高赖氨酸蛋白基因转化银耳研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是人的营养要素,它由20多种氨基酸组成,其中有10种氨基酸人不能合成,只能从食物中摄取,称之为必需氨基酸。赖氨酸是十种必需氨基酸之一,赖氨酸具有多种生物学功能,这些功能包括:增进食欲、提高血液中血红蛋白含量;赖氨酸铝盐可治胃溃疡等。人体缺少赖氨酸会出现体重轻、骨骼发育不全、也会降低人体对其它氨基酸的吸收,营养学家把它称为“第一缺乏氨基酸”。
     赖氨酸蛋白基因转入具有较高食药用价值的银耳,合成具有生物活性的赖氨酸蛋白,相当于在营养丰富的银耳中添加新的营养保健因子,既提高银耳的营养保健价值,又增加人体对膳食中蛋白质的利用率。
     本研究在探索银耳遗传转化体系的基础上,构建了高赖氨酸蛋白基因表达载体,利用限制性内切酶介导整合法(R E M I),首次把高赖氨酸蛋白基因导入银耳芽孢,获得了转基因菌株。对转基因菌株进行分子检测,证实了外源基因已整合到银耳基因组中。氨基酸含量测定表明,转基因银耳中赖氨酸含量得到不同程度的提高。具体结果如下:
     1.银耳原生质体制备与再生条件优化
     以芽孢、菌丝体和子实体为材料,通过正交实验,考察了菌株、酶浓度、酶解时间以及酶解温度对原生质体产率和再生率的影响,结果显示:实验材料对原生质体产量影响最大,以芽孢为材料原生质体产量可达到2.75×10~7个/ml,而菌丝体和子实体的原生质体产量仅为2.5×10~6个/ml和1.0×10~6个/ml;在35℃下酶解,原生质体产量最高;溶壁酶浓度在1%~3%之间对原生质体产量影响不大:不同菌株原生质体产量差异不显著。本实验还研究了稳渗剂浓度对原生质体再生率的影响,结果表明,0.5mol/L~0.7 mol/L的KCI对原生质体再生没有显著差异,再生率最高为32.3%。
    
    福建农林大学硕士学位论文
    中文摘要
     对比紫外线与Y射线对银耳芽抱的诱变效应,Y射线诱变获得了48
    个缺陷型菌株,经传代后都被修复,没有获得稳定的突变体,紫外线诱变
    后有62个缺陷型菌株,经过传代后获得2株稳定的缺陷型突变体,获得两
    个营养缺陷型菌株,其中一株Tausn经鉴定是肌醇缺陷型。突变体Tausn
    的生长迟缓期比野生型多3天,生长速度较慢。
    3.高赖氨酸蛋白基因转化银耳及分子检测
     以pBR一1 ys为中间载体,把pBR一lys的Pubi启动子置换成P35S,构建成
    表达载体pCB一1 ys。应用REMI介导转化银耳芽抱,获得众多的转化子,核
    rDNA检测结果和营养缺陷型检验结果表明,这些转化子均是银耳芽抱。PCR
    检测结果:转化子携带P35S启动子、Lys基因、GUS基因、hPt基因、Tnos
    终止子。转基因银耳芽抱对潮霉素的抗性水平可达到巧oug/m1以上,大部
    分转化子检测到GUS活性。
    4.转基因菌株赖氨酸含量测定
     利用氨基酸自动分析仪,对潮霉素抗性较强的6个转基因菌株以及对
    照Tausn进行氨基酸分析,结果显示:转基因菌株的赖氨酸含量都有不同
    程度的提高,其中有4株提高了11%以上,最高一株为16.57%,而且蛋白
    质中氨基酸总量也有较大幅度的提高。
Protein is nutrition to human beings, which consists of twenty different types of amino acids, ten out of which can not be synthesized by human bodies thus have to be taken from food. These types of amino acids are called essential amino acids. Lysine is one of nine essential amino acids. Lysine has many biological functions including: increasing the appetite; enhancing the hemoglobin content in blood and curing peptic ulcer, etc. The lack of lysine in a human being can cause abnormal loss of weight and incomplete growth of bones, and the deficient assimilation of other amino acids, therefore, lysine is called by nutritionist as "the first needed amino acid".
    Transformation of lysine-rich protein genes from winged bean to Tremella fuciformis which has high nutritional value may enhance the genetically modified Tremella fuciformis nutritional and functional values. Since lysine-rich protein is a multifunctional protein if the tansgenes express correctly, the utilization of protein will also be enhanced.
    In the study, on the basis of studying the system of genetic transformation of Tremella fuciformis, a lysine-rich protein gene expression vector was constructed, and then transferred into Tremella fuciformis spores with Restriction Enzyme-Mediated DNA Integration (REMI). Molecular evidence demonstrated that lysine-rich protein gene had been integrated into the genome of transgenic Tremella fuciformis strains. Amino acids content testing results also confirmed that lysine content of transgenic strains was elevated comparably.
    1. Optimization of preparation and regeneration condition of Tremella fuciformis protoplasts
    Orthogonal design was used for researching the high yield protoplast of Tremella fuciformis. The results showed that the materials (conidia, mycelia and fruit bodies) were the major factor affecting protoplast yield. Using conidia as material, the yield of protoplast could reach 2.75x107/ml, while using mycelia and fruit body material, the yield of protoplast was only 2.5x106/ml and 1.0x106/ml respectively. The optimal digesting temperature was 35.The lywallzyme concentration ranging from 1% to 3%, did not affect the yield of protoplasts significantly. There was also no
    
