身未采集到的同种雌虫或雄虫,同一个形态种出现2个及以上的单体群。形态数据和分子数据存在约90%的一致性,包括需要改正的形态鉴定错误和不确定的需要增加基因的分子数据。同时发现:中国榕小蜂隐存种的发生主要由于地理差异而产生,传粉榕小蜂产生的几率高于非传粉榕小蜂。由地理差异产生的两种传粉榕小蜂和同域物种形成的两种传粉榕小蜂为一种榕树传粉的现象打破了“一对一”理论。本研究首次发现了非传粉榕小蜂中Walkerella, Philotrypesis, Sycoscapter三个属,种级水平寄生不同榕树种,部分种存在寄主转移现象。DNA条形码应用于榕小蜂时需要强调的问题有:结合通用引物和特异小蜂引物共同使用避免非特异性扩增。注意结合榕小蜂寄主榕树的分类系统,利于检测榕树及榕小蜂中出现的分类错误。面对一些不确定因素必要时应采用多个基因联合分析。
     作为非传粉榕小蜂的一种,Sycophila属具有广泛的寄主偏好性,同时与竹子、橡树、草莓和榕树等植物相关。本文则研究一些与榕树密切相关的Sycophila种。尽管一些报道显示Sycophila没有很高的寄主专一性,但是不同种雌虫的形态特征差别微小,令我们很难确定它们是否是一个种寄生多个寄主。尽管关于Sycophila与其多样寄主的关系问题的研究非常稀少,但是Sycophila丰富的物种多样性和广泛的寄主范围都使其成为研究物种形成和寄主专一性的理想系统。但是由于雌雄异型、形态的可塑性和贫瘠的生物学知识都使Sycophila的鉴定及雌雄配对都面临非常大的挑战,更不用说进一步的寄主专一性等问题的探讨。本研究通过选取线粒体基因COI和核基因ITS2来共同鉴定来自中国海南六种榕树上154个Sycophila属的标本。研究的主要目的是区分单个榕树种上的Sycophila种,并进一步确定来自中国南方六个雌雄同株榕树上寄主专一性问题。结果显示:25个形态临时种被分为15种,其中13个种具有寄主专一性,而另外2个种同时寄生两种寄主。四种榕树上分别只有1个Sycophila种寄生,而垂叶榕和小叶榕上则分别同时寄生6个Sycophila种。分子数据显示三个雄虫形态型属于同一种。并证明COI和ITS2是在对Sycophila进行物种鉴定时起到了相同的作用,解决了形态学的可塑性问题。
Figs (Moraceae, Ficus) and pollinating wasps (Hymenoptera, Agaoninae) are usually considered as the classic model of co-evolution due to their morphology, physiology and behavioural co-adaptation. According to whether pollinate figs, fig wasps can be divided into pollinating wasps and non-pollinating wasps. Pollinator wasps pollinate the figs, and figs provide the resources and habits for fig wasps’development, that is the well-known mutualism relationship. In most cases, each fig tree species is pollinated by one special pollinator wasp species, however, more and more studies has ruined the strict“one-to-one”rule which make the mutualism system more complex. Similarly, non-pollinators, major components of the figs-wasps system, attract much attention, especially for their host specificity.
     As we know, all kinds of researches on fig and fig wasps must be base on correct and valid taxonomy studies. However, the taxonomy of fig wasps faces the big problem such as extreme sexual dimorphism and male polymorphism which are not easily fixed just on morphological character. In addition, the fact that many species of non-pollinating wasps, from various subfamilies or families, exist in one fig species complicates the fig wasp system. All these extraordinary phenomena hinder scientists from correctly recognizing the different species and matching sexual individuals of cospecies, especially for non-pollinating wasps. Therefore, it is urgent to combine effective molecular method and morphology to fix the problem of fig wasps taxonomy system.
     Paul (2003) raised the point that we should choose one standard gene fragment as new“taxonomy character”to help traditional taxonomy. The mtDNA COI fragment is a core gene employed by DNA barcoding initiatives and has the potential to facilitate both the identification of known species and the discovery of new ones. Although there are some limitations like young species, close species, ancient polymorphism and Wolbachia infection, many studies have demonstrated that DNA barcodes are effective in diagnosing most species, such as insects, fishes, birds, plants etc.
     In this study, we DNA barcoded 2256 wasp samples belonging to 24 genera of 7 subfamilies and 6 families reared from 38 different fig species in 5 provinces of Southern China. We asked whether COI barcode could correctly distinguish species, match sexual individuals of cospecies with extreme dimorphism, identify host-specificity etc. We got 189 species out of 388 provisional morphology morphs by gene sequences, and 95% sexual female individuals match male individuals. Barcoding analysis revealed that the cryptic species of Chinese fig wasps mostly due to geographic area differences, pollinator wasps have more geographic cryptic species than non-pollinator wasps. Moreover, two geographic pollinators pollinate one fig species and two sympatric pollinators exist in one fig species respectively were found. Some species from non-pollinator genera, Walkerella, Philotrypesis, Sycoscapter, can attack several fig species, which indicating host-switch for these wasp species. In addition, it is necessary to combine common primer and specific primer to avoid contaminative species gene amplification in DNA bacoding program.
