钛酸钡基NTC热敏陶瓷电阻的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛酸钡基陶瓷材料在居里点Tc之前呈现良好的NTC特性,关于BaTiO3陶瓷在NTC特性及其机理方面的研究,迄今国内外很少见报导,是一个比较新的研究方向。钛酸钡基NTC功能陶瓷有着广阔的市场应用前景和重要的研究价值。根据氧化物半导体理论获得高电阻率、低B值材料是困难的。为满足物联网、汽车电子、各种半导体器等对宽温区温度补偿和测温应用急剧增长的需要,因此要求NTC热敏材料实现高电阻值、低B值。而采用常规的热敏材料配方是无法实现的。高电阻值、低B值热敏材料己成为当今负温度系数热敏电阻制造的一大难题。
     本实验采用固相合成法合成BaTiO3基NTC热敏陶瓷电阻材料,通过添加Pb以提高材料的居里点,以扩大NTC元件的工作温度范围,研究探索其NTC温度范围内其实现高电阻值、低B值特征的可能性;掺杂Nb205以提高半导化程度,降低材料的电阻率;添加BN做助烧剂,降低烧结温度。
     本文主要研究了烧结工艺与配方对BaTiO3基NTC热敏陶瓷材料的影响,并就线性NTC及高电阻率低B值的NTC材料做了研究。主要结论如下:
     (1)烧结温度对NTC材料的性能有很大影响,室温电阻率ρ25与烧结温度呈U型关系,本实验中,烧结温度在1180℃时,样品性能较好,为样品的较佳烧结温度。烧结中对样品进行适当的保温有利于助于晶粒半导化,降低室温电阻值,本实验中,保温1h时室温电阻率较小,样品的NTC性能也较好;
     (2)Pb能有效提高材料的居里点,扩大材料的工作温度范围。本实验中,居里点T。最高达330℃。同时,Pb的掺杂可以降低材料的电阻率,提高半导化程度;
     (3)BN是一种非常有效的助烧剂,能有效降低烧结温度,BN越多烧结温度越低。少量BN和Nb205的加入能提高材料的半导化程度,降低材料的电阻率,实验中BN为2mo1%时室温电阻率较低,ρ25=35.7Ω·cm。同时证实了Nb205有抑制晶粒生长的作用;
     (4)实验所得样品,电阻率为1316.7Ω·cm,B值为954.1,属于典型的高电阻率、低B值的NTC热敏电阻,且Tc为330℃,工作温度范围较大,具有良好的应用前景。
At temperature below the Curie point, the BaTiO3-based ceramics presents g ood character of NTC (Negative Temperature Coefficient). The NTC character of BaTiO3-based ceramics is rare studied and reported. High room temperature re sistivity (ρ25) and low B constant thermistors have a broad market application perspective, widely used for temperature measurement and compensation, inrush current limiting, etc. But according to the semi-conduction theory, it is hard t o synthesis using the traditional methods.
     The aim of this work is to synthesis and study highρ25 and low B consta nt BaTiO3-based NTC ceramic thermistors. Solid-phase synthesis is used, addin g Pb to shift the Curie point, doping ND2O5 to semi-conduct materials and low erρ25, and doping BN to reduce sintering temperature. The influence of proces s and formulas is studied on the BaTiO3-based NTC materials. Main conclusio ns follow as:
     (1) Sintering temperature has a major effect on the materials. The relations hip ofρ25 and sintering temperature is U-shape. Samples show better NTC cha racter at sintering temperature 1180℃. Appropriate time of heat preservation te mperature helps materials semi-conducting. During this experimentρ25 is minim um when the time of heat preservation is 1h
     (2) Pb doping is effective for shifting the Curie point. When Pb=60mol%, the Curie point is 330℃which is a lot increment compare to the pure BaTi O3 materials.
     (3) BN can reduce the sintering temperature, also help semi-conduction. W hen BN=2mol%, samples'=35.7Ω·cm. Nb2O5 promotes semi-conduction and 1o werρ25. Also it can inhibit grain growth.
     (4)ρ25 of synthesized samples is above 1.3k and constant B is below 1k. It is typical highρ25 and low B NTC thermistor. The Curie point is 330℃, s howing good application perspective.
引文
[1]曲远方.现代陶瓷材料及技术[M].上海:华东理工大学出社,2008.
    [2]任伊锦.钛酸钡系PTC热敏陶瓷材料的制备与性能研究[D].太原:太原理工大学,2006.