    
    
    significant difference in the yield of protoplasts from different strains. The effect of osmotic stabilizer (KCI) concentration on regeneration of protoplasts was also studied. The results showed that there was no significant difference in the rate of protoplasts regeneration in different concentrations. KCI concentration from 0.5mol/L to 0.7 mol/L did not show significant difference to regeneration of protoplasts: the highest protoplasts regeneration rate was 32.3% in.
    2. Selection of auxotrophic strains
    Induced effects on the spores of Tremella fuciformis by ultraviolet and r-ray radiations were compared. 48 auxotrophic strains from r-rayed were obtained, but the mutants were not steady. 62 auxotrophic strains were obtained from ultraviolet radiation and two were steady auxotrophs. One of two strains Tau811 was inositol-defect mutant by identification. Lag phase of growth of Tau811 was three days more than wild stains.
    3. Transformation of lysine-rich protein gene to Tremella fuciformis and its molecular evidence
    P35S was incorporated into pBR-lys plasmid instead of promoter Pubi to construct expression vector pCB-lys. Transformation of lysine-rich protein gene to Tremella fuciformis produced many transformants. The results of the test of nuclear rDNA and deficiency diagnosis of nutrients showed that these transformants were yeast-like-conidia. These transformants bring with 35S promoter, Lys gene, GUS gene, hpt gene, nos terminator by PCR determination. The resistance to hygromycin in transformants reached 150ug/ml, and the determination of GUS activity of transformants was positive.
    4. Determination of the lysine content of transgenic strains
    Using Automatic Amino Acid Analyzer, Amino acids content determination of non-transgenic strain Tau811 and six transgenic strains with high resistance to hygromycin, showed that: the ly
引文
[1]戴有盛.食品的生化与营养.科学出版社,1994,64
    [2]赵文明等.种子蛋白质基因工程.陕西科学技术出版社,1995,47
    [3]WHO. Technical Report Series. 1973, No. 522. pp63
    [4]麦加宝.国产L-赖氨酸寻求新用途.精细与志用化学品,2001(18):3~5
    [5]Miflin-BJ; Lea-PJ: Mills-WR, et al. Amino acid biosynthesis in chloroplasts. Photosynthesis. Volume Ⅳ. Regulation of carbon metabolism. Proceedings of the Fifth International Congress on Photosynthesis. September 7-13, 1980, Halkidiki, Greece. 1981, 731~743.
    [6]Walisgrove-RM; Lea-PJ; Miflin-BJ. Intracellular localization of aspartate kinase and the enzymes of threonine and methionine biosynthesis in green leaves. Plant Physiology, 1983,71(4):780~784.
    [7]梁运祥,李兆文,郝勃.以抗结构类似物筛选高产L-赖氨酸酵母突变株.微生物学杂志,1999,19(4):15~16,21.
    [8]张伟国,顾正华.L-赖氨酸高产菌选育的研究.食品与发酵工业.2001,27(8).17~20
    [9]Mertz E.T. et al.A mutant gene that changes the protein composition and increases the lysine content of maize endosperm. Science, 1964,145:279~280
    [10]郑长庚等.高营养玉米的选用和利用.北京农业大学学报,1981,7(4):25~28
    [11]董玉琛,曹永生.粮食作物种质资源的品质特性及其利用.中国农业科学,2003,36(1):111~114
    [12]刘博林,荆玉祥,匡廷云.高赖氨酸植物种筛选及蛋白质纯化与鉴定.植物学报,1993,35(1):22~25
    [13]刘博林.高赖氨酸蛋白质的分离和纯化及其N端序列核苷酸探针的合成.中国
    