     Although the genus Sycophila has broad host preferences, some species are specifically associated with figs as non-pollinator wasps. Because of their sexual dimorphism, morphological plasticity, cryptic mating behaviour and poorly known biology, species identifications are often uncertain. It is particularly difficult to match con-specific females and males. Although some studies have suggested that Sycophila are not highly host-specific, the morphological characters differentiating females are very subtle, making it difficult to be certain that a single species uses multiple hosts. Nevertheless, its high species diversity and broad host use make Sycophila an excellent potential model system for the investigation of speciation patterns and host specificity. In this study, we employed two molecular markers, mitochondrial COI and nuclear ITS2, to identify Sycophila from six Chinese fig species. The primary goal of this study was to clarify the diversity of Sycophila species on single fig species and the extent of host specialization in the community found in association with six monoecious Ficus species in southern China. Morphological studies revealed 25 female and male morphs, while sequence results for both genes were consistent in supporting the presence of 15 species, of which 13 were host specialists and two used dual hosts. A single species of Sycophila was respectively found on four fig species, but six species were isolated from Ficus benjamina and a same number was reared from Ficus microcarpa. Sequence results revealed three male morphs in one species and detected two species that were overlooked by morphological analysis.
引文
Alvarez, J.M. and Hoy, M.A. Evaluation of the ribosomal ITS2 DNA sequences in separating closely related populations of the parasitoid Ageniaspis (Hymenoptera: Encyrtidae). Annals of the Entomological Society of America, 2002 (95): 250-256.
    Andersson, M. and Simmons, L.W. Sexual selection and mate choice. Trends in Ecology & Evolution, 2006 (21): 296-302.
    Bachtrog, D., Thornton, K., Clark, A. and Andolfatto, P. Extensive introgression of mitochondrial DNA relative to nuclear genes in the Drosophila yakuba species group. Evolution, 2006 (60): 292-302.
    Bai, L., Yang, D., Shi, Z., Peng, Y. and Zhai, S. Community structure of fig wasp in Ficus benjamina in different habitats [垂叶榕隐头果内小蜂群落结构与生境关系的初步研究]. Biodiversity Science [生物多样性], 2006 (14): 340-344.
    Barrett, R.D.H. and Hebert, P.D.N. Identifying spiders through DNA barcodes. Canadian Journal of Zoology, 2005a (83): 481-491.
    Barrett, R.D.H. and Hebert, P.D.N. Identifying spiders through DNA barcodes Canadian Journal of Zoology, 2005b (83): 481-491.
    Ben-David, T., Melamed, S., Gerson, U. and Morin, S. ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae). Experimental and Applied Acarology, 2007 (41): 169-181.
    Bensasson, D., Zhang, D.-X., Hartl, D.L. and Hewitt, G.M. Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology & Evolution, 2001 (16): 314-321.
    Berg, C.C. Classification and distribution of Ficus. Experientia, 1989 (45): 605-611.
    Berg, C.C. Reproduction and evolution in Ficus (Moraceae): traits connected with the adequate rearing of pollinators. Mem. New York Bot. Gard., 1990 (55): 169-185.
    Berg, C.C. Flora Malesiana precursor for the treatment of Moraceae 1: the main subdivision of Ficus: the subgenera. Blumea, 2003 (48): 167-178.
    Berg, C.C. and Wiebes, J.T.: African fig trees and fig wasps. Koninklijke Nederlandse Akademie van Wetenschappen Verhandelingen Afdeling Natuurkunde, Tweede reeks, North-Holland, Amsterdam, Oxford, New York, Tokyo, 1992.
    Bou?ek, Z.: Australasian Chalcidoidea (Hymenoptera): A Biosystematic Revision of Genera and Fourteen Families, with a Reclassification of Species. CAB, International, Wallingford, UK., 1988a.
    Bou?ek, Z.: Australian Chalcidoidea (Hymenoptera): A biosystematic revision of genera andfourteen families, with a reclassification of species (Fig wasp section). CAB, International, Wallingford, UK., 1988b.
    Bou?ek, Z., Watsham, A. and Wiebes, J.T. The fig wasp fauna of the receptacles of Ficus thonningii (Hymenoptera, Chalcidoidea). Tijdschrift voor Entomologie, 1981a (124): 149-233.
    Bou?ek, Z., Watsham, A. and Wiebes, J.T. The fig wasp fauna of the receptacles of Ficus thonningii (Hymenoptera, Chalcidoidea). Tudschrift voor Entomologie, 1981b (124): 149-233.
    Cavalier-Smith, T. Only six kingdoms of life. Proceedings of the Royal Society B: Biological Sciences, 2004 (271): 1251-1262.