    [3]王恩信,荆玉兰,王鹏程,等.NTC热敏电阻器的现状与发展趋势[J].电子元件和材料,2005.16(5):1-7.
    [4]沈能珏等.现代电子材料技术[M].北京:国防工业出版社,2000.
    [5]何贤昶.陶瓷材料概论[M].上海:上海科学普及出版社,2005.
    [6]徐政,倪宏伟.现代功能陶瓷[M].北京:国防工业出版社[M],2000.
    [7]Goodman G.Electrical conduction anomaly in samarium-doped barium titanate[J].J Am Ceram Soc,1963,46(1):45-48.
    [8]G H Jonker. Some aspects of semiconducting barium titanate[J]. Solid State Electronics.1964,7,895-903.
    [9]Heywang W. Resistivity anomaly in doped borium titanate[J], J Am Ceram Soc,1964: 47(10):484.
    [10]张勇,廖莉玲,邹文静,陈文生,杜莹,李存雄.NTC热敏电阻材料的制备、性能优化及相关机理的研究进展[J].材料导报:纳米与新材料专辑,2010(1):310-312.
    [11]Merz WJ.Physical Review,1953,91(3):513
    [12]Baeten F,Derks B,Coppens W,et al.Journal of the European Ceramic Society[J],2006, 26(4-5):589-592.
    [13]Ying Luo,Xinyu Liu.Effect of Y203 addition on the electrical properties of BaTiO3-based NTC thermistors[M],Materials Letters.2006(60):1011-1013
    [14]Comes R,Lambert M,Guinie A.The chain-structure of BaTi03 and KNb03 PTCR Composites[J].Solid State Communications,1998,6:725-719.
    [15]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,2004.
    [16]郭炜,李玲霞等.掺杂Nb2O5及MgO对细晶BaTiO3系统介电性能影响的研究[J].硅酸盐通报,2003,22(1):22-25.
    [17]王悦辉,庄志强Nb、Co、La掺杂对BaTiO3介质陶瓷性能的影响[J].电子元件与材料,2005,24(1):29-31.
    [18]郭文华,李钢.Nb2O5掺杂对BaTiO3陶瓷介电常数的影响[J].中国陶瓷,2006,42(10):24-26.
    [19]E.Brzozowski,M.S.Castro.Grain growth control in Nb-doped BaTi03[J].Journal of Materials Processing Technology,2005,168(3):464-470.
    [20]郭建高,赵青,常爱民,吉光.超宽温区负温度系数热敏电阻材料的开发[J].仪表技术与传感器,2009(B11):110-111.
    [21]汪宝宁.NTC技术在微动同步器标度因数的温度补偿中的应用[J].上海航天,1997,14(4):32-35.
    [22]周惠明.高精度负温度系数热敏电阻及其应用[J].国外电子元器件,1995(2):23-26.
    [23]陈后胜,曹湘君.抑制浪涌电流用NTCR热敏电阻器的失效模型[J].电子元件与材料,2001,21(2):14-15.
    [24]李加升.NTC热敏电阻及其应用分析[J].荆门职业技术学院学报,2007,22(6):37-39.
    [25]刘兴阶,胡用时,李佐宜.新型热NTC敏电阻材料[J].传感器技术,1993,(3):46-48.
    [26]曹明贺,周东祥,龚树萍.叠层片式陶瓷元件发展概述[J].材料导报,2000,14(5):33-35.
    [27]王卫民,赵鸣,张慧君,高峰,田长生.NTC热敏电阻材料组成及制备工艺研究进展[J].材料科学与工程学报,2005,23(2):286-289.
    [28]岩谷昭一,郑中山.V型特性PTC材料[J].国外材料科学与工程,1994,3(2):31-32.
    [29]Zhao Jingchang, Li Longtu, Gui Zhilun. A study of V-shaped PTC behaviour of Sr0.4Pb0.6TiO3 ceramics[J]. Journal of the European Ceramic Society,2002,7:1171-1175.
    [30]Hamata, Y., Takuchi, H. and Zomura, K. Jpn. Patent No.63-280401,1988.
    [31]熊世英.新型厚膜片式NTC热敏元件研究[J].混合微电子技术,1995,6(2):66-69,46.
    [32]吴雄.片式NTC热敏电阻技术及应用[J].电子元件,1996(1):29-31.
    [33]刘青.片式NTC热敏电阻器产业化[J].设备管理与维修,2004(12):46-46.
    [34]宋秀娟,杨传仁,张继华,陈宏伟.NTC热敏薄膜的研究进展[J].电子元件与材料,2008,27(8):13-15.