    科学院植物研究所[博士论文],1991
    [14]高越峰,荆玉祥,沈世华等.高赖氨酸蛋白基因导入水稻及可育转基因植株的获得.植物学报,2001,43(5):506~511
    [15]刘巧泉.基因工程技术提高稻米赖氨酸含量.扬州大学博士论文,2002
    [16]孙学辉.高赖氨酸蛋白质基因cDNA导入玉米自交系及MAR序列在玉米转化中的运用.中国农业大学[博士论文],2000
    [17]高玉杰.植物基因工程的应用与研究进展.辽宁农业科学,2003(1):28~30
    [18]傅廷栋.杂文油菜的育种与利用[M].武汉:湖北科学技术出版社,1995
    [19]刘厚利.植物育种研究进展[M].北京:农业出版社,1993
    [20]路子显.植物外源凝聚素及其在植物基因工程中的应用[J].生物技术通报,2002(2):10~15
    [21]侯文胜.利用转基因技术进行植物遗传改良[J].生物技术通报,2002(1):10~15
    [22]Schmidt R, Acarkan A, Boivin K. Comparative structural genomics in the Brassica family[J].Plant Physiology Biochemical, 2001,39
    [23]Mukai Y, Gill B S. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and repeat DNA probes[J].Genome, 1993,36
    [24]Song Y C, Gustafson J P. Physical location of fourteen RFLP markers in rice (Oryza sativa L)[J].Theor Appl Genet, 1995,90:113~119
    [25]Hinnen A,Hicks JB,Fink GR. Transformation of yeast. Proc. Natl. Acad. Sci, USA, 1978,75(5):1929~1933.
    [26]Stoop JMH,Mooibroek H. Advances in genetic analysis and bioteehnology of the cultivated button mushroom, Agaricus bisporus .Applied
    
    Microbiology and Biotechnology,1999,52(4):474~483.
    [27]MUNOZ-Rivas A,Specht CA,Drummond BJ et al. Transformation of the basidiomycete Schizophyllum commune.Molecular and General Genetics 1986,205(1):103~106
    [28]Challen MP,Rao BG,Elliot TJ. Transformation strategies for Agaricus bisporus.In:Van Griensven LJLD (ed)Genetics and Breeding of Agaricus. Wageningen:Pudoc,1991.129~134
    [29]Royer JC,Horgen PA.Towards a transformation of the edible basidiomycete Agrocybe aegerita with the URAI gene characterization of integrative events and of rearranged free plasmids in transformation. Current Genetics,1991,22(1):53~59.
    [30]Noel T, Labarere J .Homologour transformation of the edible basidiomycete Agrocybe aegerita with the URAI gene characterization of integrative events and of rearranged free plasmids in transformation. Current Genetics,1994,25(5):432~437.
    [31]Li A, Horgen PA.Attemps to develop a transformation system in Agaricus bisporus,utilizing particle bombardment and several other novel approaches.Cultivated Mushroom Research Newsletter,1993,(1):11~16.
    [32]Challen MP,Elliot TJ.Evaluation of the 5-fluoroindole resistance marker for mushroom transformation .Cultivated Mushroom Research Newsletter, 1994, (2):13~20.
    [33]Jia JH,Buaswell JA,Peberdy JF transformation of the edible fungi,Pleutrotus ostreatus and Volvariella volvacea. Mycological Research,1998,102(7):876~880.
    [34]Honda Y,Matsuyama T, Irie T et al .Carboxin resistance transformation of the homobasidiomycete fungus Pleutrotus ostreatus current Genetics,
    