    Chang, S., Wu, C. and Cao, Z.:中国植物志第二十三卷第一分册:被子植物门双子叶植物纲桑科.科学出版社,北京, 1998.
    Chen, Y.-R., Chuang, W.-C. and Wu, W.-J. Chalcid wasps on Ficus microcarpa L. in Taiwan (Hymenoptera: Chalcidoidea). Journal of Taiwan Museum., 1999 (52): 39-79.
    Chen, Y., Li, H.-Q. and Ma, W.-L. A study on pollination ecology of Ficus virens and its insect pollinators. Acta Ecologica Sinica, 2001 (21): 1569-1574.
    Clare, E.L., Lim, B.K., Engstrom, M.D., Eger, J.L. and Hebert, P.D.N. DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Molecular Ecology Notes, 2006 (7): 184-190.
    Clare, E.L., Lim, B.K., Engstrom, M.D., Eger, J.L. and Hebert, P.D.N.: DNA barcoding of Neotropical bats: species identification and discovery within Guyana, 2007, pp. 184-190.
    Coleman, A.W. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genetics, 2003 (19): 370-375.
    Compton, S.G. An association between epichrysomallines and eurytomids (Hymenoptera: Chalcidoidea) in southern African fig wasp communities. African Entomology, 1993 (1): 123-125.
    Cook, J.M.: Molecular insights to fig wasp taxonomy and biology (CHALCIDOIDEA: AGAONIDAE). In: Melika, G. and Thuróczy, C. (Eds.), Parasitic Wasps: Evolution, Systematics, Biodiversity and Biological Control, 2004, pp. 221-228.
    Cook, J.M., Compton, S.G., Herre, E.A. and West, S.A. Alternative mating tactics and extreme male dimorphism in fig wasps. Proceedings of the Royal Society B-Biological Sciences, 1997 (264): 747-754.
    Cook, J.M. and Lopez-Vaamonde, C. Fig biology: turning over new leaves. Trends in Ecology & Evolution, 2001 (16): 11-13.
    Corner, E.J.H. Checklist of Ficus in Asia and Australia with keys of identification. Garders' Bulletin Singapore, 1965 (XXI): 1-186.
    Crozier, R.H., Crozier, Y.C. and Mackinlay, A.G. The CO-I and CO-II region of honeybee mitochondrial DNA: evidence for variation in insect mitochondrial evolutionary rates. Molecular Biolology Evolution, 1989 (6): 399-411.
    D.H.Lunt, D.-X.Z., J.M.Szymura*and G.M.Hewilt The insect cytochrome oxidase 1 gene evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology, 1996 (5): 153-165.
    Desmyter, S. and Gosselin, M. COI sequence variability between Chrysomyinae of forensic interest. Forensic Science International: Genetics, 2009 (3): 89-95.
    Dowton, M. and Austin, A.D. Simultaneous analysis of 16S, 28S, COI and morphology in the Hymenoptera: Apocrita - evolutionary transitions among parasitic wasps. Biological Journal of the Linnean Society, 2001 (74): 87-111.
    Dunn, C.P. Keeping taxonomy based in morphology. Trends in Ecology & Evolution, 2003 (18): 270-271.
    Ebach, M.C. and Holdrege, C. DNA barcoding is no substitute for taxonomy. Nature, 2005 (434): 697.
    Eliason, E.A. and Potter, D.A. Spatial distribution and parasitism of leaf galls induced by Callirhytis cornigera (Hymenoptera: Cynipidae) on pin oak. Population Ecology, 2001 (30): 280-287.
    Erbelding-Denk, C., Schr?der, J., Schartl, M., Nanda, I., Schmid, M. and Epplen, J. Male polymorphism in Limia perugiae (Pisces: Poeciliidae). Behavior Genetics, 1994 (24): 95-101.
    Farrell, B.D. Evolutionary Assembly of the Milkweed Fauna: Cytochrome Oxidase I and the Age of Tetraopes Beetles. Molecular Phylogenetics and Evolution, 2001 (18): 467?478.
    Ferri, E., Barbuto, M., Bain, O., Galimberti, A., Uni, S., Guerrero, R., Ferte, H., Bandi, C., Martin, C. and Casiraghi, M. Integrated taxonomy: traditional approach and DNA barcoding for the identification of filarioid worms and related parasites (Nematoda). Frontiers in Zoology, 2009 (6): 1.
    Frezal, L. and Leblois, R. Four years of DNA barcoding: Current advances and prospects. Infection, Genetics and Evolution, 2008 (8): 727-736.
    Funk, D.J. and Omland, K.E. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 2003 (34): 397-423.
    Gibernau, M., Albre, J., Dejean, A. and Barabe, D. Seed predation in Philodendron solimoesense (Araceae) by chalcid wasps (Hymenoptera). International Journal of Plant Sciences, 2002 (163): 1017-1023.