    [35]朱金波,周继承.NTC电阻器热敏功能薄膜材料研究进展[J].材料导报,2006,20(11):28-31.
    [36]赵霞妍,袁昌来黄静月,刘心宇,李擘.一种新型NTC厚膜电阻的制备及电性能研究[J].电子元件与材料,2010(2):17-19,23.
    [37]赵双群.BaTi03半导陶瓷的制备工艺和居里温度移动[J].宁夏大学学报:自然科学版,2000,21(2):126-128.
    [38]唐斌,张树人,袁颖,周晓华.钛酸钡陶瓷中居里点移动规律与机理研究进展[J].真空科学与技术学报,2008(2):120-125.
    [39]王茂祥,孙平.真空科学与技术学报,2006,26(6):522-555
    [40]李言荣,恽正中.电子材料导论[M].北京:清华大学出版社,2001.
    [41]王渊,刘先勇,严建锁.NTC热敏电阻的线性化研究[J].中国科技博览,2009(19):25-26.
    [42]沙占友,王彦朋,杜之涛.NTC热敏电阻的线性化及其应用[J].自动化仪表,2004,25(9):28-30.
    [43]赵军,谢作品,吴珂.NTC热敏电阻线性化新方法[J].电测与仪表,2006,43(1):12-14.
    [44]关辉,胡瑞华.线性NTC温度传感器及应用[J].家用电器科技,1998(2):30-31.
    [45]周蓉,杨长印.线性NTC热敏电阻浆料的研试[J].混合微电子技术,2001,12(2):102-107,49.
    [46]线性NTC温度传感器[J].传感器世界,2002,8(8):34-34.
    [47]王卫民.尖晶石系NTC热敏电阻材料导电机理的研究进展[J].安阳师范学院学报,2005(2):41-45.
    [48]张风芳.能带理论(Energy band theory)的概念[J].中国科教创新导刊,2010(24):144-144.
    [49]兰玉岐,妥万禄,常爱民SrCo1-xNixO3-δ占陶瓷材料的微结构和电性能[J].功能材料与器件学报,2007,13(1):63-67.
    [50]苏树兵,艾拜都拉等CoMnCuO系NTC热敏电阻的复阻抗分析[J].材料科学与工程,2002,20(3):386-389.
    [51]Sato S, Fujikawa Y, Nomura. T. American Ceramic Society Bulletin 2000,79:155.
    [52]KahnM. Journal of the American Ceramic Society,1971,54(9):455-457
    [53]Subbarao E C,Shirane G. Journal of the American Ceramic Society,1959,42(6):279-284
    [54]Murugaraj P, Kutty T, Subba Rao M. Journal of Materials Science,1986,21(10):352-3527
    [55]Internet of Things, [DB/OL]. http://en.wikipedia.org/wiki/Internet_of_Things
    [56]物联网, [DB/OL]. http://zh.wikipedia.org/wiki/%E7%89%A9%E8%81%94%E7%BD%91
    [57]于思远.工程陶瓷材料的加工技术及其应用[M].北京:机械工业出版社,2008.
    [58]罗伟,杨萍华,朱运兵,等.一种负温度系数双向复合热敏材料及其制备方法[P].中国专利:200810021261.6.2008-12-24.
    [59]Hayman P.W., Dam R.W., Method of preparation of semiconducting materials [P]. German:929 350,1955-6-23.
    [60]LI Xu-qiong. Microstructure and electrical properties of BaTiO3-based NTC ceramics[J].Journal of Functional Materials,2007,38(A02):595-597.
    [61]David Houivet, Jean-Marie Haussonne. High temperature NTC ceramic resistors (ambient-1000℃) [J]. Journal of the European Ceramic Society,2004,24(6):1237-1241
    [62]H. Altenburg, O. Mrooz, J. Plewa, O. Shpotyuk, M. Vakiv. Semiconductor ceramics for NTC thermistors:the reliability aspects[J]. Journal of the European Ceramic Society,2001, 21(10-11):1787-1791
    [63]Ying Luo, Xinyu Liu, Xvqiong Li, Guohua Chen. BaBiO3-doped SrTiO3-based NTC thermistors [J].Journal of Alloys and Compounds,2007,433(1-2):221-224
    [64]L. Affleck, J. Seaton, C. Leach. Characterisation of the R-T response of BaTiO3 thermistors on three different length scales[J]. Journal of the European Ceramic Society,2007,27(12): 3439-3444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700