    2000,37(3):209~212.
    [35]Peng M, Lemke Paul A, Shaw Joseph J. Improved conditions for protoplast formation and transformation of Pleutrotus ostreatus. Applied Microbiology and Biotechnology,1993,40(1):101~106.
    [36]Hirano T, SatoT, Yaegashi K et al. Efficient transformation of the edible basidiomycete lentinus edodes with a vector using a glyceraldehydes -3-phosphate dehydrogenase promoter to hygromycin B resistance. Molecular and General Genetics, 2000,263(6):1047~1052
    [37]Sato T, Yaegashi K et al. transformation of the edible basidiomycete lentinus edodes by Restriction Enzyme-Mediated Integration of Plasmid DNA. Bioscience Biotechnology and Biochemistry,1998,62(12):2346~2350.
    [38]Chen X, Stone M, Schlagnhaufer C et al. Afruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus Applied and Enviromental Microbiology, 2000,66(10):4510~4513.
    [39]Van de Rhee MD, Graca PMA, Huizing HJ et al. transformation of the cultivated mushroom, Agaricus bisporus ,to hygromycin B resistance. Molecular and General Genetics, 1996,250:(3)252~258.
    [40]Van de Rhee MD, Mendes O, Werten MWT et al. Highly efficient homologous integration via tanden exo-β-1,3-glucanasa genes in the common mushroom, Agaricus bisporus. Current Genetics, 1996,30(2):166~173.
    [41]Granado JD, Kertesz-Chaloupkovd K, Aebi M et al. Restriction enzyme-mediated DNA. integration in Coprinus cinereus. Molecular and General Genetics, 1997,250:(1)28~36.
    [42]Challen MP, Bhattiprolu GR, Warmer PJ et al. Cloning the Coprinus cinereus TRP2 gene and use it as a selectable marker in transformation.Mycology Research, 1994,98(2):179~185.
    
    
    [43]Ogawa K, Yamazaki T, Hasebe T et al. Molecular breeding of the basidiomycete Coprinus cinereus strains with high lignin-decolorization and-dgradation activities using novel heterologus protein expression vectors. Applied Microbiology and Biotechnology,1998,49(3):285~289.
    [44]王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,1998.281~295,319~332
    [45]Yanai K, Yonekura K, Usami H et al. The integrative transformation of Pfeutrotus ostreatususing Bialaphes resistance as a dominant selectable marker. Bioscience Biotechnology and Biochemistry, 1996,60(3):472~475.
    [46]王春晖,喻初权,张志光.外源DNA片段导入原生质体的研究.食用菌学报,1999,6(4):1~6。
    [47]Chakraborty BN, Kapoor M. Transformation of filamentous fungi by electroporation. Nucleic Acids Reseach, 1990,18(22):6737.
    [48]Bhairi BM, Staple RC. Transient expression of the β-Glucuronidase gene introduce into Uromyces appendfcufatus uredospores by particle bombardent. Phytopathology, 1992,82(9):986~989.
    [49]Christiansen SK, Knudsen S, Giese H. Biological transformation of the obligate plant pathogenic fungus, Erysiphe graminis f. sp bordei. Current Genetics, 1995,29(1):100~102.
    [50]Bills SN, Richter D, Podila G. Genetic transformation of the ectomycorrhizal fungus Paxillus involutus by particle bombardment. Mycology Research, 1995,99(5):557~561.
    [51]Bailey AM, Mena GL, tterrera-Estrella L. Transformation of four pathogenic Phytophthora app by micro-projectile bombardment on intact mycelia. Current Genetics, 1993,23(1):42~46.
    [52]Li A, Altosaar I, Heath MC et al. β-glucuronidase gene delivered into
    