    Greeff, J.M. and Ferguson, J.W.H. Mating ecology of the nonpollinating fig wasps of Ficus ingens. Animal Behaviour, 1999 (57): 215-222.
    Gregory, T.R. DNA barcoding does not compete with taxonomy. Nature, 2005 (434): 1067.
    Gross, P. Insect Behavioral and Morphological Defenses Against Parasitoids. Annual Review of Entomology, 1993 (38): 251-273.
    Hackett, B.J., Gimnig, J., Guelbeogo, W., Costantini, C., Koekemoer, L.L., Coetzee, M., Collins, F.H. and Besansky, N.J. Ribosomal DNA internal transcribed spacer (ITS2) sequences differentiate Anopheles funestus and An. rivulorum, and uncover a cryptic taxon. Insect Molecular Biology, 2000 (9): 369-374.
    Haine, E., Martin, J. and Cook, J. Deep mtDNA divergences indicate cryptic species in a fig-pollinating wasp. BMC Evolutionary Biology, 2006 (6): 83.
    Hajibabaei, M., deWaard, J.R., Ivanova, N.V., Ratnasingham, S., Dooh, R.T., Kirk, S.L., Mackie, P.M. and Hebert, P.D.N. Critical factors for assembling a high volume of DNA barcodes. Philosophical Transactions of the Royal Society B-Biological Sciences, 2005 (360): 1959-1967.
    Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W. and Hebert, P.D.N. DNA barcodes distinguish species of tropical Lepidoptera. PNAS, 2006a (103): 968-971.
    Hajibabaei, M., Smith, M.A., Janzen, D.H., Rodriguez, J.J., Whitfield, J.B. and Hebert, P.D.N. A minimalist barcode can identify a specimen whose DNA is degraded. Molecular Ecology Notes, 2006b (6): 959-964.
    Hamilton, W.D.: Wingless and fighting males in fig wasps and other insects. In: Blum, M.S. and Blum, N.A. (Eds.), Reproductive competition, mate choice and sexual selection in insects. Academic Press, New York, 1979, pp. 167-220.
    Harvell, C.D. The evolution of polymorphism in colonial invertebrates and social insects. Q. Rev. Biol., 1994: 155-185.
    Hebert, P.D.N., Cywinska, A., Ball, S.L. and deWaard, J.R. Biological identifications through DNA barcodes. Proceedings of the Royal Society B-Biological Sciences, 2003a (270): 313-321.
    Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. and Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 2004a (101): 14812-14817.
    Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. and Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. PNAS, 2004b (101): 14812-14817.
    Hebert, P.D.N., Ratnasingham, S. and deWaard, J.R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences (Suppl.), 2003b (270): S96-S99.
    Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S. and Francis, C.M. Identification of Birds through DNA Barcodes. PLoS Biology, 2004c (2): e312.
    Heinze, J., Trindl, A., Seifert, B. and Yamauchi, K. Evolution of male morphology in the ant genus Cardiocondyla. Molecular Phylogenetics And Evolution, 2005 (37): 278-288.
    Herre, E.A., Machado, C.A., Bermingham, E., Nason, J.D., Windsor, D.M., McCafferty, S.S., Van Houten, W. and Bachmann, K. Molecular phylogenies of figs and their pollinator wasps. Journal of Biogeography, 1996 (23): 521-530.
    Hickerson, M., Meyer, C. and Moritz, C. DNA barcoding will often fail to discover new animal species over broad parameter space. Systematic Biology, 2006 (55): 729-739.
    Hosseinali Lotfalizadeh, G.D.J.-Y.R. Phylogenetic analysis of Eurytominae (Chalcidoidea: Eurytomidae) based on morphological characters. Zoological Joural of the Linnean Society, 2007 (151): 441-510.
    Hung, Y.-T., Chen, C.A., Wu, W.-J., Lin, C.-C. and Shih, C.-J. Phylogenetic utility of the ribosomal internal transcribed spacer 2 in Strumigenys spp. (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 2004 (32): 407-415.
    Hunter, S.J., Goodall, T.I., Walsh, K.A., Owen, R. and Day, J.C. Nondestructive DNA extraction from blackflies (Diptera: Simuliidae): retaining voucher specimens for DNA barcoding projects. Molecular Ecology Resources, 2008 (8): 56-61.
    Janzen, D.H. How to be a fig. Annu. Rev. Ecol. Syst., 1979 (10): 13-51.
    Janzen, D.H., Hajibabaei, M., Burns, J.M., Hallwachs, W., Remigio, E. and Hebert, P.D.N. Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of the Royal Society B-Biological Sciences, 2005 (360): 1835-1845.
    Jiang, Z.-F. and Huang, D.-W. Rampant host switching and multiple female body colourtransitions in Philotrypesis (Hymenoptera: Chalcidoidea: Agaonidae). European Society for Evolutionary Biology, 2006 (19): 1157–1166.
    Jiang, Z.-F., Huang, D.-W., Zhu, C.-D. and Zhen, W.-Q. New insights into the phylogeny of fig pollinators using Bayesian analyses. Molecular Phylogenetics and Evolution, 2006a (38): 306-315.
    Jiang, Z.F., Huang, D.W., Chen, L.L., Zhen, W.Q., Fu, Y.G. and Peng, Z.Q. Rampant host switching and multiple female body colour transitions in Philotrypesis (Hymenoptera: Chalcidoidea: Agaonidae). Journal of Evolutionary Biology, 2006b (19): 1157-1166.
    John, W. DNA barcoding in animal species: progress, potential and pitfalls. BioEssays, 2007 (29): 188-197.
    Jousselin, E., Hossaert-McKey, M., Herre, E.A. and Kjellberg, F. Why do fig wasps actively pollinate monoecious figs? Oecologia, 2003a (134): 381-387.
    Jousselin, E., Rasplus, J.-Y. and Kjellberg, F. Convergence and coevolution in a mutualism: evidence from a molecular phylogeny of Ficus. Evolution, 2003b (57): 1255-1269.
    Jousselin, E., van Noort, S., Berry, V., Rasplus, J.Y., Ronsted, N., Erasmus, J.C. and Greeff, J.M. One fig to bind them all: host conservatism in a fig wasp community unraveled by cospeciation analyses among pollinating and nonpollinating fig wasps. Evolution, 2008 (62): 1777-1797.
    Jousselin, E., van Noort, S. and Greeff, J.M. Labile male morphology and intraspecific male polymorphism in the Philotrypesis fig wasps. Molecular Phylogenetics And Evolution, 2004 (33): 706-718.
    Kerdelhue, C., Hochberg, M.E. and Rasplus, J.-Y. Active pollination of Ficus sur by two sympatric fig wasp species in West Africa. Biotropica, 1997 (29): 69-75.
    Kerdelhue, C., Le Clainche, I. and Rasplus, J.-Y. Molecular phylogeny of the Ceratosolen species pollinating Ficus of the subgenus Sycomorus sensu stricto: biogeographical history and origins of the species-specificity breakdown cases. Molecular Phylogenetics And Evolution, 1999 (11): 401-414.
    Kerdelhue, C. and Rasplus, J.-Y. Non-pollinating Afrotropical fig wasps affect the fig-pollinator mutualism in Ficus within the subgenus Sycomorus. Oikos, 1996 (75): 3-14.
    Kress, W.J., Wurdack, K.J., Zimmer, E.A., Weigt, L.A. and Janzen, D.H. Use of DNA barcodes to identify flowering plants. PNAS, 2005 (102): 8369-8374.
    Kumar, S., Dudley J and Nei, M. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology Evolution, 2008 (24): 1596-1599.
    Lin, C.-P. and Danforth, B.N. How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Molecular Phylogenetics and Evolution, 2004 (30): 686-702.
    Linares, M.C., Soto-Calderón, I., Lees, D.C. and Anthony, N.M. High mitochondrial diversity in geographically widespread butterflies of Madagascar: A test of the DNA barcoding approach. Molecular Phylogenetics and Evolution, 2009 (50): 485-495.
    Lopez-Vaamonde, C., Rasplus, J.-Y., Weiblen, G.D. and Cook, J.M. Molecular phylogenies of fig wasps: partial cocladogenesis of pollinators and parasites. Molecular Phylogenetics And Evolution, 2001 (21): 55-71.
    Lukhtanov, V.A., Sourakov, A., Zakharov, E.V. and Hebert, P.D.N. DNA barcoding Central Asian butterflies: increasing geographical dimension does not significantly reduce the success of species identification. Molecular Ecology Resources, 2009 (?): ?
    Lunt, D.H., Zhang, D.-X., Szymura, J.M. and Hewitt, G.M. The insect cytochrome oxidase I gene: Evolutionary patterns, and conserved primers for phylogenetic studies. Insect Mol. Biol., 1996 (5): 153-165.
    Mallet, J. Hybridization as an invasion of the genome. Trends in Ecology & Evolution, 2005a (20): 229-237.
    Mallet, J. Hybridization as an invasion of the genome. Trends in Ecology and Evolution, 2005b (20): 229-237.
    Mallet, J. and Willmott, K. Taxonomy: renaissance or tower of babel? Trends in Ecology and Evolution, 2003a (18): 57-59.
    Mallet, J. and Willmott, K. Taxonomy: renaissance or Tower of Babel?,. Trends in Ecology & Evolution, 2003b (18): 57-59.
    Marussich, W.A. and Machado, C.A. Host-specificity and coevolution among pollinating and nonpollinating New World fig wasps. Molecular Ecology, 2007 (16): 1925-1946.
    Mayo, M.A. and Horzinek, M.C. A revised version of the international code of virus classification and nomenclature. Archives of Virology, 1998 (143): 1645-1654.