    urediniospores of Uromyces appendiculatus by particle bombardment. Can. Journal Plant Pathology, 1993,15(1):1~6.
    [53]Schiestl RH, Petes TD. Integration of DNA fragments by illegitimate recombination in Sccharomyces cerevisiae. Proc. Natl. Acad, Sci, USA, 1991, 88(17):7585~7589.
    [54]Kuspa A, Loomis WF. Tagging developmental genes in Dictyvstelium by restriction enzyme-mediated integration of plasmid DNA. Proc. Natl. Acad, Sci, USA, 1992,89(18):8803~8807.
    [55]Lu S, Lyngholm L, Yang G et al. Tagging mutations at the Taxl locus of Cochfiobolu heteroporus by restriction enzyme-mediated integration. Proc. Natl. Acad, Sci, USA, 1994,91(26):12649~12653.
    [56]Brown Jr DH, Slobodkin JV, Kumamoto CA .Stable transformation and regulated expression of an incucible reporter construct in Candida albicans using restriction enzyme-mediated integration Molecular and General Genetics, 1996,251:(1)75~80.
    [57]Nigel Dunn-Coleman, Huaming Wang. Agrobacterium T- DNA.:A silver bullet for filamentous fungi. Nature Biotechnology, 1998,16(8):817~818.
    [58]De Groot MJA, Bundock P, Hookaas PJJ et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi.Nature Biotechnology, 1998,16(9):839~842.
    [59]Gouka RJ, Gerk C, Hooykaas PJJ et al.Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nature Biotechnology, 1999,17(6):598~601.
    [60]Hori K, Kajiwara S, Saito et al. Cloning sequence of aras gene of the edible basidiomycete Lentinus edodes. Gene, 1991, 105(1):91~96.
    
    
    [61]Osamu Ishibashi, Kazuo Shishido. Nucleotide sequence of a ras gene from the basidiomycete Coprinus cinereus. Gene, 1993,125(2):233~234.
    [62]Kajiwara S, Shishido K. Characterization of the promoter region of the basidiomycete Lentinos edodes le. ras gene. FEMS Microbiology Letters, 1992,92(2):147~150.
    [63]Granado JD, Kertesz-Chaloupkova, Aebi M et al. Restriction enzyme- mediated DNA. integration in Coprinus cinereus. Molecular and General Genetics, 1997,256:(1)28~36.
    [64]Bitter GA, Egan KM. Expresssion of heterologous genes in Saccharomyces cerevisiae from vectors utilizing the glyceradehyde-3-phosphate dehydrogenase gene promoter, gene, 1984,32(2):263~274.
    [65]Hirano t, Sato T, Okawa K et al. Isolation and characterization of the glyceradehyde-3-phosphate dehydrogenase gene of lentinus edodes. Bioscience Biotechnology and Biochemistry, 1999,63(7):1223-1227.
    [66]阎培生,边银丙等.高等真菌基因工程研究进展.食用菌学报,1997,4(2):47~53.
    [67]Challen MP, Rao BG, Elliott TJ. Molecular biology of edible fungi. Mushroom Science, Dublin Ireland.13th international Mushroom Congress and Trade Exhibition, 1991,227-234.
    [68]Miranda D, van de Rhee, Paula MA Graca et al. Transformation of the cultivated mushroom, Agaricus bisporus to hygromycin B resistance. Molecular and General Genetics, 1996,250(3):252~258.
    [69]黄毅主编,食用菌栽培(下册).北京:高等教育出版社,1997,216
    [70]聂伟,张永祥等.银耳多糖的药理学研究概况.中药药理与临床,2000,16(4):44~46
    