    Meier, R., Shiyang, K., Vaidya, G. and Ng, P. DNA barcoding and taxonomy in Diptera: A tale of high intraspecific variability and low identification success. Systematic Biology, 2006 (55): 715-728.
    Meyer, C.P. and Paulay, G. DNA Barcoding: Error Rates Based on Comprehensive Sampling. PLoS Biology, 2005 (3).
    Michaloud, G., Michaloud-Pelletier, S., Wiebes, J.T. and Berg, C.C. The co-occurrence of two pollinating species of fig wasp and one species of fig. Proceedings. KoninklijkeNederlandse Akademie van Wetenschappen, Amsterdam. (C), 1985 (88): 93-119.
    Min, X.J. and Hickey, D.A. Assessing the effect of varying sequence length on DNA barcoding of fungi. Molecular Ecology Notes, 2007a (7): 365-373.
    Min, X.J. and Hickey, D.A. DNA Barcodes Provide a Quick Preview of Mitochondrial Genome Composition. PLoS ONE, 2007b (2): e325.
    Molbo, D., Machado, C.A., Herre, E.A. and Keller, L. Inbreeding and population structure in two pairs of cryptic fig wasp species. Molecular Ecology, 2004 (13): 1613-1623.
    Molbo, D., Machado, C.A., Sevenster, J.G., Keller, L. and Herre, E.A. Cryptic species of fig-pollinating wasps: implications for the evolution of the fig-wasp mutualism, sex allocation, and precision of adaptation. Proc Natl Acad Sci, 2003 (100): 5867-5872.
    Moura, C.J., Harris, D.J., Cunha, M.R. and Rogers, A.D. DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zoologica Scripta, 2008 (37): 93-108.
    Narendran, T.C.: Torymidae and Eurytomidae of Indian subcontinent (Hymenoptera: Chalcidoidea). Zoological Monograph, Department of Zoology, University of Calicut, Kerala, India, 1994.
    Neigel, J., Domingo, A. and Stake, J. DNA barcoding as a tool for coral reef conservation. Coral Reefs, 2007 (26): 487-499.
    Nijhout, H.F. The control of body size in insects. Developmental Biology, 2003a (261): 1-9. Nijhout, H.F. Development and evolution of adaptive polyphenisms. Evolution & Development, 2003b (5): 9-18.
    Noyes, J.S.: Universal Chalcidoidea Database, 2008.
    Oliveira, R.F., Canario, A.V.M. and Grober, M.S. Male Sexual Polymorphism, Alternative Reproductive Tactics, and Androgens in Combtooth Blennies (Pisces: Blenniidae). Hormones and Behavior, 2001a (40): 266-275.
    Oliveira, R.F., Canario, A.V.M., Grober, M.S. and Santos, R.S. Endocrine Correlates of Male Polymorphism and Alternative Reproductive Tactics in the Azorean Rock-Pool Blenny, Parablennius sanguinolentus parvicornis. General and Comparative Endocrinology, 2001b (121): 278-288.
    Parrish, T.L., Koelewijn, H.P., Dijk, P.J.v. and Kruijt, M. Genetic Evidence for Natural Hybridization between Species of Dioecious Ficus on Island Populations. Biotropica, 2003 (35): 333-343.
    Peng, Y.-Q., Duan, Z.-B., Yang, D.-R. and Rasplus, J.-Y. Co-occurrence of two Eupristina species on Ficus altissima in Xishuangbanna, SW China. Symbiosis, 2008 (45): 9-14.
    Pienaar, J. and Greeff, J.M. Maternal control of offspring sex and male morphology in the Otitesella fig wasps. J Evolution Biol, 2003 (16): 244-253.
    Pinto, J.D., Koopmanschap, A.B., Platner, G.R. and Stouthamer, R. The North American Trichogramma (Hymenoptera: Trichogrammatidae) Parasitizing Certain Tortricidae (Lepidoptera) on Apple and Pear, with ITS2 DNA Characterizations and Description of a New Species. Biological Control, 2002 (23): 134-142.
    R?nsted, N., Weiblen, G.D., Cook, J.M., Salamin, N., Machado, C.A. and Savolainen, V. 60 million years of co-divergence in the fig-wasp symbiosis. Proceedings of the Royal Society B-Biological Sciences, 2005 (272): 2593-2599
    R?nsted, N., Weiblen, G.D., Savolainen, V. and Cook, J.M. Phylogeny, biogeography, and ecology of Ficus section Malvanthera (Moraceae). Molecular Phylogenetics And Evolution, 2008 (48): 12-22.
    Ramírez, B.W. Coevolution of Ficus and Agaonidae. Annals of the Missouri Botanical Garden, 1974 (61): 770-780.
    Ramírez, B.W. Hybridization of Ficus religiosa with Ficus septica and Ficus aurea (Moraceae). Revista de Biologia Tropical, 1994 (42): 339-342.
    Rasplus, J.-Y.: The one-to-one species specificity of the Ficus-Agaoninae mutualism: how casual? In: van der Maesen, L.J., van der Burgt, X.M. and van Medenbach de Rooy, J.M. (Eds.), The Biodiversity of African plants. KLUWER ACADEMIC Publishers, 1996, pp. 639-649.
    Rasplus, J.-Y., Kerdelhue, C., Le Clainche, I. and Mondor, G. Molecular phylogeny of fig wasps. Agaonidae are not monophyletic. Comptes Rendus De l'Academie Des Sciences. Serie III, Sciences De La Vie Sciences, 1998 (321): 517-526.
    Richly, E. and Leister, D. NUMTs in Sequenced Eukaryotic Genomes. Molecular Biology and Evolution, 2004 (21): 1081-1084.
    Scheffer, S.J. and Grissell, E.E. Tracing the geographical origin of Megastigmus transvaalensis (Hymenoptera: Torymidae): an African wasp feeding on a South American plant in North America. Molecular Ecology, 2003 (12): 415-421.
    Schindel, D.E. and Miller, S.E. DNA barcoding a useful tool for taxonomists. Nature, 2005 (435): 17.
    Seberg, O., Humphries, C.J., Knapp, S., Stevenson, D.W., Petersen, G., Scharff, N. and Andersen, N.M. Shortcuts in systematics? A commentary on DNA-based taxonomy. Trends in Ecology & Evolution, 2003 (18): 63-65.
    Seifert, K.A., Samson, R.A., deWaard, J.R., Houbraken, J., Levesque, C.A., Moncalvo, J.-M.,Louis-Seize, G. and Hebert, P.D.N. Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. PNAS, 2007a (104): 3901-3906.
    Seifert, K.A., Samson, R.A., deWaard, J.R., Houbraken, J., Levesque, C.A., Moncalvo, J.-M., Louis-Seize, G. and Hebert, P.D.N. Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proceedings of the National Academy of Sciences of the United States of America, 2007b (104): 3901-3906.
    Shaw, K.L.: Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: What mtDNA reveals and conceals about modes of speciation in Hawaiian crickets, 2002, pp. 16122-16127.
    Shibata, E.I. and Ito, M. Life-history traits in insect inclusions associated with bamboo galls. Insect Science, 2005 (12): 143-150.
    Shoemaker, D.D., Dyer, K.A., Ahrens, M., McAbee, K. and Jaenike, J. Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics, 2004 (168): 2049-2058.
    Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. and Flook, P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 1994 (87): 651-701.
    Smith, M.A., Rodriguez, J.J., Whitfield, J.B., Deans, A.R., Janzen, D.H., Hallwachs, W. and Hebert, P.D.N. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proceedings of the National Academy of Sciences of the United States of America, 2008a (105): 12359-12364.
    Smith, M.A., Rodriguez, J.J., Whitfield, J.B., Deans, A.R., Janzen, D.H., Hallwachs, W. and Hebert, P.D.N. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. 2008b (105): 12359-12364.
    Smith, M.A., Wood, D.M., Janzen, D.H., Hallwachs, W. and Hebert, P.D.N. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. PNAS, 2007a (104): 4967-4972.
    Smith, M.A., Wood, D.M., Janzen, D.H., Hallwachs, W. and Hebert, P.D.N. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proceedings of the National Academy of Sciences of the United States of America, 2007b (104): 4967-4972.
    Smith, M.A., Woodley, N.E., Janzen, D.H., Hallwachs, W. and Hebert, P.D.N. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). PNAS, 2006a (103): 3657-3662.
    Smith, M.A., Woodley, N.E., Janzen, D.H., Hallwachs, W. and Hebert, P.D.N. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proceedings of the National Academy of Sciences of the United States of America, 2006b (103): 3657-3662.
    Song, H., Buhay, J.E., Whiting, M.F. and Crandall, K.A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences, 2008 (105): 13486-13491.
    Sonibare, M.A., Jayeola, A.A. and Egunyomi, A. A morphometric analysis of the genus Ficus Linn. (Moraceae). African Journal of Biotechnology, 2004 (3): 229-235.
    Stone, G.N., Schonrogge, K., Atkinson, R.J., Bellido, D. and Pujade-Villar, J. The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annual Review of Entomology, 2002 (47): 633-668.
    Sujeevan, R. and Hebert, P.D.N.: BOLD:The Barcode of Life Data System, Molecular Ecology Notes, 2007.
    Tautz, D., Arctander, P., Minelli, A., Thomas, R.H. and Vogler, A.P. DNA points the way ahead in taxonomy. Nature, 2002 (418): 479.
    Tautz, D., Arctander, P., Minelli, A., Thomas, R.H. and Vogler, A.P. A plea for DNA taxonomy. Trends in Ecology & Evolution, 2003 (18): 70-74.
    Trewick, S.A.: DNA Barcoding is not enough: mismatch of taxonomy and genealogy in New Zealand grasshoppers (Orthoptera: Acrididae), 2007.