    
    [71]黄年来主编.中国银耳生产.北京:中国农业出版社,2000,8
    [72]郭美英主编.中国金针菇生产.北京:中国农业出版社,2000,10
    [73]陈明,陈立国.银耳极性测定的初步研究.华中农业大学学报,2000,19(2):138~141
    [74]徐碧如.银耳优良菌株选育的研究.中国食用菌,1996,15(1):7~8
    [75]李清华,马爱民.银耳菌丝原生质体分离和再生研究.长江蔬菜,2001,(9):28~29
    [76]Noel T, Labarere J. Homologous transformation of the edible basidiomycete Agrocybe aegeritawith the URA1 gene: characterization of integrative events and of rearranged free plasmids in transformation[J]. Current Genetics, 1994, 25(5):432~437.
    [77]Granado JD, Kertesz-Chaloupkova K, Aebi M et al. Restriction enzyme-mediated DNA integration in Coprinus cinereus[J]. Molecular and General Genetics, 1997, 256(1):28~36.
    [78]Miranda D, Van de Rhee, Paula MA Graca et al. Transformation of the cultivated mushroom, Agricus bisporus, to hygrmycin B resistance[J]. Molecular and General Genetics, 1996, 250(3):252~258.
    [79]Jia J H, Buaswell JA, Peberdy JF. Transformation of the edible fungi, Pleurotus ostreatus and Volvariella volvacea[J]. Mycological research, 1998,102(7):876~880.
    [80]Robert A. Akins, Alan M. Lambowitz. General method for cloning Neurospora crassa nuclear genes by complementation of mutants[J]. Molecular and Cellular Biology, 1985, 5(9):2272~2278.
    [81]李阜棣,喻子牛,何绍江.农业微生物学实验技术[M].北京:中国农业出版社,1996.61~63.
    
    
    [82]周德庆.微生物学实验手册[M].上海:上海科学技术出版社,1986.468~471.
    [83]丘冠英,彭银祥.生物物理学[M].武汉:武汉大学出版社,2000.163~185.
    [84]韩新才,杨新美,罗信昌.光木耳和琥珀木耳营养缺陷型菌株的辐射诱变与鉴定[J].中国食用菌,1992,13(2):19~21.
    [85]韩新才,杨新美.辐射诱发木耳营养缺陷型突变的研究[J].核农学报,1991,5(2):72—78.
    [86]Bhairi S M, Staples R C. 1992. Transient expression of the β-Glucuronidase Gene introduced into Uromycesappendiculatusuredospores by particle bombardment. Phytopathology. 82(9):986~989
    [87]Chen X, Stone M, Schlagnhaufer C, Romaine C P. 2000. A fruiting body tissue method for efficient Agrobacterium mediated transformation of Agaricus bisporus. Applied and Environmental Microbiology. 66(10):4510~4513
    [88]金冬雁,黎孟枫(译).分子克隆实验指南(第二版).北京:科学出版社,1992:16~34.
    [89]朱衡 瞿峰.利用氯化苄提取适于分子生物学分析的真菌DNA.真菌学报.1994.13(1).34~40
    [90]江玉姬,谢宝贵.草菇DNA提取方法初探.福建农业学报,2000,15(2).61~64
    [91]B(?)atrice lracabal, et al. Molecular systematics of the genus pleurotus: analysis of restriction polymorphisms in ribosomal DNA. Microbiolgy, 1995,141:1479~1490
    [92]Michael S. Nicholson, Britt A. Bunyard, Daniel J. Royse. Phylogeny of the genus Lentinula based on ribosomal DNA restriction fragment Length polymorphism analysis. Mycologia, 1997,89:400~407
    [93]White et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Gruide to Methods and
    
    Applications, eds. Innis, M.A., Gelfand, D.H., Sninsky, J. J. and white,T. J.,PP. 315~322, Academic Press, 1990
    [94]李学梅,单广福.金针菇蛋白质及氨基酸含量的测定与分析.中国食用菌,1999,18(6):20-22
    [95]卢宪.食用菌菌丝体氨基酸含量分析.食用菌学报,1999,6(2):25~29
    [96]宋爱荣,毕建水.七个白色金针菇品种的氨基酸分析与比较.食用菌学报,1996,3(1):33~38
    [97]张立新,杭瑚.两种多管藻中总氨基酸含量的分析.海洋科学,1999(2):6~7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700