    Turelli, M., Hoffmann, A.A. and McKechnie, S.W. Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics, 1992 (132): 713-723.
    Urwin, R. and Maiden, M.C.J. Multi-locus sequence typing: a tool for global epidemiology. Trends in Microbiology, 2003 (11): 479-487.
    Vogler, A.P. and Monaghan, M.T.: Recent advances in DNA taxonomy, 2007, pp. 1-10.
    WA., S. Polymorphism in Plastosciara perniciosa. Science, 1973 (182): 1265-1266. Walker, F.: List of the specimens of hymenopterous insects in the collection of the British Museum, London, 1846.
    Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. and Hebert, P.D.N. DNA barcodingAustralia's fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005a (360): 1847-1857.
    Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. and Hebert, P.D.N. DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society B-Biological Sciences, 2005b (360): 1847-1857
    Wei Wu, 1 Timothy R. Schmidt,* Morris Goodman,*,? and Lawrence I. Grossman*,2 Molecular Evolution of Cytochrome c Oxidase Subunit I in Primates: Is There Coevolution between Mitochondrial and Nuclear Genomes? Molecular Phylogenetics and Evolution, 2000 (17): 294.
    Weiblen, G.D. Phylogenetic relationships of functionally dioecious Ficus (Moraceae) based on ribosomal DNA sequences and morphology. American Journal of Botany, 2000 (87): 1342-1357.
    Weiblen, G.D. How to be a fig wasp. Annual Review of Entomology, 2002 (47): 299-330.
    Weiblen, G.D. and Bush, G.L. Speciation in fig pollinators and parasites. Molecular Ecology, 2002 (11): 1573-1578.
    Weiblen, G.D., Yu, D.W. and West, S.A. Pollination and parasitism in functionally dioecious figs. Proceedings of the Royal Society B-Biological Sciences, 2000 (268): 651-659.
    White, T., Bruns, T., Lee, S. and Taylor, J. Amplification and direct sequencing of fungal ribosomal genes for phylogenies. In: PCR Protocols: A Guide to Methods and Applications, 1990: 315 - 322.
    Whitworth, T.L., Dawson, R.D., Magalon, H. and Baudry, E. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proceedings of the Royal Society B: Biological Sciences, 2007 (274): 1731-1739.
    Wiebes, J.T.: Phylogenetic specificity of figs and fig wasps. In: Brantjes, N.B.M. (Ed.), Pollination and Dispersal. Department of Botany, Nijmegen, 1973, pp. 23-25.
    Wiebes, J.T. Species of Agaon Dalman and Allotriozoon Grandi from Africa and Malagasy (Hymenoptera, Chalcidoidea, Agaonidae). Zoologische Mededelingen, Leiden, 1974 (48): 123-143.
    Wiebes, J.T. Figs and their insect pollinators. Ann. Rev. Ecol. Syst., 1979 (10): 1-12.
    Wiebes, J.T. The phylogeny of the Agaonidae (Hymenoptera, Chalcidoidea). Netherlands Journal of Zoology, 1982 (32): 395-411.
    Wiemers, M. and Fiedler, K. Does the DNA barcoding gap exist? - a case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology, 2007 (4): 8.
    Wikler, C.: Gall former as a biological control for Strawberry Guava - Psidium cattleianum.In: Spencer, N.R. (Ed.), The X International Symposium on Biological Control of Weeds. Montana State University, Montana, 2000, pp. 667-671.
    Will, K.W., Mishler, B.D. and Wheeler, Q.D. The Perils of DNA Barcoding and the Need for Integrative Taxonomy. Systematic Biology, 2005 (54): 844-851.
    Wu, Z., Zhou, Z. and Gilbert, M.G.: Moraceae. Flora of China 5: 21-73., 2003.
    Zera, A.J. and Denno, R.F. Physiology and ecology of dispersal polymorphism in insects. Annual Review of Entomology, 1997 (42): 207-230.
    Zerova, M.D. and Fulsov, V.N. The palaearctic species of Eurytoma (Hymenoptera, Eurytomidae) developing in stone fruits (Rosaceae, Prunoideae). Bulletin of Entomological Research, 1991 (81): 209-219.
    于慧,赵南先,尧金燕and陈贻竹种间专性协同进化关系对榕属分类的影响.热带亚热带植物学报, 2006 (14): 439-443.
    于慧,赵南先,陈贻竹and胡晓颖粗叶榕-爪哇榕小蜂共生体系的研究.广西植物, 2003 (23): 573-576.
    肖金花,肖辉and黄大卫:生物分类学新动向-DNA条形编码,动物学报, 2004, pp. 852-855.
    甄文全,黄大卫,杨大荣,肖晖and朱朝东佩妃延腹榕小蜂的产卵行为.昆虫学报, 2004 (47): 365-371.
    贾效成,陈贻竹and赵南先榕属与榕小蜂科的分类研究进展.广西植物, 2004 (24): 407-410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700